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ABSTRACT

In this paper, we propose a time-varying coupling function that results in enhanced synchronization in complex networks of oscillators.
The stability of synchronization can be analyzed by applying the master stability approach, which considers the largest Lyapunov exponent
of the linearized variational equations as a function of the network eigenvalues as the master stability function. Here, it is assumed that the
oscillators have diffusive single-variable coupling. All possible single-variable couplings are studied for each time interval, and the one with the
smallest local Lyapunov exponent is selected. The obtained coupling function leads to a decrease in the critical coupling parameter, resulting
in enhanced synchronization. Moreover, synchronization is achieved faster, and its robustness is increased. For illustration, the optimum
coupling function is found for three networks of chaotic Rössler, Chen, and Chua systems, revealing enhanced synchronization.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0142891

In many diverse applications of complex networks, enhanc-

ing synchronization is a crucial problem. Previous research

has attempted to improve synchronization using various tech-

niques, including time-varying coupling functions or coupling

strength. Based on the master stability approach, the current

research proposes a time-varying coupling function for achieving

enhanced synchronization. Compared to constant single-variable

couplings, the optimal coupling function, which only includes

one variable in the coupling at a time, enables synchroniza-

tion at lower coupling strengths. As a result, synchronization

cost is reduced. The optimal coupling function is revealed for

three classical chaotic systems, Rössler, Chen, and Chua. Addi-

tionally, the optimal time-varying coupling function is used in

numerical simulations of ring networks, and the findings are

discussed.

I. INTRODUCTION

Networks of dynamical systems are of great importance in dif-
ferent fields, ranging from physics and biology to engineering and
social sciences.1,2 The collective behavior of the networks depends
on the configuration of the coupling between the dynamical sys-
tems of the nodes. A prominent collective behavior in networks is
synchronization.3–7 The synchronized behavior plays essential roles
in different areas,8–10 such as in normal neuronal processes in cog-
nitive tasks,11 pathological brain functions,12,13 food web dynamics
in ecological systems,14 and power grids.15,16 Consequently, many
studies have been devoted to synchronization and investigating its
stability. A common and efficient method for studying the stabil-
ity of synchronization in diffusively coupled identical oscillators is
the master stability function (MSF).17 Using this method, the con-
ditions that guarantee stability of synchronization can be achieved.
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Some modifications of the MSF approach can also be applied to spe-
cial coupling schemes, such as delayed coupling and time-varying
coupling.18–23

Most studies on synchronization have focused on enhanc-
ing and optimizing synchronization.24–27 For example, it has been
revealed that an enhanced synchronization is achieved when the net-
work is directed and weighted and depends on the mean degree.28–30

Banerjee et al.31 reported that inducing heterogeneity by adding a
mismatched oscillator in the network of identical oscillators can
help in reaching synchronization for smaller couplings. Fan et al.25

found that a proper selection of phase lag modulation can lead to
optimum synchronization. Sevilla-Escoboza27 tried a multi-variable
coupling to find the optimum coupling for maximizing the stability
of synchronization. Taher et al.32 could achieve an enhanced syn-
chronization by applying the time-delayed feedback control to a
subset of nodes involved in disturbing synchronization. Martineau
et al.26 showed that the existence of anticorrelated noise patterns
can enhance synchronization. Hazrati et al.33 compared the syn-
chronizability of different network topologies and their structural
properties by varying the number of links. They represented that for
a low number of links, the best synchronization is related to the net-
work with the lower average and variance of path length, and for
the larger number of links, it is associated with the lower clustering
coefficient.

A few synchronization analyses have been done by considering
time-varying topologies and couplings.34–37 Belykh et al.38 studied
synchronization in small-world networks with blinking random
short-cuts. Stilwell et al.39 represented that the stability of syn-
chronization in networks with blinking links is equivalent to the
average network when blinking is fast. The average network is a
static network whose connections are the time average of blink-
ing connections. Jeter and Belykh40 found some intermediate on/off
frequency ranges with stable synchronization, in which the aver-
age network was unstable. Kohar et al.35 considered networks with
stochastically rewiring the links and showed that in time-varying
networks, the stability range is increased and the synchronization
is achieved faster. Hagos et al.37 reported synchronization tran-
sitions in phase oscillators by considering time-varying coupling
functions. Parastesh et al.41 studied a periodic blinking coupling
between variables in networks with constant topology. They showed
that this coupling can decrease the synchronization cost compared
to constant single-variable coupling.

In previous studies, most of the time-dependent generaliza-
tions have been devoted to enhancing synchronization through
adaptive coupling strengths or time-varying connections, and less
attention has been paid to the coupling function. This paper aims
to find a time-varying coupling function that enhances synchro-
nization in networks of diffusively coupled systems. The coupling is
considered to be a single-variable but varies between different vari-
ables in time (the coupling variables change over time adaptively).
The procedure for finding the appropriate time-varying coupling
function that relies on the master stability approach is described in
Sec. II. Then, in Sec. III, the method is applied to three paradig-
matic networks of the Rössler, Chen, and Chua systems. It is shown
that by using the proposed time-varying coupling function, syn-
chronization is enhanced compared to time-constant single-variable
coupling functions. Finally, our conclusions are given in Sec. IV.

II. THE NETWORK AND TIME-VARYING COUPLING

FUNCTION

A network of N identical oscillators with a linear diffusive time-
varying coupling function can be described by

Ẋi(t) = F(Xi(t)) − σ

N
∑

j=1

GijHt(Xj(t)), (1)

where Xi is the m-dimensional state vector of the ith oscillator,
i = 1, . . . , N; F : R

m → R
m describes the dynamics of the uncou-

pled system; σ denotes the overall coupling strength; and GN×N

is the Laplacian matrix of the connection topology. The coupling
function is denoted by Ht(Xj(t)). Since the coupling is considered
linear, it can be rewritten as Ht(Xj(t)) = h(t)Xj(t), where h(t) is a
time-varying m–m matrix. hij = 1 describes j → i coupling; i.e., the
coupling is in the jth state variable and added to the ith state variable.
Here, we assume that at each time interval, only one matrix element
of h is unity and the others are zero. The aim is to find a time-varying
coupling function for which the synchronization stability region is
expanded; hence, it enhances synchronization.

A. Stability of the synchronization

The stability of the synchronization manifold (X1 = X2 = · · ·

= Xs) for a network can be found by the master stability approach.
In this method, a small perturbation is applied to the synchronous
manifold as δXi = Xs − Xi. If all perturbations decay to zero, then
the synchronous manifold is stable. The dynamical equations of
perturbations, which are known as the variational equations, can
be found by substituting δXi in Eq. (1) and linearizing around the
synchronous solution as follows:

˙δXi(t) = DF(Xs)) − σ

N
∑

j=1

GijDH(Xs)δXj, (2)

where DF(Xs) and DH(Xs) denote the Jacobian of F and H at the
synchronous manifold. Since the coupling is linear, we have DH(Xs)

= h(t). Hence, Eq. (2) can be rewritten as

˙δXi(t) = DF(Xs)) − σ

N
∑

j=1

Gijh(t)δXj

= DF(Xs) − σh(t)

N
∑

j=1

GijδXj. (3)

By diagonalization of the Laplacian matrix G, the decoupled form of
the variational equations can be found,

η̇i(t) = [DF(Xs)) − σh(t)λi]ηi, (4)

where η(t) = (η1, η2, . . . , ηN) is an Nm-dimensional vector since
each variable ηi is m-dimensional. η is obtained from the transfor-
mation of the perturbations under η = Q−1δX in which the matrix
Q is constructed from the eigenvectors of G. The eigenvalues of G
are denoted by λi, i = 1, . . . , N, where for i = 1, λ1 = 0, and the
solution is along the synchrony manifold and for i = 2, . . . , N, it
is transverse to the synchrony manifold. The transverse stability of
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the synchronization manifold follows from Eq. (4) for i = 2, . . . , N
by calculating the maximum Lyapunov exponent (3) as a func-
tion of the parameters λi, known as the master stability function
(MSF) 3(λ). If 3 < 0 holds for a given K = σλ, then the solutions
of the variational equations asymptotically decay and consequently,
the synchronization manifold is locally stable.

B. Optimal time-varying coupling function

For a given value of K = σλ, the MSF depends on the coupling
function (h). When it is chosen as constant in time (h(t) = h), the
maximum Lyapunov exponent of Eq. (4) is usually computed for
a long time interval. For an m-dimensional dynamical system, one
can define m × m single-variable coupling schemes (each with only
one non-vanishing matrix element of h, normalized to unity without
loss of generality). Among these coupling schemes, one, which we
refer to as the best constant coupling, has the largest stability region
and results in synchronization at the lowest coupling strength. Our
hypothesis is that the synchronization can be enhanced by consid-
ering short time intervals and finding the proper coupling scheme
among m × m couplings for each time interval. As the MSF method
calculates the maximum Lyapunov exponent of variational equa-
tions [Eq. (4)], the proper coupling can be found by comparing
the local Lyapunov exponent of variational equations for all cou-
pling schemes. Then, the proper coupling scheme is the one with
the lowest local largest Lyapunov exponent. Consequently, the cou-
pling function obtained by the proper coupling schemes in each time
interval is optimal. The optimal coupling function leads to enhanced
synchrony even better than the best constant coupling.

For a trajectory, the local Lyapunov exponents are obtained by
dividing the total trajectory into small segments and computing the
Lyapunov exponents of the segments. It is noted that here, we always
analyze the largest Lyapunov exponent. The time interval consid-
ered for finding the optimal coupling function refers to the time
of calculating the local Lyapunov exponent. According to standard
procedures,42 this time step should not be too large, but also not too
small. If the time interval considered is large, although the local Lya-
punov exponents are calculated correctly, the change in the coupling
occurs slowly and cannot improve synchronization. Hence, the time
interval should be chosen small enough to achieve fast blinking rel-
ative to the time scale of the oscillatory system dynamics. On the
other hand, a very small time interval increases the computational
cost. Hence, there should be a compromise between the fast blink-
ing and the computational cost. Under this aspect, we have done
many simulations and found that T = 0.5 is the best time step for
calculating the Lyapunov exponents. We have also checked in the
two-parameter plane (T, K) that the largest Lyapunov exponent does
not depend on T in some range around T = 0.5 at fixed K.

According to the above descriptions, the steps for finding the
optimum time-varying coupling function that results in enhanced
synchronization are as follows:

1. An appropriate time interval is considered for varying the
coupling function.

2. For each time interval, all possible constant coupling functions
are considered. (m × m coupling functions exist, each with only
one non-zero element.)

3. The local Lyapunov exponent of Eq. (4) is computed for all
constant coupling functions.

4. The coupling function, which has the lower local Lyapunov
exponent, is selected for this time interval.

Consequently, the best coupling function for each time interval
can be found. The resulting coupling function (h(t)) leads to an MSF
for the chosen value of K = σλ with lower values than each of the
m × m constant coupling functions.

C. Applicability of the method

In this subsection, we discuss the features of the theory and
describe how it can be applied to real systems.

The variational equation [Eq. (4)] depends on the synchronous
manifold (Xs), which is the same as the trajectory of a single uncou-
pled system for linear diffusive coupling. In the proposed method,
the local Lyapunov exponent of the variational equations should be
calculated, which is dependent on the trajectory and its initial condi-
tion. Accordingly, the proper coupling scheme in each time interval
relies on the trajectory. Therefore, using different initial conditions
for the trajectory, different time-varying optimal coupling functions
are obtained. However, the general form and the number of times
each coupling is turned on are almost the same in all coupling func-
tions. (It has been observed in 100 simulations with different initial
conditions.)

According to the above description, the optimal time-varying
coupling function is found from one trajectory with a well-defined
initial condition. However, in a network consisting of N oscilla-
tors, there are N initial conditions, each resulting in a different
time-varying coupling function for the respective oscillator. There-
fore, to apply the theory to coupled systems, they must first reach
a synchronized state to be in an equivalent state (which can be
formally considered a similar initial condition). Then, the optimal
time-varying coupling function can be obtained and applied to the
network. By using the obtained time-varying coupling function, the
systems can remain synchronous under a lower coupling strength
than the best for constant coupling.

III. NUMERICAL ILLUSTRATION

This section presents some basic examples to show that the
defined time-varying coupling function can enhance synchroniza-
tion. To this aim, three paradigmatic chaotic systems are selected:
Rössler,43 Chen,44 and Chua.45 The dynamical equations of these
systems are as follows:

Rössler system:

ẋ = −y − z,

ẏ = x + αy,

ż = β + (x − γ )z,

(5)

where α = β = 0.2 and γ = 9.
Chen system:

ẋ = a(y − x),

ẏ = (c − a − z)x + cy,

ż = xy − βz,

(6)
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FIG. 1. The largest Lyapunov exponent (3) of the variational equations for the
Rössler system vs the coupling parameter K. (a) A large range of K and (b) a
blow-up of part (a) in a smaller range of K. The red color refers to the optimal
time-varying coupling, and other colors show constant couplings, where j → i
coupling means that the coupling is in the j state variable and added to the i state
variable.

where a = 35, c = 28, and β = 8
3
.

Chua system:

ẋ = α[y − x + f(x)],

ẏ = x − y + z,

ż = −βy − γ z,

f(x) =











−bx − a + b, x > 1,

−ax, |x| < 1,

−bx + a − b, x < −1,

(7)

where α = 10, β = 14.87, γ = 0, a = −1.27, and b = −0.68.
For all of the systems, the variational equations are derived.

Then, as described in Sec. II, time intervals are considered (here,
T = 0.5, which is small compared to the timescale of the intrinsic
oscillatory dynamics). The local Lyapunov exponents of the vari-
ational equations are calculated for constant coupling functions.
The coupling function with the lowest local Lyapunov exponent is
chosen for the corresponding time interval. Finally, a time-varying
coupling function is obtained. For this case, the largest Lyapunov
exponent of the variational equations, based upon the obtained
time-varying coupling function, is lower than that for constant
coupling functions.

Figures 1–3 represent the master stability function, i.e., the
largest Lyapunov exponent (3) of the variational equations with
time-varying as well as constant coupling functions vs the coupling
parameter K = σλ for the Rössler, Chen, and Chua systems, respec-
tively. The left parts show 3(K) in a larger range of K, and the right
parts are zoomed-in views of part (a) in a smaller range of K to
display the difference between the zero-crossing points better. The
largest Lyapunov exponent referring to the time-varying coupling
function is shown in red color. We observe that the MSF curve with
a time-varying coupling function is clearly lower than the constant
coupling functions. Moreover, it has a smaller zero-crossing point,

FIG. 2. The largest Lyapunov exponent (3) of the variational equations for the
Chen system vs coupling parameter K. (a) A large range of K and (b) a blow-up
of part (a) in a smaller range of K. The red color refers to the optimal time-varying
coupling, and other colors show constant couplings, where j → i coupling means
that the coupling is in the j state variable and added to the i state variable.

where the synchronous solution becomes stable. For the Rössler sys-
tem, the best synchronization with constant coupling occurs for
K > 0.159 when coupled with y → y coupling. In contrast, time-
varying coupling results in stable synchronization for K > 0.105.
Similarly, for the Chen system (Fig. 2), the best synchronization
relates to y → y coupling with the zero-crossing stability thresh-
old at K = 3.548. However, the time-varying coupling decreases
this threshold to K = 3.042. Finally, for the Chua system (Fig. 3),
x → y coupling leads to stable synchronization for K > 0.44, while
the time-varying coupling function enables synchronization for
K > 0.37. In conclusion, the obtained time-varying coupling func-
tion results in strongly enhanced stability of synchronization.

To provide more detail on the coupling function in each time
interval of length T = 0.5, the trajectories of three chaotic systems

FIG. 3. The largest Lyapunov exponent (3) of the variational equations for the
Chua system vs coupling parameter K. (a) Large range of K. (b) A blow-up of
part (a) in a smaller range of K. The red color refers to the optimal time-varying
coupling, and other colors show constant couplings, where j → i coupling means
that the coupling is in the j state variable and added to the i state variable.

Chaos 33, 033139 (2023); doi: 10.1063/5.0142891 33, 033139-4

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0142891/16790590/033139_1_online.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 4. The left column shows the optimal coupling function in each time inter-
val by color on the system trajectory. The right column shows the probability of
occurrence of each coupling. (a) Rössler system in Eq. (5) with α = β = 0.2 and
γ = 9 (σ = 5). (b) Chen system in Eq. (6) with a = 35, c = 28, and β = 8/3
(σ = 50). (c) Chua system in Eq. (7) α = 10,β = 14.87, a = −1.27, and b =

−0.68 (σ = 5). The colors of the trajectory represent the optimal coupling for
the corresponding time interval. The couplings x → x, y → x, z → x, x → y,
y → y, z → y, x → z, y → z, and z → z are shown by light blue, light green,
black, dark green, red, dark blue, purple, orange, and yellow, respectively, where
j → i coupling means that the coupling is in the j state variable and added to the i
state variable. The Rössler, Chen, and Chua trajectories are plotted for 270, 450,
and 900 time units, respectively. The initial points of the trajectory in parts (a)–(c)
are (0, 0,−1), (7.72, 9.29, 21.19), and (−1.89,−0.42, 2.17).

are shown in Fig. 4 (left panel) and the optimal coupling in the time
intervals is shown by different colors. One can clearly see that dur-
ing one oscillation cycle, several time intervals of different coupling
occur. It can also be observed that one coupling scheme is usually
optimal in some successive time intervals. The choice of coupling
for each time interval depends on the value of the local Lyapunov
exponent, which is relevant to the eigenvalues of the linearized vari-
ational system (DF − Kh). In fact, the Jacobian of the system varies
according to the points of the trajectory. Also, K can be involved in
this system in nine different forms according to the nine coupling
schemes. Hence, the eigenvalues of this system differ for different
time intervals and different coupling schemes, resulting in different

FIG. 5. The time series of 20 Rössler systems [Eq. (5)] coupled in a locally cou-
pled ring network. At first, the three-variable coupling with σ = 1.74 as strong
coupling is applied until t = 100. (a) There is no coupling between the oscilla-
tors after t = 100. (b) The systems are coupled via the best constant coupling
(y → y) after t = 100 with the coupling strength σ = 1.23. (c) The systems
are coupled via the optimal time-varying coupling after t = 100 with the coupling
strength σ = 1.23. The parameters of the Rössler systems are α = β = 0.2
and γ = 9. The time series are obtained using 4th-order Runge–Kutta method
with a time step of 0.01.

local Lyapunov exponents. It can be seen, e.g., in Fig. 4(a) for the
Rössler system that the optimum coupling generally involves those
variables, which change most rapidly along each particular section of
the trajectory. For instance, during the rise of the z-variable from the
(x, y) spiral plane with increasing y, the y → y coupling dominates,
while subsequently during re-injection with decreasing x, mostly the
x → x coupling dominates.

Figure 4 also represents that for each system, some of the cou-
plings are turned on more frequently than others. Figure 4(a) shows
that for the Rössler system, the optimal coupling mostly consists of
x → x and y → y couplings, while, for the Chen system [Fig. 4(b)],
the couplings y → y and z → z are turned on more frequently. For
the Chua system [Fig. 4(c)], the switching frequency of couplings
x → x, x → y, and z → z is higher. The probability of occurrence
of each coupling in the optimal time-varying coupling is shown in
the right column of Fig. 4.

In the next step, we explore how the optimal coupling can be
applied to a concrete network. Hence, we apply the optimal time-
varying coupling function to a ring network of 20 locally coupled
Rössler systems, which is characterized by the network eigenvalues
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λi = 0, 0.0979, 0.0979, 0.3820, 0.3820, 0.8244, 0.8244, 1.3820, 1.3820,
2.0000, 2.0000, 2.6180, 2.6180, 3.1756, 3.1756, 3.6180, 3.6180, 3.9021,
3.9021, 4. At first, strong coupling is applied until t = 100 to syn-
chronize the systems. In our simulations, the three-variable coupling
with σ = 1.74 has been used. However, any coupling can be used
for the initial synchronization, and using three-variable coupling is
just for achieving fast synchronization. By removing the coupling
at t = 100, the systems remain synchronous for a finite transient
time before diverging. The time series of the systems for this case
are shown in Fig. 5(a). According to the MSF of the Rössler sys-
tem (Fig. 1), the best constant coupling is y → y coupling, resulting
in synchronization at K = 0.159. Therefore, the stable synchroniza-
tion for the Rössler network is achieved at σ = 1.622 since λ2 =

0.098. This critical coupling strength changes to σ = 1.071 for time-
varying coupling whose MSF shows stable synchronization at K =

0.105. Consequently, we consider two cases by applying the best
constant coupling and the optimal coupling.

In the first case, the best constant coupling (y → y) is applied
with the strength σ = 1.23 after t = 100. The time series of the
systems are represented in Fig. 5(b). It can be observed that
although the synchronization is maintained longer than in panel
(a), the time series finally diverge and the systems become asyn-
chronous. For the second case, to apply the optimal time-varying
coupling, the final point of the synchronous trajectory is used for
finding the optimal coupling function with σ = 1.23, and then,
it is applied after t = 100. The results of the systems, which are
shown in Fig. 5(c), indicate that the synchronization is preserved
in this case.

IV. CONCLUSION

In this paper, the synchronization of oscillators coupled by a
single variable was studied. It was proposed that a time-varying cou-
pling function found by proper selection of the coupling-variable
can lead to enhanced synchronization. According to the master
stability function, the stability of synchronization depends on the
maximum Lyapunov exponent of the linearized variational equa-
tions. Here, it was proposed that optimum time-varying coupling
functions can be obtained by considering the local Lyapunov expo-
nents. Short time intervals were considered, and the local Lyapunov
exponents of all possible single-variable couplings were computed.
In each time interval, the coupling that resulted in the minimum
local Lyapunov exponent was selected. Finally, a time-varying cou-
pling function was obtained for which the synchronization was
more robust and could be achieved for smaller coupling param-
eters. We applied our method to networks of Rössler, Chen, and
Chua systems. The results showed that the master stability func-
tion vs coupling parameter for time-varying coupling lies below that
for any constant coupling, and thus, synchronization is enhanced.
The optimal time-varying coupling function was also applied to
a ring network of Rössler systems. It was shown that using the
optimal coupling, the systems remain synchronous with coupling
strength lower than the best constant single-variable coupling. It
should be noted that the proposed optimal coupling can be applied
to networks with any structure, including scale-free and small-world
networks.
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