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China can be self-sufficient in maize produc-
tion by 2030with optimal cropmanagement

Ning Luo 1,2, Qingfeng Meng 1 , Puyu Feng 3, Ziren Qu1, Yonghong Yu1,
De Li Liu 4,5, Christoph Müller 2 & Pu Wang1

Population growth and economic development in China has increased the
demand for food and animal feed, raising questions regarding China’s future
maize production self-sufficiency. Here, we address this challenge by com-
bining data-driven projections with a machine learning method on data from
402 stations, with data from 87 field experiments across China. Current maize
yield would be roughly doubled with the implementation of optimal planting
density andmanagement. In the 2030 s, we estimate a 52% yield improvement
through dense planting and soil improvement under a high-end climate for-
cing Shared Socio-Economic Pathway (SSP585), compared with a historical
climate trend. Based on our results, yield gains from soil improvement out-
weigh the adverse effects of climate change. This implies that China can be
self-sufficient in maize by using current cropping areas. Our results challenge
the view of yield stagnation in most global areas and provide an example of
how food security can be achieved with optimal crop-soil management under
future climate change scenarios.

Maize (Zea mays L.) production needs to be substantially increased to
address the growing competition for a limited supply of arable land, as
well as the increasing demand for food and feed under population
growth and economic development1,2. A general pattern of declining
growth rates in global crop yields is observed in many important
producer countries, and raise concerns about whether future output
growth can keep pace with demand3,4. China is the second largest
producer of maize in the world, producing 260 million tons annually
(2016–2020) and contributing 23% of the maize supply using 21% of
the global maize area5. However, maize imports in China saw a rapid
increase recently in response to the deficit between growing domestic
consumption and stalled production, and peaked in 2021 with 28.4
million tons6. Continued high Chinese maize imports may contribute
towards increased prices and volatility in global cereal markets in the
future. Given the limited possibility for area expansion, the ability of
China’s maize production to reach self-sufficiency through continued
grain yield (i.e., outputs per unit area) improvements therefore plays a

critical role for both global food security and ending hunger by
2030–Goal 2 of the 17UnitedNations Sustainable DevelopmentGoals7.

Crop yield gains rely on complex interactions between genotypes,
environmental factors (including climate and soil conditions), and
agricultural management8. Recent work in three irrigated maize
regions (Lower Niobrara, Tri-Basin, and Upper Big Blue) in Nebraska
illustrates that climate trends and agronomic improvements, not
genetic improvements, underpin recent maize yield gains9. Evidence
points towards plant density as one of the critical indicators in
explaining maize yield booms in the USA and other parts of the
world10,11. In North America, optimum plant density (OPD) increased at
a rate of 700 plants per hectare per year during 1987–201612. Plant
density contribution tomaize yield gain ranges from8.5 to 17%. Brazil’s
maize productivity has increased due to increased density-tolerance in
modern hybrids, with planting density increasing from 7.1 × 104 plants
ha−1 in the 1970s to 8.5 × 104 plants ha−1 in the 1990s13. Maize yields in
France quadrupled in the 1950s–1980s, with yields increasingly
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correlated with planting density, due to genetic gains14. Notably, Chi-
nese farmers have steadily increased maize plant density to pursue
greater yields since the 1950s, at an average rate of 500 plants per
hectare per decade, despite lower magnitudes of yield and density
compared to theUSA (Supplementary Fig. 1). Hence, a critical question
is whether the strategy that dense planting combined with an
improved environment such as soil-management and better cultivars
in China is adequate to achieve the anticipated increase in maize yield
in the coming decades? The answer to this question is vital for ana-
lyzing future domestic and global maize supply-demand balances.

Dense planting would impose competition for water, nutrients,
and light15. Understanding the OPD that maximizes utilization of
available resources for the highest grain yield in each farming system
can help uncover potential trade-offs between agronomic inputs and
economic gains. Approaches to estimate OPD are limited, especially in
terms of coverage of different agro-ecological zones. For example,
current on-farm trials that explore yield-density response generally
include limited density settings and maize hybrids in specific sites16,
such that results are difficult to extrapolate to all growing environ-
ments. Statistical approaches based on large datasets provide more
comprehensive insights into yield-density relationships17, but have
considerable uncertainties due to the quantity and quality of the
observed data18. Machine learning algorithms provide a robust
approach to investigate complex interactions between crop manage-
ment and the growing environment, due to their ability to uncover
hierarchical and non-linear relationships between the response vari-
able and predictor variables on the basis of ensemble learning
approaches19,20. Combining machine learning and testing with suffi-
cient field trials is essential for the accurate prediction of OPD and its
associated crop productivity, and thus for the guidance of farmers’
practices.

In this study, we first used a data-driven approach based on the
Random Forest (RF) algorithm to recognize the precise OPD across
China. Building on a database of 2442 paired observations (yield-
density points) derived from 125 studies published between 2000 and
2021 across major maize areas in China, a RF algorithm is trained and
tested at the nationwide level to predict OPD as a function of envir-
onmental inputs, management and soil organicmatter content (SOM).
The RF predictive model is then run with a large regional-scale dataset
(including 402 stations, see “Methods” for details) to assess OPD
across China under current conditions. Next, these projectedOPDs are
compared with results from 87 field trials across China21. Finally, pro-
jections of maize OPD are performed using a climate change scenario
produced by 22 Global Climate Models of the Coupled Model Inter-
comparison Project Phase 6 (CMIP6) under a high-end radiative for-
cing setup, the Shared Socio-Economic Pathways (SSP585) in the
2030 s. We explore the potential of yield improvement through dense
planting in combination with best-suited hybrid varieties and soil
improvements under current and future climates through the inte-
gration of machine learning and field trials methodologies. Further-
more, the question of whether China can be self-sufficient in maize
under projected future climate change given its existing cropping
areas and optimal agricultural management in the 2030 s is also
addressed.

Results
Data-driven projections and variables
To understand the OPD for obtaining a balance between maize yield
and resource cost under different environmental conditions, we
develop the OPD-RF model. It includes six indicators, incorporating
daily minimum temperature (Tmin), daily maximum temperature
(Tmax), precipitation (Prec), solar radiation (Radn), hybrid character-
istics such as growing-degree days (GDD) and soil quality indicator
(SOM) from a dataset with 448 paired observations in 125 publications
conducted over China’s major maize cropping areas (Fig. 1a, b; see

“Methods” for details). The OPD-RF model explains 60% of OPD var-
iance across the study region, with a bias relative root mean square
error (RRMSE) of 11.9% and rootmean square error (RMSE) of 0.9 × 104

plants ha−1 (Fig. 1c), indicating a good performance of the OPD-RF
model in modeling OPD.

In addition to evaluating the predictive skill of the OPD-RFmodel,
we also use it to disentangle the relative importance of the drivers that
shape OPD patterns in the four regions (Fig. 2). In more than three
regions, Tmin, Radn and SOM always rank among the top three among
the six explanatory factors. Tmin significantly decreases OPD from
0.16 to 0.51 × 104 plants ha−1 per 1 °C increase while Radn increase 1.00
to 2.00 × 104 plants ha−1 per 1000MJm−2 increase. In the future, the
influence of Tmax on OPD is projected to be strengthened (Supple-
mentary Fig. 2). Notably, higher SOM content over ~20 g kg−1 does not
continue to enhance OPD (Fig. 2g). We thereby consider improving
SOM to the threshold value (i.e., 20 g kg−1) as an effectivemanagement
guideline for density optimization in the subsequent scenario analysis.

The current spatial patterns of OPD simulated by the RF model
based on 402 stations located in major maize areas suggests an aver-
age of 7.8 × 104 plants ha−1 in density (Fig. 3). Among all regions,
Northeast China and North China Plain have a similar OPD to the
national average (7.6 × 104 plants ha−1 for Northeast China and 7.9 × 104

plants ha−1 for North China Plain), while the maximum OPD was
8.6 × 104 plants ha−1 in Northwest China and theminimumwas 7.1 × 104

plants ha−1 in Southwest China (Supplementary Table 1). Accordingly,
the optimum yield at the OPD is 11.4 Mg ha−1 in Northeast China,
11.8Mg ha−1 in North China Plain, 12.6Mgha−1 in Northwest China and
10.9Mgha−1 in Southwest China (Fig. 3). There are considerable gaps
between farmers’ currently planted densities and OPD over the study
regions, whereas farmers achieve 77% of OPD with a range from
1.7 × 104 plants ha−1 for the North China Plain to 2.3 × 104 plants ha−1 for
the Southwest China. Furthermore, closing the density gap could
improve national maize yield by an average of 95%, compared to cur-
rent levels (6.0Mg ha−1)22.

Field observations for grain yield with OPD
To verify the feasibility of OPD in field, we investigate OPD and yield
through 87 field trials (site × years) across the major maize-producing
area in China during 2017−2020 (Fig. 4). Two treatments in each site
are designed and compared (Supplementary Data): (i) the control:
using the local maize hybrid and farmers’ planting densities, and (ii)
optimum treatment: the OPD is defined as the average density for a
group of five high-yielding hybrids at the highest grain yield from the
density experiment.

Results from the optimum treatment in field experiments at the
national scale are consistent with RF projections with an average plant
density of 7.8 × 104 plants ha−1 and grain yield of 11.7Mgha−1 (Supple-
mentary Table 2). North China Plain has the highest OPD (8.3 × 104

plants ha−1) and Southwest China saw the lowest (6.6 × 104 plants ha−1).
Northeast China experiences the highest grain yield among the three
regions (12.5Mg ha−1), because the spring-maize cropping system and
long-maturing hybrids are popular in this region. Compared to the
control treatment, maize yield could be intensively improved by an
average of 21% by adopting the optimum density together with
appropriate hybrids, nearly doubling the current farmers’ yield22, and
staying consistent with the RF predictions. Furthermore, the yield gain
from genetic and density improvements is 5.9% and 7.3%, respectively
(Supplementary Fig. 3). The density × genetics interaction contributes
7.4% of yield improvement.

Grain yield under future climate and soil improvement
We next derive the plant density response on the basis of the trained
RF model under future climate conditions following a high radiative
forcing scenario (SSP585) and a scenario focusing on SOM improve-
ment. At current soil conditions and crop management strategies,
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OPDs tend to decline across all regions under climate change in the
next 20 years, with larger rates concentrated in the Northeast China
(−2.2%) and North China Plain (−3.5%) (Fig. 5 and Supplementary
Table 3). By the 2030 s, averageOPDs in China decrease by 1.6% due to
climate change. To determine the implications of soil improvement in
OPDs and grain yield, we apply the RF model with soil improvement
(i.e., optimizing SOM to 20 g kg−1) under current and future climates.
On average, a 2.5% increase inOPDs fromSOMoptimization compared
to simulation at current soil conditions is observed.

The rapid growth of maize imports suggests that the capacity of
maize production in China is struggling to meet domestic population
demands (Supplementary Fig. 4). Based on historical trends (Supple-
mentary Fig. 1), we estimate constant increases in plant density and
yield from the 2010s to 2030 s, resulting in a national plant density of
7.1 × 104 plants ha−1 and yield of 7.7Mgha−1 in the 2030 s (Fig. 5c, d).
Projections using the OPD-RF model with soil improvement in climate
change indicate that grain yield would be increased by 52% (average
11.7Mgha−1) in the 2030 s, compared to yields at the historical trend.
Assuming current trends in the harvested area remain unchanged, our
OPDs scenario results in 492 Mt of maize production by 2035, which

would be able to meet 100% of national demands (292 Mt, see
“Methods”).

Discussion
As the second largest producer in the world, maize production is
essential in China for the global maize supply-demand balance.
Planting density can mediate between genotype, environment and
management. Planting at OPD is a critical management decision that
has contributed to continuous maize gains in the past23. Thus, under-
standing and quantifying OPDs across major maize areas in China is
essential to yield improvement and national food security. Our study
shows thatOPDs aremuch greater than current farmer practices under
current and projected climates. The OPDs under the current climate
ranged from 7.1 × 104 plants ha−1 in Southwest China to 8.6 × 104 plants
ha−1 in Northwest China across the study regions with an average of
7.8 × 104 plants ha−1 (Fig. 3), comparable to findings in other maize-
producing regions. In Brazil, the average optimum plant density for
maize hybrids released during the 1970s–1990s is 7.8 × 104 plants ha−1,
ranging from 7.1 to 8.5 × 104 plants ha−1 13. Similar evidence is also
observed in the European Union (EU), which has an intensive maize

Fig. 1 | The randomforest (RF)model development. a Study area and locations of
experimental sites found in the literature.bData distributions ofOPDsandYieldOPD

estimated from literature data with yield-density quadratic model. c Comparisons
of the estimated OPD by RF model with observed OPD in 448 observations. The
dashed line represents the 15% error line. d Linear-model for the relationship

between OPD and YieldOPD. We find a similar performance in linear and quadratic
fits for the relationship between the YieldOPD and OPD and the linear nature is
applied. The solid line is the regression lines and the dashed line indicate the 95%
confidence interval. Statistical significance in c and d is obtained with a two-tailed
Student’s t test. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-38355-2

Nature Communications |         (2023) 14:2637 3



Fig. 2 | Importance of variables influencing OPD and relationships between
drivers and OPD for each region based on observations from the literatures in
2000-2021. a The relative importance of variables influencing OPD in this study.
The rows show the results for each region (NE: Northeast China, NCP: North China
Plain, NW: Northwest China, SW: Southwest China). The circle size should be
compared only within a row. The importance of each variable is expressed as the
mean increase in prediction error (that is, the increase in mean square error, %
IncMSE) with predictor omitted, scaled to sum to 100% for each analysis. The

symbols + and − indicate positive and negative effects of the variables on OPD,
respectively. The asterisks indicate the statistical significance of the effect (*P <
0.05; ** P < 0.01; ***P < 0.001). The best fitted functions for relationship between
OPD and each driver are shown in b–g for all significant relationships. Panels
represent Tmin (b), Tmax (c), Radiation (d), Precipitation (e), GDD (f), and SOM (g).
Statistical significance is obtained with a two-tailed Student’s t test. Source data are
provided as a Source Data file.
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cultivation system with plant densities up to 8.0 × 104 plants ha−1 in
fertile growing areas24. The average OPD from our RF model is lower
than that of the North America region, where simulated OPD is at an
average of 9.3 × 104 plants ha−1 for 2012–201612.

Recently, machine learning techniques have been successfully
implemented in agricultural production to investigate various agro-
nomic indicators (e.g., crop yield)20,25,26. As a popular decision-tree-

based ensemble machine learning algorithm, RF can handle nonlinear
effects and complex interactions among variables27. Through the
implementation as an RFmodel, the OPD projection is data-driven and
does not rely on pre-specified equations or functional form. Here, we
combine large, station-scale datasets on weather, management and
soil condition, and the RF algorithm to identify OPDs over China’s
maize areas. Previous works based on statistical models often

Fig. 3 | Optimum density and yield from RF model and in comparison with
farmers’ practices and two other methods. Spatial distribution of famers’
planting density (a), OPD (b), density gap (c), current yields (d), yield at OPD (e),
and yield gap (f). Farmers’ planting density is derived fromMing et al. Current yield

is collected from the public dataset22. Density gap is equaled toOPDminus farmers’
densities. Yield gap is defined in an analogous manner. Comparison of maize
density (g) and yield (h) under different methods. Source data are provided as a
Source Data file.
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overestimate the OPD in the absence of genotype (G) × environment
(E) × management (M) interactions (Fig. 3g, h). Liu et al. shows that
OPD simulated from the solar radiation-based linear model average
10.9 × 104 plants ha−1 across China28. Likewise, a recent study synthe-
sizing 157 scientific publications conclude that the OPD generally
averaged 9.4 × 104 plants ha−1, relying on quadratic-curves models29.
The methods applied in these previous studies are relatively easy to
handle and compute. However, they have limitations on specific-OPD
predictions due to potential over-simplification in describing interac-
tions between climatic and agronomic conditions10. Several aspects
reinforce the reliability of our findings drawn from the framework.
Firstly, we calculate OPDs from various field trials following quadratic
models in the training dataset17. Secondly, the RF model contains the
multi-density related indicators and is in line with current knowledge
on maize physiology that optimal planting density varies relative to
weather, soil condition and crop breeding13,30. With a RRMSE of 11.9%
and R2 of 0.6 (Fig. 1c), the good performance of our model suggests
that the combination of climate-soil datasets within themaize growing
season with machine-learning technique is a promising method to
investigate the impact of climate on OPDs.

Indeed, negative impacts of climate change are predicted for
most sites across China, though the magnitudes of OPDs and grain
yield changes vary substantially across regions (Fig. 5a, b). This finding
suggests that achieving high yields with dense planting would become
more challenging under future climate change, especially in the North
China Plain. Improving soil quality would alleviate climate impacts, by
shiftingmaize yield-density relationships30. Based on knowledge of the
relationship between OPDs and SOM (Fig. 2g), we estimate that
declines in OPDs from climate impacts could be offset by soil
improvement (i.e., via SOM). On the other hand, dense planting influ-
ences plant architecture, growth and developmental patterns,
encouraging maize breeders to produce new genotypes with
ideotype23,31. For example, compared to older maize hybrids, modern
maize hybrids in Brazil have compact canopy architecturewith shorter

plants, fewer and more up-right leaves and enhanced light intercep-
tion, thus achieving high yield at higher plant densities13. Further stu-
dies are necessary to better understand the contribution of
interactions between genotype, environment and management to
changes in OPD.

Although our results are theoretically feasible for farmers adop-
tion and confirmed by multi-field trials (Fig. 4), several factors limit
farmers’ planting density decisions (Supplementary Table 4)32,33.
Increasing temperaturewill increase atmosphericwater demandwhich
could lead to drought stress from increased vapor pressure deficit
(VPD), subsequently reducing plant density and decreasing yield
across most maize areas34. Low temperatures at the earlier growth
stage together with water stress in the Northeast China is a critical
limitation for maize density improvement35. Solar radiation, which
influences photosynthesis in plant leaves as the energy source in crop
production36, has decreased over the past decades in the North China
Plain37, potentially limiting further increases in plant density andmaize
yield. A lack of irrigation in the Northwest China and diverse landforms
and ecosystems in Southwest China were the major restrictions to
increasing plant density in these regions38,39. In addition, increased
risks of lodging arising from greater plant densities influence farmers’
sowing density selections40. Co-efforts from breeders and producers
will determine further increases in China’s maize planting density and
yield. An ideal plant architecture with an appropriate canopy structure
that intercepts more solar radiation is crucial to dense planting and
achieving high yields31. Tian et al.41 report that upright plant archi-
tecture in modern hybrids provides opportunities for dense planting,
providing new insights into high-density-yield maize breeding. As a
follow-up, practices must be evaluated and modified to match high-
yielding systems with optimum planting density.

The achievement of modeled OPDs would need to be supported
by enhanced management strategies (e.g., irrigation and fertilization).
Increasing planting density increases plant-to-plant competition in
high-yielding systems42 and induces greater sensitivity to drought in

Fig. 4 | Optimized density and yield in field experiments. a Distribution of
experimental stations for field trials across three regions. b, cComparison ofmaize
optimal plant density (OPD) and grain yield (YieldOPD) between field trials andOPD-
RF simulation (RF). Data are presented as mean values ± standard error. Control
density: density at the control, OPD (field trials): optimal plant density from

optimum treat in field trials, OPD (RF): optimal plant density from OPD-RF simu-
lation. Control yield: grain yield with density at the control, YieldOPD (field trails):
grain yield with density at optimum treat, YieldOPD (RF): grain yield with OPD from
RF simulation. NE Northeast China, NCP North China Plain, SW Southwest China.
Source data are provided as a Source Data file.
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maize34. Drought is one of most important limitations to yield gains in
40% ofmaize area in China21 and irrigation should be considered in the
intensification of maize production systems, which has been shown to
be an effective management practice for improving yields43. Mean-
while, nitrogen fertilizer applied at the critical stages for high-planting
density is required for optimalmaize yield44. To this end, an integrated
crop-soil system approach in management will be required in the
future to support high-yielding maize system with dense planting45.

Uncertainties exist in estimatingOPDs and grain yield in ourwork.
Although the OPDs predictive model is developed with an RF algo-
rithm based on data collected from 125 published studies containing
multi-density settings, we recognize that evaluation of OPDs can be
improved by more models that couple biophysical modeling and
machine learning46. In addition, our simulation presents some limita-
tions by neglecting several factors, particularly water stress and
nutrient deficit due to increasing densities23. Here, we focus on studies
conductedunder nowater nor nutrient deficits and thepremise that all
sites would takemeasures tomaintain adequatewater and fertilization
availability, simplifying real-world density responses. This implies that

efforts to increase planting densities are not taken in isolation but
combined with other management aspects, such as adequate fertili-
zation, to expand the potential of planting higher densities. Con-
tinuous efforts are needed to improve the OPDs prediction by
considering other possible factors that this study cannot address, such
as risks of lodging, pest and diseases. Despite these limitations, we find
great potential to meet the required yield increases that would allow
for self-sufficient maize production in 2035 by optimizing plant den-
sity under future climate change.

Overall, maize yield improvement depends on complex interac-
tions among genetics, environment and management. Based on the
data-driven approach and field trials, we demonstrate that China
would be self-sufficient in maize with current cropping areas in the
2030 s through denser planting in combination with selecting best-
suited hybrid varieties and soil improvements under future climate.
Thefindings also indicate that high-quality soilswith higher SOMcould
moderate the impact of climate change on OPD and thus improve
maize yield. The OPD reflect the density-genetics interaction in this
study. In the future, the interactions between hybrid and density could

Fig. 5 | Maize density and yield projections based on different scenarios. Upper
panels show average density (a) and yield (b) in the 2010s (2010–2019) and 2030 s
(2030–2039) based on climate and climate coupled to SOM improvement pro-
jections. Box boundaries indicate the 25th and 75th percentiles across 22 GCMs,
and whiskers below and above the box indicate the 10th and 90th percentiles,
respectively. The black lines and crosshairs within each box indicate the median
andmeanvalues, respectively. Lowerpanels showdensity (c) and yield (d) forChina

by 2030 s compared with current conditions in the US. The black line represents
average data from framers’ practice. The red, blue, and brown line represent den-
sity (yield) predicted under historical trend, optimum treatment, and optimum
treatment coupled to SOM improvement, respectively. NE Northeast China, NCP
North China Plain, NW Northwest China, SW Southwest China. Source data are
provided as a Source Data file.
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be further enhanced for yield. Our results challenge the view that grain
yield have reached an attainable maximum in most global areas and
provide a workable example for grain yield improvement through
dense planting.

Methods
Study area
China is the secondmajor producer of maize, constituting one-fifth of
global production (Supplementary Fig. 5). Generally, maize agro-
ecological regions inChina couldbedivided into four regions basedon
climate, management and maize cropping pattern from north to
south35: Northeast China (NE), North China Plain (NCP), Northwest
China (NW), and Southwest China (SW). The study area in Fig. 1a
covered 91% of the national maize cropping areas and produced
roughly 90% of national output22. Because of the diversity of climate
and management among these four regions, the study area serves as
an excellent laboratory for further improving maize yields.

Data collection for RF training
The literature database was derived from 125 studies conducted in the
study area published. The literature search was performed using the
China National Knowledge Infrastructure and the Web of Science for
relevant papers published between January 2000 and October 2021
using the following keywords: “density*” AND “yield*” AND (“maize*”
OR “corn*”) AND (“China*” OR “Chinese*”). In total, 257 scientific arti-
cles are retrieved, and review of each study is carried out based on (i)
experiments conducted in the field; (ii) at a given field trial, more than
three levels of plant density evaluated; (iii) soil properties and man-
agement information, in particular, water condition, planting and
harvest date reported. Most of the data are retrieved from tables
directly. In case some data were only presented in figures, values are
extracted using the WebPlotDigitizer software47. After the review, a
total of 125 published studies with 151 site‐years and 2442 paired
observations are considered eligible (Supplementary Fig. 6 and Sup-
plementary Date). Given that soil organic matter (SOM) is a critical
indicator of soil properties associated with higher fertility48, we here
take it as a representation of soil condition in our further analysis. Data
on SOM in the 0 − 20 cm soil layer, yield at each density, descriptions
of treatments (e.g., hybrids, sowing and maturity date), and locations
of experimental siteswere collected. Data on climatic factors including
daily temperature, total precipitation, and solar radiation during the
maize growing season were also extracted.

Growing degree days (GDDs) are generally taken as a measure of
the thermal time required for a specific cultivar to develop49. The daily
heat unit, GDDd, is calculated according to daily maximum (Tmax) and
minimum temperature (Tmin) and defined as follows (Eqs. (1) and (2)):

GDDd =
T *
min ,d +T

*
max ,d

2
� Tlow

ð1Þ

where,

T *
max ,d =

Tmax ,d , if Tlow <Tmax ,d <Thigh,

Tlow, if Tmax ,d ≤Tlow,

Thigh, if Tmax ,d ≥Thigh

8
><

>:
ð2Þ

T*
min,d is defined by using the same low and high bounds of

Tlow = 10 °C and Thigh= 30 °C.
OPD is a critical management decision for crop yield15. Previous

research has shown that the quadratic model performs better in
depicting maize yield responses to plant density17,29. Here, we use
quadratic curves to estimate OPD and corresponding yield at each
OPD (YieldOPD) for each specific trial. In total, 448 (site × year × hybrid)
paired observations are collected, providing the basis for the devel-
opment of the Random Forest (RF) model with OPD (Fig. 6).

RF modeling framework
As a nonparametric and ensemble learning algorithm originating from
classification and regression trees, RF is now increasingly used in the
crop sciences50. Given the better performance of the RF model on
agricultural-based applications, along with its ability to provide the
relative importance of each predictor in determining response
variable20,26,46, we hereby take advantage of the RF model to assess
maize optimum plant density at each site. The RF model is performed
in R software using the “RandomForest” package with default settings,
mtry (the number of randomly selected predictor variables at each
node) = 3 and ntree (the number of trees to grow in the forest) = 500.
The relative importance of variables is estimated using the “%IncMSE”
metric in the RF model.

We use four agro-climatic indicators (i.e., daily minimum tem-
perature, daily maximum temperature, precipitation and radiation),
GDDs and SOM from the literature database (448 paired observations)
to train the RF model (Fig. 6). For RF model calibration and validation,
80% of each dataset is randomly selected for model training and the
rest 20% of the dataset is used for model performance evaluation.
‘Leave-one-out’ prediction is conducted to critically evaluate the
reliability of the surrogate models. The coefficient of determination
(R2, Eq. (3)), mean root mean square error (RMSE, Eq. (4)), and relative
Root Mean Square Error (RRMSE, Eq. (5)) are used to evaluate model
performance. These indices are calculated as follows:

R2 =

Pn
i = 1 Oi � �O

� �
Si � �S
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i = 1 Oi � �O
� �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i= 1 Si � �O
� �2

q

0

B
@

1

C
A

2

ð3Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Xn

i = 1

ðSi �OiÞ2
v
u
u
t ð4Þ

Fig. 6 | Framework of the procedure for mapping regional optimum plant
density (OPD) and yield at OPD (YieldOPD). Tmax: daily maximum temperature.
Tmin: daily minimum temperature. GDD: growing degree days (10–30 °C). SOM:
soil organic matter. Tmax and Tmin is averaged during maize growing season, and
solar radiation, precipitation, and GDD is the sum of growing season.
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RRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i= 1ðSi �OiÞ2

q

Omean
× 100% ð5Þ

where Oi and Si are the observed and simulated values, respectively;
Omean is the average values, respectively. n is the number of samples. �O
and �S represent the means for the observed and simulated OPD.

OPD projection under current and future climate data
Data on farmers’ planting densities and yields are included to evaluate
the yield gain with dense planting. Here, we establish a dataset col-
lected from402 stationswith availableweather data, farmers’ yield and
planting density. Farmers’ planting density (actual density) for each
site is collected through surveys of the constant 24 farmers in different
experimental sites in 2009–201632. In each site, the actual yields are
calculated as the average yield over the ten years from 2010 to 2019
obtained from theChinaMunicipal Statistical Yearbookof theNational
Bureau of Statistics22. As the input indicators in the RF-OPD model
(Fig. 6), climate data, maize phenology, and soil data are essential.
Daily climate data (maximum temperature, minimum temperature,
precipitation, sunshine hour) for the period 2000–2020 are directly
collected from the China Meteorological Administration (CMA). Daily
solar radiation is calculated from observed sunshine hours using the
Angstrom-Prescott equation51. Data on soil organic carbon (SOC) for
each station are collected according to National Earth System Science
Data Center52. The SOC is converted to SOM by multiplying the factor
of 1.724 (SOC%× 1.724)53. Observed data on maize growth (including
sowing and maturity dates) from 2010 to 2018 are collected from the
national agro-meteorological experiment stations across the maize
cultivation areas in China54.

To predict OPD under climate warming, future scenario data is
obtained from Global Climate Models (GCMs), which was contributed
by the World Climate Research Program (WCRP) of Coupled Model
Inter-comparison Project Phase 6 (CMIP6, https://esgf-node.llnl.gov/
search/cmip6). Daily weather data (daily temperature, precipitation,
and solar radiation) from 2010 to 2039 for 22 GCMs (Supplementary
Table 5) under a high radiative forcing Shared Socio-Economic Path-
way (SSP585) was downscaled from monthly gridded data using the
statistical downscaling model NWAI-WG55. We simulated OPD and
YieldOPD for the current period 2010–2019 (abbreviated as 2010s) and
future period 2030–2039 (abbreviated as 2030 s) with the framework
in Fig. 6.

Field trials for plant density optimization
In total, 87 field trials were conducted with various plant density set-
tings from 2017 to 2020 in the Chinese Maize Belt (97.5°−135.1° E,
21.1°−53.6° N). This region generally serves as a superb laboratory for
exploring maize yield-density relationships in China, due to its large
extent from southern tropical and sub-tropical systems (SW) at low
latitudes to cool-temperate systems (NE) at high latitudes56.

In this study, two treatments are designed and compared: (i) the
control (CK), which used the local hybrid planted at farmers’ cropping
density, and (ii) optimum treatment (OT), where the optimal density is
defined as the average of plant densities under maximum yield from a
group of five high-yielding hybrids (Supplementary Data). At each site,
field trials were conducted with three replicates and designed with a
split-plot. Maize yield was measured in each plot at physiological
maturity and grain was dried in an oven (14% grain moisture).

Maize demand by 2035 in China
In our study, current (2021–2022) annual domestic maize demand
is set as a baseline. We estimated current national maize demand
as the average annual national maize production, imports,
exports and stock change (i.e., “ending stocks” minus “beginning
stocks”) during 2021–202257. Future maize demand was projected

for the year 2035, by multiplying the projected population
derived from the medium fertility variant58 by the per capita
maize demand, assuming that per capita maize demand is con-
stant at the current (2021–2022) level. China’s population is
predicted to increase from 1.428 billion in 2021 to 1.434 billion in
203558, resulting in 292 Mt of maize demand by 2035.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the
paper and its Supplementary Information and source data files. The
literature search is performed using the China National Knowledge
Infrastructure (https://www.cnki.net) and the Web of Science (http://
www.webofknowledge.com). Climate, soil andmaize yield are publicly
available from the following sources: historically daily weather data
directly collected from the China Meteorological Administration
(http://www.nmic.cn); the future scenario climate data are at https://
esgf-node.llnl.gov/search/cmip6; soil data are available at http://soil.
geodata.cn/data; and maize yield are at https://data.stats.gov.cn. Data
for OPD-RF model training and prediction are available on Zenodo
repository: https://doi.org/10.5281/zenodo.7857034. Source data are
provided with this paper.

Code availability
R version 4.2.0 is used to trainmodel, aggregate and analyze all results,
with packages including ‘randomForest (4.7-1.1)’, ‘tidyverse (1.3.2)’, and
‘Hmisc (4.7-1)’. The detailed R code for data processing and figure
creation are available at Zenodo repository: https://doi.org/10.5281/
zenodo.7857034.

References
1. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and

the sustainable intensification of agriculture. Proc. Natl Acad. Sci.
USA 108, 20260–20264 (2011).

2. Bodirsky, B. L. et al. The ongoing nutrition transition thwarts long-
term targets for food security, public health and environmental
protection. Sci. Rep. 10, 19778 (2020).

3. Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A.
Recent patterns of crop yield growth and stagnation.Nat. Commun.
3, 1–7 (2012).

4. Agnolucci, P. et al. Impacts of rising temperatures and farm man-
agement practices on global yields of 18 crops. Nat. Food 1,
562–571 (2020).

5. Food andAgricultureOrganization of theUnitedNations.Crops and
livestock products http://www.fao.org/faostat/en/#data/QCL.
Accessed 28 March 2022.

6. General Administration of Customs of the People’s Republic of
China. Customs Statistics http://www.customs.gov.cn/. Accessed
30 March 2022.

7. United Nation. Transforming our world: the 2030 Agenda for Sus-
tainable Development. https://sdgs.un.org/2030agenda
(2015).

8. Duvick, D. Genetic progress in yield of United States maize (Zea
mays L.).Maydica 50, 193 (2005).

9. Rizzo, G. et al. Climate and agronomy, not genetics, underpin
recentmaize yield gains in favorable environments.Proc. Natl Acad.
Sci. USA 119, e2113629119 (2022).

10. Tollenaar, M. & Wu, J. Yield improvement in temperate maize is
attributable to greater stress tolerance. Crop Sci. 39,
1597–1604 (1999).

11. Duvick, D. N. The contribution of breeding to yield advances in
maize (Zea mays L.). Adv. Agron. 86, 83–145 (2005).

Article https://doi.org/10.1038/s41467-023-38355-2

Nature Communications |         (2023) 14:2637 9

https://esgf-node.llnl.gov/search/cmip6
https://esgf-node.llnl.gov/search/cmip6
https://www.cnki.net
http://www.webofknowledge.com
http://www.webofknowledge.com
http://www.nmic.cn
https://esgf-node.llnl.gov/search/cmip6
https://esgf-node.llnl.gov/search/cmip6
http://soil.geodata.cn/data
http://soil.geodata.cn/data
https://data.stats.gov.cn
https://doi.org/10.5281/zenodo.7857034
https://doi.org/10.5281/zenodo.7857034
https://doi.org/10.5281/zenodo.7857034
http://www.fao.org/faostat/en/#data/QCL
http://www.customs.gov.cn/
https://sdgs.un.org/2030agenda


12. Assefa, Y. et al. Analysis of long term study indicates both agro-
nomic optimal plant density and increase maize yield per plant
contributed to yield gain. Sci. Rep. 8, 1–11 (2018).

13. Sangoi, L., Gracietti, M. A., Rampazzo, C. & Bianchetti, P. Response
of Brazilian maize hybrids from different eras to changes in plant
density. Field Crops Res. 79, 39–51 (2002).

14. Derieux, M. et al. Estimation du progrès génétique réalisé chez le
maïs grain en France entre 1950 et 1985. Agronomie 7, 1–11 (1987).

15. Deng, J. et al.Models and tests of optimal density andmaximal yield
for crop plants. Proc. Natl Acad. Sci. USA 109, 15823–15828 (2012).

16. Hörbe, T. A. N., Amado, T. J. C., Ferreira, A. O. & Alba, P. J. Optimi-
zation of corn plant population according to management zones in
Southern Brazil. Precis. Agric. 14, 450–465 (2013).

17. Assefa, Y. et al. Yield responses to planting density for US modern
corn hybrids: a synthesis‐analysis. Crop Sci. 56, 2802–2817 (2016).

18. Feng, P., Wang, B., Liu, D. L. & Yu, Q. Machine learning-based
integration of remotely-sensed drought factors can improve the
estimation of agricultural drought in South-Eastern Australia. Agric.
Syst. 173, 303–316 (2019).

19. Feng, P. et al. Machine learning-based integration of large-scale
climate drivers can improve the forecast of seasonal rainfall prob-
ability in Australia. Environ. Res. Lett. 15, 084051 (2020).

20. Guilpart, N., Iizumi, T. & Makowski, D. Data-driven projections sug-
gest large opportunities to improve Europe’s soybean self-
sufficiency under climate change. Nat. Food 3, 255–265 (2022).

21. Meng, Q. et al. Growing sensitivity of maize to water scarcity under
climate change. Sci. Rep. 6, 2045–2322 (2016).

22. National Bureau of Statistics (NBS). China Municipal Statistical
Yearbook https://data.stats.gov.cn/. Accessed 1 May 2022.

23. Sangoi, L.Understandingplant density effects onmaize growthand
development: an important issue to maximize grain yield. Cienc.
Rural 31, 159–168 (2001).

24. Testa, G., Reyneri, A. & Blandino, M. Maize grain yield enhancement
through high plant density cultivation with different inter-row and
intra-row spacings. Eur. J. Agron. 72, 28–37 (2016).

25. Cheng, M. et al. Combining multi-indicators with machine-learning
algorithms for maize yield early prediction at the county-level in
China. Agric. Meteorol. 323, 109057 (2022).

26. Tao, F., Zhang, L., Zhang, Z. & Chen, Y. Designing wheat cultivar
adaptation to future climate change across China by coupling
biophysical modelling and machine learning. Eur. J. Agron. 136,
126500 (2022).

27. Liakos, K. G., Busato, P., Moshou, D., Pearson, S. & Bochtis, D.
Machine learning in agriculture: A review. Sensors 18, 2674 (2018).

28. Liu, G. et al. Reducing maize yield gap by matching plant density
and solar radiation. J. Integr. Agric. 20, 363–370 (2021).

29. Luo, N. et al. Agronomic optimal plant density for yield improve-
ment in the major maize regions of China. Crop Sci. 60,
1580–1590 (2020).

30. Woli, K. P., Burras, C. L., Abendroth, L. J. & Elmore, R.W. Optimizing
corn seeding rates using a field’s corn suitability rating. Agron. J.
106, 1523–1532 (2014).

31. Liu, G. et al. Canopy characteristics of high-yield maize with yield
potential of 22.5 Mg ha-1. Field Crops Res. 213, 221–230 (2017).

32. Ming, B. et al. Changes of maize planting density in China. Sci.
Agric. Sin. 50, 1960–1972 (2017).

33. Li, S. & Wang, C. Analysis on change of production and factors
promoting yield increase of corn in China. J. Maize Sci. 4,
26–30 (2008).

34. Lobell, D. B. et al. Greater sensitivity to drought accompaniesmaize
yield increase in the US Midwest. Science 344, 516–519 (2014).

35. Liu, B., Chen, X., Meng, Q., Yang, H. & vanWart, J. Estimatingmaize
yield potential and yield gap with agro-climatic zones in China
Distinguish irrigated and rainfed conditions. Agric. Meteorol. 239,
108–117 (2017).

36. Wu, A., Hammer, G. L., Doherty, A., von Caemmerer, S. & Farquhar,
G. D. Quantifying impacts of enhancing photosynthesis on crop
yield. Nat. Plants 5, 380–388 (2019).

37. Meng, Q., Liu, B., Yang, H. & Chen, X. Solar dimming decreased
maize yield potential on the North China Plain. Food Energy Secur.
9, e235 (2020).

38. Bu, L. et al. The effect of adapting cultivars on the water use effi-
ciency of drylandmaize (Zea mays L.) in northwestern China. Agric.
Water Manag. 148, 1–9 (2015).

39. Li, J., Lammerts van Bueren, E. T., Jiggins, J. & Leeuwis, C. Farmers’
adoption of maize (Zea mays L.) hybrids and the persistence of
landraces in SouthwestChina: implications for policy andbreeding.
Genet. Resour. Crop Evol. 59, 1147–1160 (2012).

40. Xue, J. et al. Effects of light intensity within the canopy on maize
lodging. Field Crops Res. 188, 133–141 (2016).

41. Tian, J. et al. Teosinte ligule allele narrows plant architecture and
enhances high-density maize yields. Science 365, 658–664 (2019).

42. Meng, Q., Cui, Z., Yang, H., Zhang, F. & Chen, X. EstabliShing High-
yieldingMaize System For Sustainable Intensification in China. Adv.
Agron. 148, 85–109 (2018).

43. Zhu, P. & Burney, J. Untangling irrigation effects onmaizewater and
heat stress alleviation using satellite data. Hydrol. Earth Syst. Sci.
26, 827–840 (2022).

44. Ciampitti, I. A. & Vyn, T. J. Physiological perspectives of changes
over time in maize yield dependency on nitrogen uptake and
associated nitrogen efficiencies: a review. Field Crops Res. 133,
48–67 (2012).

45. Chen, X. et al. Integrated soil-crop system management for food
security. Proc. Natl Acad. Sci. USA 108, 6399–6404 (2011).

46. Feng, P., Wang, B., Liu, D. L., Waters, C. & Yu, Q. Incorporating
machine learning with biophysical model can improve the evalua-
tion of climate extremes impacts on wheat yield in south-eastern
Australia. Agric. Meteorol. 275, 100–113 (2019).

47. Rohatgi, A. WebPlotDigitizer user manual version 3.4. https://
automeris.io/WebPlotDigitizer, 1–18 (2014).

48. Oldfield, E. E. et al. Positive associations of soil organic matter and
crop yields across a regional network of working farms. Soil Sci.
Soc. Am. J. 86, 384–397 (2022).

49. Butler, E. E.,Mueller, N. D. &Huybers, P. Peculiarly pleasantweather
for US maize. Proc. Natl Acad. Sci. USA 115, 11935–11940 (2018).

50. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
51. Angstrom, A. Solar and terrestrial radiation. Report to the interna-

tional commission for solar research on actinometric investigations
of solar and atmospheric radiation. Q. J. Roy. Meteorol. Soc. 50,
121–126 (1924).

52. Soil SubCenter, National Earth System Science Data Center,
National Science & Technology Infrastructure of China.China High-
resolution National Soil Information Grid Basic Attribute Dataset
(2010–2018) http://soil.geodata.cn. Accessed 17 January 2022.

53. Allison, L. E. Organic Carbon. Methods Soil Anal. 9,
1367–1378 (1965).

54. China Meteorological Data Service Center. National Meteorological
Information Center http://www.nmic.cn/. Accessed 28March 2021.

55. Liu, D. L. & Zuo, H. Statistical downscaling of daily climate variables
for climate change impact assessment over New South Wales,
Australia. Clim. Change 115, 629–666 (2012).

56. Meng,Q. et al. Understanding production potentials and yield gaps
in intensive maize production in China. Field Crops Res. 143,
91–97 (2013).

57. United States Department of Agriculture. Foreign Agricultural Ser-
vice https://apps.fas.usda.gov/psdonline/app/index.html#/app/
advQuery. Accessed 22 Aug 2022.

58. Department of Economic and Social Affairs. World Urbanization
Prospects 2018 https://population.un.org/wup/DataQuery. Acces-
sed 23 Aug 2022.

Article https://doi.org/10.1038/s41467-023-38355-2

Nature Communications |         (2023) 14:2637 10

https://data.stats.gov.cn/
https://automeris.io/WebPlotDigitizer
https://automeris.io/WebPlotDigitizer
http://soil.geodata.cn
http://www.nmic.cn/
https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery
https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery
https://population.un.org/wup/DataQuery


Acknowledgements
Acknowledgement for the data support from “Soil SubCenter, National
Earth System Science Data Center, National Science & Technology
Infrastructure of China. (http://soil.geodata.cn)”. We acknowledge all
those who participated in the local farmer survey and field trials. We
thank DavidMeng-ChuenChen for editing to improve the earlier version
of the manuscript. We also extend our gratitude to Yupeng Zhu for
generously providing the photo of plant morphology observed during
the field trials. This work is financially supported by the Key Research
and Development Program Project in Hebei Province (22326408D,
Q.F.M.), the National Key Research and Development Program of China
(2016YFD0300300, P.W.), and the 2115 Talent Development Program of
China Agricultural University (Q.F.M.).

Author contributions
Q.M. conceived and designed the research; N.L. performed the analysis;
N.L., Z.Q., and Y.Y. collected the data; P.F. and D.L. provided climate
model projections; P.W. provided some discussions; C.M. provided
comments on the original draft; N.L. and Q.M wrote the paper with
contributions from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-38355-2.

Correspondence and requests for materials should be addressed to
Qingfeng Meng.

Peer review information Nature Communications thanks Mandeep
Saggi and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-38355-2

Nature Communications |         (2023) 14:2637 11

http://soil.geodata.cn
https://doi.org/10.1038/s41467-023-38355-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	China can be self-sufficient in maize production by 2030 with optimal crop management
	Results
	Data-driven projections and variables
	Field observations for grain yield with OPD
	Grain yield under future climate and soil improvement

	Discussion
	Methods
	Study area
	Data collection for RF training
	RF modeling framework
	OPD projection under current and future climate data
	Field trials for plant density optimization
	Maize demand by 2035 in China
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




