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ABSTRACT

Comparable to the traditional notion of stability in system dynamics, resilience is typically measured in a way that assesses the quality of
a system’s response, for example, the speed of its recovery. We present a broadly applicable complementary measurement framework that
quantifies resilience similarly to basin stability by estimating a resilience basin, which reflects the extent of adverse influences that the system
can recover from in a sufficient manner. In contrast to basin stability, the adverse influences considered here are not necessarily displacements
in state space, but arbitrarily complex impacts to the system, quantified by adequate parameters. As a proof of concept, we present two
applications: (i) the well-studied single-node power system as an easy-to-follow example and (ii) a stochastic model of a low-voltage DC
power grid undergoing an unregulated energy transition consisting in the random appearance of prosumers. These act as decentral suppliers
of photovoltaic power and alter the flow patterns while the grid topology remains unchanged. The resilience measurement framework is
applied to evaluate the effect and efficiency of two response options: (i) upgrading the capacity of existing power lines and (ii) installing
batteries in the prosumer households. The framework demonstrates that line upgrades can provide potentially unlimited resilience against
energy decentralization, while household batteries are inherently limited (achieving ≤70% of the resilience of line upgrades). Further, the
framework aids in optimizing budget efficiency by pointing toward threshold budget values as well as budget-dependent ideal strategies for
the allocation of line upgrades and for the battery charging algorithm.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0120891

Resilience is a term used across many different scientific disci-
plines to describe the property of a system to remain functional
during (or after) external adverse influences (a.k.a. shocks, per-
turbations, disruptions, etc.). It stems from the Latin verb resilire,
which literally means to jump back. Despite its popularity, there
is no universal definition of how to measure resilience. Rather,
there are many different approaches depending on the discipline
and the system. A related term, stability, is a more narrow and
more well-defined concept and describes how a system’s actual
internal state (not its functionality) reacts to perturbations. In
this paper, we use a specific stability measure called basin stability

as inspiration for a novel framework of how to quantify resilience.
Our measure, which we call basin resilience, is defined in a very
general way and can be applied to essentially any context: Cru-
cially, it is flexible regarding the modeler’s concept of what the
essence of resilient behavior is. Further, it can be applied not only
to dynamical systems governed by differential equations, but also
to, e.g., time-discrete and stochastic systems. After defining the
mathematical framework of basin resilience, we demonstrate its
relation to basin stability by applying it to a well-studied concep-
tual model of a single generator node connected to a power grid.
We then apply our framework to a simplistic power grid model.
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In the model, we assume DC power flows (like water being dis-
tributed through a pipe network) and we evaluate the impact of
randomly appearing prosumers: consumers who also produce a
certain amount of power themselves, in our case by photovoltaics.
These unforeseen decentral sources of power threaten to over-
load existing power lines, causing line shutdowns and potentially
local blackouts. Using our framework, we evaluate two response
options that the power grid operator could implement in reaction
to these prosumers: (i) Increasing the flow capacities of certain
vulnerable power lines and (ii) installing batteries in the pro-
sumer households to act as buffers for dangerous fluctuations in
the solar power supply. Our simple model application does not
produce novel insights about power grid dynamics, and it also
does not allow for real-world implications of how to improve
power grid resilience. But it demonstrates that our framework
can uniquely quantify and, therefore, compare resilience based
on arbitrarily complex adverse influences and response strate-
gies. For example, battery installation achieves at most 70 % of the
resilience that the best line upgrades can provide in our scenario.
In addition, we evaluate the resilience depending on the response
budget (e.g., the total capacity upgrades on all lines) and other
parameters (e.g., the spatial allocation scheme of the upgrades).
This demonstrates the potential to inform policy choices by deter-
mining the optimal benefit-to-cost ratio.

I. INTRODUCTION

Due to the continuously increasing role of technologies in all
aspects of human civilization, an important subject of research is the
dynamics of complex social-technological systems.1 They are partic-
ularly relevant in the context of climate change, since its mitigation
requires both technological innovation and societal transformation.

Meanwhile, the notion of resilience, originally introduced in
the context of ecology by Holling,2 is becoming more and more
popular throughout a wide range of disciplines. Examples include
socio-ecology,3 economics,4 and engineering.5 Across those disci-
plines, different definitions are used, and even within disciplines,
there exists a multitude of approaches to measuring resilience.
An overview of different possible resilience measures is given by
Ingrisch and Bahn.6

This paper does not aim to unify these different measurement
approaches, but instead presents a way to build on them and cre-
ate a new perspective on measuring resilience: We argue that most
systems are vulnerable not only to a single type of threat, but to a
range of threats, which can vary in terms of both their probability
of occurrence and their severity. Therefore, confident planning of
resilient systems requires a rigorous, complete resilience analysis.

Our framework is not limited to social-technological systems
but can, in principle, be applied to systems of any category. It is
inspired by the concept of basin stability, which was introduced by
Menck et al.7 to quantify the stability of attractors in multi-stable
dynamical systems, e.g., power grids.8,9 Previously, an attractor’s sta-
bility was commonly measured locally, for example, by evaluating
the curvature of the potential landscape at an equilibrium point,
indicating the magnitude of the restoring force. In contrast, basin
stability evaluates an attractor non-locally by measuring the phase

space volume of its basin of attraction, which is the set of all states
from which the system will evolve back to the attractor.

Similarly, existing resilience measures tend to focus on how well
the system can respond to a specific adverse influence, evaluating,
for example, the recovery speed. Instead, our resilience measure-
ment framework quantifies how often or how likely the system’s
response is good enough, considering all possible influences. We call
the set of influences that the system can cope with its resilience basin.

One relevant example of complex systems is networks, particu-
larly infrastructure networks such as power grids. Several authors
have studied the resilience of diverse types of networks, e.g.,
computer networks,10 communication networks,11 or collaboration
networks,12 to mention just a few, and also somewhat more generally
flow networks.13 Also, the resilience of power grids has already being
studied extensively, typically regarding extreme weather events or
other external influences such as cyber-attacks.14–17 However, the
concept of power grid resilience is also useful in the context of
the necessary shift toward renewable energies, for example, the
German Energiewende. Generally speaking, the study of resilience
does not have to (and we argue, it should not) be applied exclu-
sively to uncontrollable, external threats to a system. Instead, it is
also sensible for examining detrimental side effects of intentional
processes.

This paper is structured as follows: In Sec. II, we clarify the ter-
minology regarding resilience that we use throughout the paper, and
we define our resilience measurement framework. In Sec. III, we
apply our framework to the well-known simple dynamical system
of a single power grid node, demonstrating its relation to basin sta-
bility. In Sec. IV, we then introduce a more complex, time-discrete
probabilistic power grid model and explain how we apply our mea-
surement framework to it. In Secs. V and VI, we analyze and discuss
the results of the exemplary applications. Finally, the paper ends
with our conclusion in Sec. VII.

II. DEFINITIONS

A. Resilience terminology

Even though the notion of resilience has been established in the
scientific literature for half a century, its exact definition is still being
discussed. Especially, the relation between resilience and stability is
subject to an ongoing debate.18

In an attempt to standardize the terminology of resilience,
Tamberget al.19 proposed a general systematic framework for
describing and specifying the resilience of complex systems. It
consists of four parts:

1. Resilience of what? One has to specify which system—or family
of systems—is the subject of analysis. It has to be clear which are
its internal mechanisms, as well as interactions to external enti-
ties. Relevant aspects are also uncertainties and vulnerabilities
of the system, if known.

2. Resilience regarding what? There needs to be a quantifiable
measure of what the system essentially aims to achieve, as sub-
jectively defined by the modeler. This quantity is typically called
the system performance or system functionality. Tamberg et
al.19 call it the sustainant: it is the quantity that has to be sus-
tained. Further, it has to be specified which sustainant value (or
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range of values) is acceptable for the system. It is important to
note that the sustainant is not the same as the (micro-)state of
the system. A system can have the same sustainant value while
being in different states, as also pointed out by Schoenmakers
and Feudel.20

3. Resilience against what? Of all the possible events that can
impact the sustainant, it has to be specified which ones are
examined. These events may be called perturbations, distur-
bances, or disruptions. Tamberg et al.19 refer to them as the
adverse influence of the system, or influence as shorthand.

4. Resilience by what means? It has to be clarified whether the
system passively restores itself, or if it can actively oppose the
adverse influence—and if so, how. Tamberg et al.19 call the
available means of the system its response options.

Resilient systems can be classified by their response options:
Schoenmakers and Feudel20 separate them into (i) tolerance
and flexibility and (ii) adaptation and transformation. Sim-
ilarly, Donges and Barfuss21 differentiate between persistence
resilience, adaptation resilience, and transformation resilience.
Persistence/tolerance/flexibility resilience is the most basic and
widespread notion of resilience, reflecting the passive ability of a
system to manage an adverse influence without changing itself. We
argue that this actually makes this type of resilience equivalent to
stability or elasticity.

In contrast, the other types of resilience implicate some kind
of change that the system undergoes to actively recover from the
adverse influence: Adaptation can be understood as quantitative
changes to existing parameters within the system, while transforma-
tion means change on a qualitative level, for example, the addition or
removal of certain system parts. Thus, we argue that control theory
is actually a study of how to achieve adaptive resilience: A system
is engineered to check itself for failures (sustainant deficits) and
respond to them by the means of varying the system parameters
within pre-existing bounds.

Within the many interpretations of resilience, there are gener-
ally two aspects of it which are recognized universally, as thoroughly
discussed by Hodgson et al.22: On the one hand, resistance against
the decline of the sustainant, and, on the other hand, recovery from
low sustainant values back into the acceptable range. Some disci-
plines have historically focused their notion of resilience on only one
of these aspects, which is why Ingrisch and Bahn6 refer to resistance-
centered concepts as ecological resilience and to those focused on
recovery as engineering resilience.

We definitely agree more with the concept of engineering
resilience: If a system can limit the decline of its sustainant, but not
recover subsequently, we would not call it resilient. After all, the
Latin verb resilire from which resilience is derived literally means
to rebound. We would rather describe such a non-recovering sys-
tem as robust, which aligns with the terminology of Anderies et al.23

Of course, robustness still aids resilience by reducing the magni-
tude of the necessary recovery. But we argue that robustness and
resilience are a sensible separation of system properties, represent-
ing the abilities to resist and recover, respectively. In Fig. 1, one can
find illustrations of the behavior of systems with different degrees of
robustness and resilience.

FIG. 1. Schematic trapezoidal response trajectory for different types of systems
following our terminology. The acceptable range of the sustainant S is defined by
its lower bound S∗. The times t1, t2, t3, and t4 mark the beginning of the adverse
event, the bottoming-out of the sustainant, the beginning of its recovery, and the
return to normal operation, respectively. As shown, robustness and resilience
can be understood as two independent properties. Here, the prefix semi- does
not necessarily mean half- but rather partially. The exact quantitative meaning
depends on the chosen normalization of each property, as discussed by Ingrisch
and Bahn.6

Recently, the concepts of engineering and ecological resilience
have permeated their discipline boundaries: Van Meerbeek et al.18

define the resilience of an ecological system as its recovery rate.
Along with resistance/robustness, they consider resilience to be a
constituent of what they call ecological stability (which demon-
strates the ambiguity of terminology).

For both engineering and ecological resilience, the established
quantification approaches listed by Ingrisch and Bahn6 all revolve
around the response quality, like the recovery speed or impact
limitation (the latter of which we call robustness). Recently, this
paradigm has been weakened by Dakos and Kéfi24 who interpret
ecological resilience as the minimum disturbance magnitude that is
required to induce state tipping in a multistable dynamical system.
This is very much related to basin stability, as it essentially represents
the minimum distance from the attractor to its basin’s boundary. It
is, therefore, also similar to our concept of basin resilience, albeit
only the persistence type.

Basin resilience, as explained in Sec. II B, extends the basin con-
cept to the response types of adaptation and transformation, making
it applicable to a wider set of systems and models. Meanwhile, it is
still flexible regarding the response outcome required for resilience:
Recovery speed can be incorporated, as well as impact limitation (in
which case we would speak of basin robustness). Essentially, our
framework provides a rigorous quantification approach, without
being bound to our own understanding of resilience.

B. Resilience measurement framework

Our proposed resilience measure revolves around the so-called
basin of resilience which we denote BR. In order to define it, we
need to consider the space of adverse influences Ei that can impact
the system as well as the space of its possible response options
Er. Depending on model complexity, these vector spaces can be of
arbitrary dimension. It is important to stress that neither of these
spaces are necessarily related to the phase space of the system (which
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describes its micro-state). Especially, the adverse influence Ei must
not be understood as mere displacements of the system’s state.

Next, one must define the system’s sustainant and be able to
evaluate how it reacts over time to each adverse influenceEi in combi-
nation with each response option Er. The sustainant might be derived
from the system’s phase space, or a subspace thereof. But, crucially,
it is generally not necessary to exactly know how the micro-state of
the system evolves. This means that our framework is not limited to
dynamical systems governed by differential equations, but can also
be applied to time-discrete and stochastic systems.

Because of this, we treat the sustainant as a function of time,
adverse influence, and response options taken and, thus, denote it
S(t|Ei,Er). When Ei,Er are fixed and no confusion is likely to arise, we
also use S(t) as a shorthand.

S(t) is typically a bounded quantity. We recommend to nor-
malize S(t) onto the real interval [0, 1], with S(t) = 0 representing
complete standstill and S(t) = 1 representing perfect operation. The
sustainant’s acceptable range is then bounded from above by S(t)
= 1 and from below by a value S∗. Ingrisch and Bahn6 refer to this
as baseline-normalization.

A useful quantity to define is the deviation of S(t) from its
acceptable range, which we call the sustainant deficit 1S(t),

1S(t) = max{0, S∗ − S(t)}. (1)

The time evolution of the sustainant following an adverse
influence Ei and some specific response Er is commonly used6,14,15

to illustrate the quality of a system’s response. Ingrisch and Bahn6

refer to this time evolution as the response trajectory of the system.
Typically, the response trajectory of a resilient system will follow
a simple pattern: before the adverse event (t < t1), the sustainant
rests within the acceptable range of S∗ ≤ S(t) ≤ 1, then temporarily
falls down (t1 < t < t2), and eventually rises up, either re-entering
the acceptable range or approaching it asymptotically (t3 < t < t4).
Sometimes, the dip in the response trajectory may have a roughly
triangular shape (immediate recovery, t2 = t3), and sometimes a
trapezoidal one (delayed recovery, t2 < t3). The latter (in our opin-
ion more general) case is illustrated in Fig. 1. Of course, the exact
shape of the trajectory might in reality be less linear, but, in prin-
ciple, one can always identify the phases of resistance, (optional)
stagnation, and recovery. Without loss of generality, we assume that
the system is subject to only a single adverse influence, either tempo-
rary or permanent, unfolding at t = t1 and reaching its full impact
at t = t2.

Whether or not a specific response trajectory S(·|Ei,Er) :
t 7→ S(t|Ei,Er) exhibits resilient behavior is assessed by a function α

which we call the resilience assessment function. In places whereEi and
Er are clear from the context, we will simply use S as an abbreviation
of S(·|Ei,Er). α generally imposes an arbitrary number of conditions
C1, . . . , CK on the response trajectory S(·|Ei,Er) and checks whether all
of them are fulfilled simultaneously. In the case of a specific individ-
ual system with no uncertainties, α is a binary indicator function,
taking a value of either 0 or 1. However, generally speaking, the sys-
tem of interest might have internal uncertainties, or there is a family
of similar systems that are examined. Considering this, the resilience
assessment function α is defined as the probability of the response

trajectory fulfilling all conditions,

α(S(·|Ei,Er)) = Pr
(

C1(S(·|Ei,Er)) ∧ . . . ∧ CK(S(·|Ei,Er))
)

, (2)

where C1, . . . , CK are the chosen conditions for the response tra-
jectory S(·|Ei,Er). Later, in this section, some exemplary conditions
C will be presented. Note that in order to define α, one chooses
C1, . . . , CK even though we do not denote this dependency explic-
itly in our notation since that would lead to very clumsy formulas
further down.

The basin of resilience BR(Er|α), which depends on the chosen
response option Er, is now defined as the support of α with respect to
adverse influencesEi. In words, this means that BR(Er|α) is the set of all
adverse influences against which the response option has a non-zero
chance of providing resilience,

BR(Er|α) =
{

Ei|α
(

S(·|Ei,Er)
)

> 0
}

. (3)

Our resilience measure, denoted R, now reflects the volume
of BR(Er|α) for each given Er. However, as the last ingredient of our
framework, a density function % is needed to restrict the extent of
possible adverse influences Ei and/or weight them by assigning them
different probabilities of occurrence.

The resilience measure R is then defined as the following
integral:

R(Er|α, ρ) =

∫

α
(

S(·|Ei,Er)
)

· %(Ei) dEi. (4)

If % is chosen to be an indicator function, R(Er|α, ρ) is a kind of
fuzzy volume of BR(Er|α) ∩ supp(%) (where α determines the degree
of membership). If % is a probability density function, R(Er|α, ρ)

becomes a probability. Whenever α and ρ are clear from the context,
we will abbreviate R(Er|α, ρ) by R(Er).

For the measure to be meaningful, it is crucial above all to
choose sensible definitions of S and α. Deciding on a definition for S
may be the hardest part, depending on the individual model’s com-
plexity. Regarding α, however, we think that some basic resilience
conditions C will be universally useful. These exemplary conditions
will be presented in the following paragraphs.

In principle, any quantitative measure of the response trajec-
tory can be incorporated into our framework by formulating it as a
binary condition C, for example, using a threshold value. However,
the following examples will focus on transferring analogous con-
cepts from state-space-based probabilistic stability measures such as
basin stability to our sustainant-based framework.

First, we argue that the single key property of a resilient system
is that it is able to recover completely, meaning it can permanently
restore its sustainant back into the acceptable range, regardless of
whether quickly, slowly, or even just asymptotically. This corre-
sponds to the single condition at the heart of the original notion
of basin stability,7 namely, that the system will evolve back into its
equilibrium state. We, thus, define our default resilience condition
C0 using the sustainant deficit 1S,

C0(S) : lim
t→∞

1S(t) = 0. (5)

However, depending on the context, asymptotic recovery may
not be sufficient to capture what it means for the system to be
resilient. Therefore, an additional condition might be added. This
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condition is inspired by a variant of basin stability called finite-time
basin stability, which was introduced by Schultz et al.25 Finite-time
basin stability additionally evaluates whether a perturbed system
returns into a given neighborhood of an attractor within a given
finite time. Translating this to our resilience framework could result
in a condition that limits the sustainant deficit 1S from a certain
point in time onward,

CF(S|tF, SF) : ∀t ≥ tF : S(t) ≥ SF, (6)

where tF is the threshold time and SF is the threshold sus-
tainant value defining the acceptable neighborhood of S∗. If a non-
asymptotic, finite-time complete recovery is desired, the sustainant
threshold can be chosen as SF = S∗.

Another more general variant of basin stability is constrained
basin stability proposed by van Kan et al.26 It assesses the intersec-
tion of the standard basin of stability with any number of additional
basins corresponding to further conditions on the systems transient
curve, such as monotonicity in terms of evolution toward the attrac-
tor. This variant of basin stability is actually most comparable to our
own framework because of the possibility of multiple conditions.

One additional condition that might be relevant when assessing
resilience is limiting the area of the trapezoid above the response
trajectory, meaning the time integral of the sustainant deficit 1S.
Ingrisch and Bahn6 refer to this quantity as the perturbation which
we suspect to be potentially confusing; we instead prefer to use the
term cost. Actually, we define the cost in a slightly more general way.

It may be the case that the perceived damage to the system is
not proportional to 1S. Therefore, we incorporate a weight function
W, which transforms the sustainant deficit 1S(t) into some kind of
cost rate. Neither does W need to be bounded, nor does it have to
be of any specific dimension (for example, currency), but it must be
defined such that W(1S(t)) > 0 whenever 1S(t) > 0. Integrating
this cost rate along the response trajectory then yields the cost.

The last ingredient required for the aforementioned condition
is now a limit L for this cost,

CC(S|W, L) :

∫

W
(

1S(t)
)

dt < L. (7)

A measure related to basin stability, formulated by Hellmann
et al.,27 is survivability, which requires the whole phase space tran-
sient of the perturbed system to stay within a given desirable set of
states. A corresponding resilience condition for the response trajec-
tory could be similar to (6), but limiting the sustainant deficit for all
times,

CR(S|SR) : ∀t : S(t) ≥ SR, (8)

where SR denotes the threshold sustainant value. The index R is cho-
sen here because this condition actually describes what we interpret
as (partial) robustness.

Lastly, there is a generalization of basin stability by Mitra
et al.28 called integral stability, which weights each point in the
attraction basin by its largest Lyapunov exponent (a measure of
recovery speed). In principle, such a generalization can also be
applied to our framework by inserting an appropriate distribution
f(Ei) into the integral in Eq. (4).

III. APPLICATION I: SINGLE DYNAMICAL NODE

As a first, easy-to-follow example, we apply our framework
to the commonly used dynamical model of a single generator
node connected to a large alternating current (AC) grid (see, e.g.,
Menck et al.8). We demonstrate that the generalized definition of
our resilience framework actually contains the definition of basin
stability and its variants. After all, we argue that stability can be
interpreted as persistence resilience.

A. System dynamics

The single-node system is fully described by the two-
dimensional phase space of an oscillator: the voltage phase angle θ

and its oscillation frequency ω. These variables are governed by two
first-order differential equations,

θ̇ = ω, (9)

ω̇ = −δ × ω + P − K × sin(θ − θgrid), (10)

where δ is a damping constant, P is the constant net power input
to the generator, K is the capacity of the transmission line from the
generator to the grid, and θ is the phase angle of the grid oscillation.
In our example, we use α = 0.1, P = 1, K = 8, and θgrid = 0.

The system has an attractor at (θs, ωs) = (arcsin(P/K), 0), as
well as an attracting limit cycle at ω > 0.

B. Adverse influence

As usual for the single-node system, we consider a displace-
ment of the system in both of its phase space variables. As we
explained earlier, not every system is easily modeled as dynami-
cal and allows for phase space considerations, which is why our
framework is not limited to this type of adverse influence.

Menck et al.8 show that such a displacement of the node
state can be, e.g., the result of shutting down the transmission line
between the generator and the grid for some amount of time. Here,
for simplicity, we model the displacement as instantaneous, mean-
ing t1 = t2. We define the influence density function %(Ei) as a simple
indicator function,

%((θ0, ω0)) =







1 if θ0 ∈ (−π , π],
∧ ω0 ∈ [−10, 10],

0 else,
(11)

where θ0 and ω0 are shorthand for θ(t2) and ω(t2), respectively.

C. Response options

In terms of response options, we do not assume any other
dynamics than the differential equations described in Sec. III A. This
is what is commonly known as (basin) stability, and we argue that it
can be sensibly categorized as persistence resilience: all parameters
of the system stay constant after the displacement, yet the system
recovers.

Menck et al.8 demonstrate that the parameter K has an impact
on the system’s basin stability, which means one could interpret K as
a response parameter in our framework. To keep this example short,
we refrain from varying K and instead calculate the single resilience
value for the case K = 8.
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D. Sustainant and resilience assessment

As usual for this system, we treat the attractor (θs, ωs) as the
desired state of the system, meaning the sustainant S must fulfill
S(θs, ωs) = 1. We decide to define S as cosine-like in θ and Gaussian
in ω, with its peak at the attractor,

S(t) =
1

2
× (1 + cos(θ(t) − θs)) × exp

(

−
1

20
ω(t)2

)

. (12)

The lower bound of the acceptable range is chosen as S∗ = 0.99.
To assess the resilience, we evaluate the default cost-limiting con-
dition CC(·|W, L). The weight function W(1S) is chosen to be the
identity function 1, and the cost limit is set at L = 12.

Overall, the formula for our resilience measure becomes

R =

∫ 10

−10

∫ π

−π

Pr

(∫ ∞

t2

1S(t|θ0, ω0)dt < 12

)

dθ0dω0. (13)

IV. APPLICATION II: PROBABILISTIC POWER GRID

As our second demonstration, the resilience measurement
framework is applied to a time-discrete probabilistic power grid
model. It is larger in scale and more complex than the first appli-
cation, but it is not based on differential equations which makes
traditional stability analysis inapplicable. We simulate a scenario
in which the power grid has to adapt to the emergence of pro-
sumers generating their own electricity using photovoltaics (PV).
The prosumers decentralize the energy supply which leads to a
re-organization of the power flows.

The goal is to analyze which response options are the most
effective for dealing with a wide range of possible prosumer scenar-
ios, as well as how they can be made most efficient. For simplicity,
we choose to assess resilience here solely based on the performance
of the power grid after the adverse influence and adaptations have
taken place, meaning at t ≥ t4.

In the following, the details of the power grid model are kept
at the minimum level necessary for understanding the application
of the framework. For an in-depth description of all parameters and
mechanisms, see the Appendix.

A. Network structure

The network structure of power grids is diverse, but mainly
determined by their historical development as well as their spatial
embedding. To account for these characteristics, we generate an
ensemble of synthetic power grids with a size of N = 100 nodes
using a random growth model provided by the Julia package Syn-
theticNetworks, which is based on an algorithm by Schultz et al.29

Real-world power grids are predominantly based on alternat-
ing current (AC). Accurately modeling AC power flows on networks
involves nonlinear equations and synchronization issues in the case
of multiple generators. To avoid these, we use the direct current
(DC) load flow formulation, which is not necessarily unrealistic as it
can also be derived as an approximation of AC flows. It can also be
interpreted as a model for future DC-based distribution networks.
This means that we model the power flows with linear equations
equivalent to Kirchhoff’s laws. The input for these equations is the
so-called power injections at each node, which are the difference

between the nodes’ respective demand and supply, and the outputs
are the power flows on each line.

To balance any mismatch between the grid’s total demand and
supply, one node is chosen as the so-called slack bus. Since this role
is typically associated with a large power plant or external grids,
the role of the slack bus is assigned permanently to the node with
maximal closeness centrality for each generated graph. The remain-
ing 99 nodes start off as consumer nodes and are later partially
converted to prosumer nodes. As a consequence, in the absence
of prosumers, the slack bus is the sole provider of energy to the
grid.

B. Power injections

The power demand and supply at each node are modeled
stochastically by drawing values from two separate data sets. These
data sets are manually selected subsets of real-world time series
of household power consumption and PV generation, respectively.
Both time series data sets were modified to have a matching tem-
poral resolution of 1t = 60 s and divided into daily chunks, start-
ing and ending at midnight. From each data set, 24 daily chunks
were selected, covering the full cycle of the year relatively evenly
with about two days per month and, thus, capturing the seasonal
variability. When simulating a longer period of time, these daily
chunks are randomly chained together to generate unique time
series for every node. This generation process means that the time
of day is always aligned for all nodes, but the time of year is
not consistent. This makes the model less realistic, but maximizes
the time series variability achievable with the relatively small data
sets.

Both power data sets are separately normalized to a mean value
of 1 arbitrary power unit (p.u.). In the model, all consumers and

prosumers have identical average demand of d = 1 p.u., and all pro-
sumers generate an identical average amount of PV power supply s,
which is scaled up or down depending on the exact scenario.

C. Adverse influence

The adverse influence Ei of the power grid system is the unreg-
ulated conversion of random consumers into prosumers. Since only
the final performance of the power grid will be assessed, the order
and speed of the prosumers’ appearance is irrelevant. As mentioned
in Sec. IV B, a major simplification in the model is that all prosumers
have an identical average power supply.

To create a space of many possible adverse influences, they are
modeled to be dependent on two parameters: First, the number of
consumers turning into prosumers is denoted np. Second, the ratio
of the prosumers’ PV power production to their power consumption
is controlled by the parameter rp, which is used as a scaling factor for
the PV generation time series. The range of possible values for np ∈
[1, 99] is straightforward. For the second parameter, the interval is
chosen to be rp ∈ [0.1, 10], which covers one order of magnitude for
both under- and overproduction.
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FIG. 2. Visualization of the adverse influence probability density %((rp, np)).

A simple probability density function % is constructed by
assuming a linear decrease in probability for both parameters,

%(Ei) = %((np, rp)) = k × (100 − np) × (10 − rp)

with k ≈ 4.12244 × 10−6

such that

99
∑

np=1

∫ 10

0.1

%((np, rp)) drp = 1. (14)

An illustration of the density function % can be found in Fig. 2.

D. Vulnerabilities

The vulnerability of the power grid consists in the power flow
capacities of the power lines. If they are insufficient for the given
power injections, the performance of the grid suffers, which will be
captured by the sustainant.

After generating each random grid, the initial line capacities
are set up in such a way that the grid is optimized for the traditional,
centralized power supply by the slack bus. This is achieved by gener-
ating random power demand time series where all nodes are treated
as regular consumers and assessing the maximum flows that occur.
An example of the resulting initial capacity distribution is illustrated
in Fig. 3.

Whenever a power flow calculated from the injections exceeds
the capacity of the corresponding power line, the line shuts down,
which means the edge is removed from the graph. This necessitates
a redistribution of power flows and may cause a cascade of further
line failures.

The cascades are assumed to happen so quickly that the power
injections effectively do not change while they unfold. It is also
assumed that the overloaded lines reboot at a similarly short time
scale. This separation of time scales means that the damage caused
by the line failures is confined to the single simulation time step

FIG. 3. Example of a randomly generated power grid graph in its initial state
(without prosumers). The slack bus is highlighted in blue, all other red nodes are
consumers. The edge widths proportionally represent the initial capacities of the
power lines, which are optimized for centralized supply by the slack bus.

in which they are triggered. Thus, for every time step, the grid is
modeled to start off in its completely intact state.

Since the time step size is dictated by the power data time
series, the duration of line shutdowns must be 1t ≤ 60 s, which
we estimate as 1t = 60 s. Notably, this actually matches the maxi-
mum fault-ride-through duration for power line faults defined in the
regulations30 of the German Association of Electrical Engineering
(VDE).

If the cascades result in a disconnected grid, only one of its con-
nected components contains the slack bus. Within this component,
the slack bus can adjust the overall injection balance to zero. In the
other component(s) however, there will either be a power surplus or
a power deficiency. In both cases, the component’s balance has to be
adjusted to 0 to make a follow-up linear flow calculation possible.

In the first case, all nodes with positive injections (supply
> demand) within the component equally and instantly waste their
excess power supply using some kind of wasting mechanism (like a
high-power radiator or a high-resistance ground wire). In the sec-
ond case (demand > supply), a local blackout happens and all nodes
within the component have to set their injections to zero. Those
nodes with previously positive injections do this by wasting the
injected part of their supply. Nodes with previously negative injec-
tions instead have an internal lack of power supply. Both wasted
power and lacking power are represented by the same variable called
the mismatch m. Wasted power is registered as m > 0 and lacking
power as m < 0.
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After all components’ balances are adjusted to 0, the adjusted
injections are fed back into the linear flow equation, producing the
redistributed flows. This procedure is repeated until a stable flow
pattern emerges, meaning there are no more line capacity violations.
In the most extreme case, it could mean that all lines in the power
grid have failed, leaving none to continue the cascade.

E. Response options

To cope with the emergence of the prosumers, two separate
response options Er of the power grid are examined. One of them
falls into the category of adaptation, and the other one is an example
of transformation. Both of these response options are actually fami-
lies of response strategies, each dependent on two parameters: Power
line capacity upgrades are controlled by the line budget φL and the
line allocation parameter ε. Battery installation is dependent on the
battery budget φB and the battery threshold parameter λ.

Again, the speed and order of line upgrades or battery instal-
lations is irrelevant for the resilience assessment, allowing for a
simpler model.

1. Power line capacity upgrades

The first, adaptive response strategy consists in upgrading the
capacities of the existing power lines, making them less prone to
overloading and subsequent shutdown. The main parameter of this
response strategy is called the line budget, representing the amount
of material from which to build the line capacity upgrades. This bud-
get has the dimension of length × power, since the material cost of
a power line upgrade depends proportionally on both the capacity
difference 1c (which has the dimension of power) and the metric
length l of the line. For simplicity, additional construction costs are
omitted in this model.

The number of edges in each generated power grid, their metric
lengths, and the initial capacities are all subject to random fluctua-
tions. It is, therefore, sensible to not use the absolute line budget as a
parameter, but instead a proportionality factor that relates the adap-
tation budget βL to the initial cumulative line budget βL,0. This factor
is denoted φL,

βL = φL × βL,0 with βL,0 =
∑

e

ce,0 × le, (15)

where e is an edge index, ce is the edge’s flow capacity, and le is its
Euclidean length.

The line adaptation budget βL is allocated non-uniformly to all
existing power lines, depending on the secondary adaptation param-
eter, which is called the line allocation parameter ε. Specifically,
every prosumer node contributes to every line’s upgrade, and the
contribution size depends on the distance between the two via the
following power law:

δce,n ∝ d∗
e,n

ε , (16)

where δce,n is the contribution of node n to the capacity upgrade of
edge e, d∗

e,n is the shortest path distance between the two, and ε is the
line allocation parameter.

Heuristically, it makes sense to limit the range of the alloca-
tion parameter to ε ≤ 0 because the line overload risk will be higher

closer to a prosumer node. The edge case of ε = 0 results in a uni-
form capacity upgrade for all lines, and lower values increasingly
prioritize lines closer to prosumers.

We hypothesize that the optimal strategy consists in non-
uniform upgrades with ε < 0 because power flows will tend to split
up into smaller flows with increasing shortest path distance to their
injection node. The optimal value of ε is likely independent of the
budget φL, but the exact value of ε probably becomes less relevant
above a certain budget value φL.

2. Battery installation

The second, transformative response strategy is the installation
of batteries at prosumer nodes. Their purpose is to reduce peaks and
troughs in the power injections of the prosumer nodes, which, in
turn, reduces the risk of line overloads.

The strategy’s primary parameter is analogous to the primary
one of line upgrades: The battery budget βB represents the material
from which to build the batteries, which is simplified as the cumula-
tive amount of energy that can be stored in all batteries throughout
the grid. Again, for generalization purposes, the budget is repre-
sented as the multiple of a reference energy value E0. This reference
value is chosen to be the average grid-wide energy demand during
one day, and the proportionality factor is called φB. Since all con-

sumers are modeled to have equal average demand d, the budget is
allocated uniformly onto all prosumer nodes,

βB = φB × E0,

bmax =
1

np

× βB,
(17)

where bmax is the maximal energy content of each battery.
Consequently, the secondary adaptation parameter does not

manage the budget allocation. Instead, it controls how strongly the
batteries react to peaks and troughs in the power injections. Since
the batteries have finite capacity, they must have a net power output
of zero, which means that a prosumer node’s mean power injection
cannot be altered. Only the deviations from the injection mean can
be modified.

The batteries are modeled in a way such that they aim at impos-
ing a maximum and value on the node’s power injection. Thus, when
the prosumer’s power balance exceeds this range, and if the battery
has the required energy capacity in that moment, they absorb a part
of the prosumer’s power balance. After having installed the batter-
ies at t = t4, they are initiated at 50% charge so that they can absorb
injection deviations in both directions equally well.

To control the battery behavior, the battery threshold parame-
ter λ is introduced. Together with the influence parameters np and
rp of the respective scenario, it defines the maximum and mini-
mum injection of prosumers: At λ = 1, all deviations from the mean
are absorbed, regardless of np and rp. At λ = 0, no deviations are
absorbed, making the batteries useless. Therefore, the sensible range
for the battery threshold parameter is 0 < λ ≤ 1. A relevant value in
between is λ = 1/9, 900 ≈ 10−4, where all deviations are absorbed
only in case of the most mild adverse influence (np = 1, rp = 0.1).
For even lower values of λ, some deviations are allowed even in that
most mild case.
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FIG. 4. Basin of cost-limiting persistence resilience (or stability) for the single-n-
ode system based on Eq. (13). The central dot marks the attractor state (θs, 0),
the white region is the resilience basin within the space of displacements (θ0,ω0).

Our intuitive hypothesis is that there exists an optimal thresh-
old value λ < 1, which increases linearly with increasing battery
budget φB. This optimal value represents the sweet spot between
absorbing too little such that the allowed injection fluctuations cause
line outages, and absorbing too much such that the battery quickly
becomes full or empty and cannot absorb any further fluctuations.

F. Sustainant and resilience assessment

Selecting the sustainant of the system is arguably the most con-
troversial part of the modeling process. For the prosumer-based
power grid, we want to aim at avoiding not only any lack of power
supply for regular consumers, but also the waste of excess power that
prosumers may have to resort to. After all, with the decentraliza-
tion of power supply, the power grid’s purpose essentially becomes
distributing all available power as efficiently as possible.

To reflect this, we define the transmission efficiency τ based on
the sum of absolute power injections |j| fed into the power grid at
any given time step, excluding the slack bus. From this sum, we sub-
tract all wasted power and all lacking power, which are both encoded
in the mismatch variable m (distinguished by their signs). To treat
both equally, we subtract the absolute value |m|. The transmission
efficiency τ is now defined as the remaining fraction of the injection
sum, which can be realized by the power grid,

τ(t) =



















∑

n6=nS
|jn(t)| − |mn(t)|

∑

n6=nS
|jn(t)|

,

if
∑

n6=nS
|jn(t)| 6= 0,

1 else,

(18)

where n is a node index and nS is the node index of the slack bus.
Due to the stochastic nature of the power data and the lim-

ited amount of time steps to base the initial line capacities on, this
efficiency inevitably fluctuates a lot over time. Consequently, using
τ directly as the sustainant S would necessitate an unreasonably
low boundary S∗ for the acceptable range. To avoid this, the deci-
sion is made to observe only the average transmission rate, which is
calculated over the span of 60 days,

∀t0 ≤ t ≤ t0 + 60 d :

S(t0) = τ(t0 ≤ t ≤ t0 + 60 d),
(19)

where t0 is a time step index.
For this average efficiency, the acceptable range of S can be

defined more narrowly. We decide to set the goal of limiting the
average sustainant deficit to a value that corresponds to one of the
99 nodes having its injection unfulfilled for one entire day per year,

S∗ = 1 −
1

99 × 365
≈ 1 − 2.7674 × 10−5. (20)

As mentioned before, we decide to define the resilience assess-
ment function α based solely on the post-adaptation performance
of the power grid ensemble. This corresponds to the finite-time
resilience condition CF(·|tF, SF) defined earlier, with tF = t4 and
SF = S∗. This condition also implies the default condition C0

(asymptotic recovery),

α(S) = Pr
(

∀t ≥ t4 : S(t) ≥ S∗
)

. (21)

Given the stochastic nature of the power grid model, we deem
it sufficient to observe the sustainant for 60 days after implement-
ing the response. We further calculate the probability α based on a
sample of 50 randomly generated power grids.

Combining this with all previous definitions, the formula for
the power grid resilience measure becomes

R(Er|t4, S
∗) =

99
∑

np=1

∫ 10

0.1

Pr
(

∀t4 ≤ t ≤ t4 + 60 d : S(t|Er, (rp, np)) ≥ S∗
)

× k × (100 − np) × (10 − rp) drp, (22)

where S∗ and k are two constants defined in (20) and (14), respec-
tively.

This integral-sum combination is estimated by quasi-Monte-
Carlo (QMC) sampling using 256 samples. The samples are gener-
ated from the Sobol sequence,31 which was chosen to allow for later
addition of further samples. However, since the resolution proved
sufficient, there were no samples added.

V. RESULTS

A. Single-node persistence

Estimating the resilience value from Eq. (13) with 40 000 sam-
ples yields R ≈ 47.31. This value may not be intuitively interpretable
without the phase space volume of the sampling region (V ≈ 125.66)
as a reference. But due to the chosen cost-limiting resilience condi-
tion, the basin is bounded. This means that its volume, and therefore
R, is independent of the integration boundaries in ω0 (given that the
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latter is sufficiently large). An illustration of the resilience basin can
be found in Fig. 4.

B. Power grid adaptation

First and most strikingly, the maximum achieved resilience
value is different for both response strategies, as can be seen when
comparing Figs. 5 and 6: With line upgrades, the power grid can
reach R = 1, meaning there is a guaranteed recovery from all adverse
influences. For battery installation, however, the curve plateaus at a
significantly lower value of R ≈ 0.7.

This difference in maximal resilience is mirrored by the
resilience basins in Figs. 7 and 8. For both response options, the
basins possess a distinct hyperbolic boundary, which shifts away
from the origin with increasing budget values (φL and φB, respec-
tively). However, this shifting is where the differences between the
response strategies lie: First, the boundary seems to shift only side-
ways in Fig. 8 while it also shifts upwards in Fig. 7. Second, the
hyperbolic shape of the boundary line becomes steeper and almost
vertical with increasing battery budget φB in Fig. 8. Together, this
results in the fact that, for battery installation, the resilience basin
is restricted to approximately the left half of the influence plane
(rp ≤ 5), while line capacity upgrades achieve a complete covering
of the plane.

The growth of the resilience basin with increasing budget is
consistent with the budget dependency of the resilience measure
itself: R increases monotonically with increasing budget (φL and φB,
respectively). As can be seen in the log-log plots in Figs. 5(a) and
6(a), the curves have a distinct sigmoid shape in the majority of
cases. The only exceptions are the curves for line upgrades with line
allocation parameters of ε ≤ −4. The sigmoid shape means that the
relative budget efficiency increases initially, but then decreases again
as the curves plateau at their maximum value.

Two interesting characteristics of these sigmoid curves are the
saturation point, which indicates the minimum budget necessary
to achieve maximal resilience, and the turning point, indicating
the point of maximal relative budget efficiency. The line bud-
get necessary to achieve the maximum resilience value R = 1 lies
at φL ≈ 100 and the turning point of the sigmoid is located at
φL ≈ 1. For batteries, the budget necessary for maximal resilience
(R ≈ 0.7) is φB ≈ 100, while the sigmoid has its turning point at
φB ≈ 10.

The secondary parameters (ε and λ) both generally produce
higher resilience at higher values, which can be seen in Figs. 5(b)
and 6(b). In fact, their maximum values of ε = 0 and λ = 1, which
correspond to the most simple response strategies (uniform line
upgrades and complete elimination of fluctuations, respectively),
are relatively safe choices, resulting in almost optimal resilience
values across the range of budgets. However, for most budget values,

(a) (b)

FIG. 5. Response parameter dependency of the resilience measure R(Er) for power line capacity upgrades. The actual data points calculated from QMC sampling are
indicated by the ticks on the parameter axes, the lines in between are linear interpolations. The transparent ribbons indicate the standard error from Monte Carlo estimation.
(a) Line budget dependency R(φL) for different values of ε. (b) line allocation parameter dependency R(ε) for different values of φL.
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(a) (b)

FIG. 6. Response parameter dependency of the resilience measure R(Er) for battery installation. The actual data points calculated from QMC sampling are indicated by
the ticks on the parameter axes, the lines in between are linear interpolations. The transparent ribbons indicate the standard error from Monte Carlo estimation. (a) Battery
budget dependency R(φB) for different values of λ. (b) battery threshold parameter dependency R(λ) for different values of φB.

optimal resilience R is achieved with secondary parameters below
their maximum:

With line upgrades, the optimum shifts from ε ≤ −3 at low
budget values to ε = −2 at φL = 1 and then seems to settle at
ε = −1.5 for φL ≥ 3. At very low budget values (φL ≤ 0.03), the
height of the optimum vanishes compared to what seems to
be random noise, and at very high budgets (φL & 30) the opti-
mum becomes less sharp such that a broader range of allocation
parameters can produce full resilience. This budget dependency of

the optimal allocation parameter is illustrated in Fig. 9(a). Addi-
tionally, illustrations of the distance-dependent weights of the line
upgrades for some values of ε can be found in Fig. 10(a).

For the battery threshold parameter λ, the optimum is less
pronounced and seems to steadily shift across orders of magni-
tude along with the battery budget φB. As with line upgrades, the
optimum diffuses at low budget values (φB ≈ 0.01) and becomes
broader at high budget values (φB ≥ 30). However, the optimum
does not become arbitrarily broad, but instead seems to be limited

(a) (b) (c) (d) (e)

FIG. 7. Resilience basins for line capacity upgrades based on QMC sampling of the resilience assessment function α(rp, np). The line allocation parameter is fixed at
ε = −1.5 and the line budget φL is increased incrementally with each subfigure. The vertical axis indicates the number np of appearing prosumers and the horizontal axis
their ratio rp of power production to consumption. (a) φL = 1. (b) φL = 3. (c) φL = 10. (d) φL = 30. (e) φL = 100.
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(a) (b) (c) (d) (e)

FIG. 8. Resilience basins for battery installation 5based on QMC sampling of the resilience assessment function α(rp, np). The battery threshold parameter is fixed at λ = 1
and the battery budget φB is increased incrementally with each subfigure. The vertical axis indicates the number np of appearing prosumers and the horizontal axis their ratio
rp of power production to consumption. (a) φB = 3. (b) φB = 10. (c) φB = 30. (d) φB = 100. (e) φB = 300.

to the range of 0.3 ≤ λ ≤ 1. The influence dependency of the excess
injection δj+(rp, np) implied by this threshold value of λ = 0.3 is
illustrated in Fig. 10(b). The budget dependency of the optimal value
for λ is illustrated in Fig. 9(b).

VI. DISCUSSION

The first application of our framework to the single-node sys-
tem is not meant to derive any new insights. The system has been
studied extensively, and our chosen formulation of the resilience
measure in Eq. (13) is essentially equivalent to finite-time basin
stability,25 with the finite recovery time translating to a finite cost.

Yet, we believe that this example proves the generality of our
framework.

Regarding the second application, the framework was able
to confirm most of our intuitive expectations about the response
strategies of the power grid.

The fact that battery installation has an inherent limitation in
regard to the maximum achievable resilience R was not foreseen, but
actually makes intuitive sense since, after all, the batteries can only
eliminate fluctuations in the power injections.

Going into the details, the hyperbolic shape of the resilience
basins was not expected, but can be understood with the following
consideration:

FIG. 9. Illustration of the budget dependency of the optimal secondary response parameters for line upgrades and battery installation, respectively. The color indicates the
resilience R normalized to the optimal resilience Ropt achieved at each budget value. (a) Optimal line allocation parameters ε depending on the line budget φL. (b) Optimal
battery threshold parameters λ depending on the battery budget φB.
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(a) (b)

FIG. 10. Illustrations of selected values for the secondary response parameters ε and λ, respectively. (a) Line upgrade weight distributions up to the fifth neighborhood for

different optimal values of the line allocation parameter ε. (b) Relative excess injection δj+(rp, np|λ = 0.3) (see the Appendix for definition). The quantity in general reflects
the fraction of power injection fluctuations that the batteries aim to absorb. This specific distribution at λ = 0.3 represents the minimum fraction necessary to absorb in order
to achieve optimal resilience using batteries.

The overall average power supply 6 s provided by prosumers
is linearly related to both of the adverse influence parameters: 6 s
∝ np × rp, which can be rearranged as np(rp) ∝ 6 s × (rp)

−1. Each
hyperbola, therefore, represents a line of constant average overall
power supply 6 s = const, and one of those hyperbolae indicates
the maximum supply that the power grid can sustain without imple-
menting response options, solely by means of the initial power line
capacities.

Power line upgrades then seem to be able to indefinitely and
linearly increase the maximal supply which the power grid can
cope with. For example, Fig. 7(b), where φL = 3, shows a bound-
ary around np × rp = 99 which corresponds to the power grid
being net-neutral, meaning the average power

∑

s supplied by the

prosumers equals the average demand
∑

d by all nodes.
Battery installation, on the other hand, cannot increase the

average supply tolerance, only the fluctuation tolerance. The average
magnitude of any local fluctuations is only proportional to rp, not
to np, which can explain why the basin’s hyperbolic boundary only
shifts to the right in Fig. 8. This boundary shift can, however, only
be sustained to the point where the average power injections exceed
the tolerance of the initial line capacities, which seems to happen at
rp ≈ 4.

The monotonous budget dependency of R seen in Figs. 5(a) and
6(a) is in line with intuitive expectations. The exact sigmoid behavior
was not predicted, but can be partially understood by considering
the shape of the resilience basins in combination with the definition
of the influence density function %(Ei):

The first, upward-curving half of the sigmoid suggests that
each budget parameter (φL and φB, respectively) increases the area
of the resilience basin exponentially or as a power function rather
than linearly. The turning point and subsequent plateauing of the
sigmoid can be explained the following way: First, the area of the
resilience basins is inherently limited to the size of the chosen
adverse influence plane. Second, at low budgets, the resilience basins
are located close to the origin of the influence plane, where the prob-
ability density %(Ei) was defined to be the greatest. With increasing
budgets, the basins grow into regions of lower and lower proba-
bility density, decreasing the gain in probability with each budget
increment.

The general dependency of R on the line allocation parameter ε

matches the expectations: The optimal strategy is a value of ε < 1 for
all budgets. However, the optimum is not independent of the budget,
as was hypothesized. Instead, it is monotonically and non-linearly
increasing with the budget φL. This means that, at lower budgets, it
is best to prioritize lines closer to the prosumers. The exact optimal
values of ε and their budget dependency are not obvious to justify,
but it might be possible to relate them to the average node degree of
the network or its small-worldness.

The battery threshold parameter dependency R(λ) also
matched our expectations. The budget-dependent shift of the opti-
mal value of λ is mostly linear, as predicted. This confirms that the
realizable amount of excess injection (which is proportional to λ)
can be scaled up linearly by increasing the battery sizes (which are
proportional φB).
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However, the optima of λ in Fig. 6(b) are more shallow than
expected. The existence of the optima was hypothesized based on a
sweet spot between absorbing as many fluctuations as possible and
preventing battery clogging or emptying. The fact that that the opti-
mal resilience measure R(λopt) is only slightly higher than R(λ = 1)
suggests that the risk of battery clogging is significantly lower than
the risks posed by allowing greater injections, even at small battery
sizes.

The threshold value for the battery threshold parameter found
as λ ≈ 0.3 seems intriguing at first, but may have a less exciting
explanation: Fig. 10(b) shows the so-called relative excess injection
δj+(rp, np) (see the Appendix for details) corresponding to the case of
λ = 0.3. This quantity reflects the fraction of power injection devi-
ations that the batteries aim to absorb. One can see that the only
adverse influences Ei for which δj+(Ei) < 1 are located in the top right
corner of the influence plane, at rp & 3.5 and np & 35. Coinciden-
tally, this region almost perfectly touches the boundary of the largest
possible resilience basin for batteries seen in Fig. 8(e). This means
that, for adverse influences within that maximal basin, which are the
hard limit for what batteries can provide resilience against, λ & 0.3
has the same effect as λ = 1. λ = 0.3 just happens to be the smallest
value for which the detrimental zone of δj+ < 1 does not chip away
at the basin. At lower values of λ, however, the hyperbolic zone of
δj+ < 1 overlaps with the maximum resilience basin, reducing the
effective basin size.

VII. CONCLUSION

Assessing both the well-studied single-node dynamical system
and a unique probabilistic power grid serves as a thorough proof of
concept for our resilience measurement approach. We believe that
our framework will be able to provide useful insights throughout a
wide range of applications. Further, the scenario of prosumers desta-
bilizing the power grid does not only represent a highly relevant
scenario in the context of climate change mitigation, but also a great
example of how resilience can be studied in the context of adverse
side effects caused by otherwise desirable processes.

The key feature of our framework is that the resilience basins do
not necessarily exist within the phase space of the system (as in basin
stability), but in a separately defined space of adverse influences.
Likewise, the space of response options is separate and of arbitrary
dimension. We believe that this generally requires more conscious
effort and subjective decisions by the modeler, but has the potential
to produce more concrete and meaningful results, as well as allow-
ing application to non-dynamical systems that are not described by
differential equations.

Since the framework does not require exact knowledge of the
system’s state, only of its sustainant, one application scenario might
be neural networks which are trained to mimic a highly complex sys-
tem’s sustainant behavior depending on different adverse influences.
Further, since we interpret control theory as the study of adaptive
resilience, resilience basins may be a useful tool in quantifying the
success of control-theoretical mechanisms.

Regarding the application to the probabilistic power grid, it has
to be clearly stated that the simplicity of our model does not allow
for direct quantitative inferences about real-world power grids.
The model makes many specific assumptions about the actual grid

dynamics. It assumes direct current, lossless linear flows without
cycles, stochastic injections which are not seasonally coherent, static
injections over a duration of 1 min, equal PV sizes for all prosumers,
immediate blackouts in case of power deficiency, automatic power
line reboots, unregulated PV installation, and vastly simplified bat-
tery functionality. It further excludes the conversion of material
costs to financial costs while also ignoring construction costs of line
upgrades, installation costs of batteries as well as the time scales on
which both response options are performed.

Keeping this in mind, for our model it was found that the
battery installation response is inherently limited in terms of pro-
viding resilience, while power line capacity upgrades displayed
unlimited resilience potential. Metaphorically speaking, batteries
act like a wave breaker, which can dissipate high waves in stormy
weather, but cannot prevent rising sea levels from flooding the
shores. Power line upgrades on the other hand act like digging out
the sea floor, allowing the ocean volume to grow without raising
the sea level. These qualitative differences are nothing revelatory,
but our framework is uniquely able to put a number to them by
quantifying the maximal resilience effect of both response strate-
gies (0.7 vs 1), at least in the specific prosumer scenario that was
chosen.

Further, the framework was able to provide insight into budget
efficiency in several ways: First, the general budget dependency was
found to be sigmoidal and therefore to have both a turning point
and a saturation point. Knowledge of the saturation point prevents
wasting budget by overly adapting or transforming the power grid
when aiming for complete resilience. On the other hand, if only par-
tial resilience R < 1 is deemed sufficient, the turning points present
themselves as optimal budget choices.

Second, the framework identified optimal secondary param-
eters for both response strategies and how they depend on the
available budget. However, the relative advantage of these optimal
strategies was relatively small. The most simple strategies (uniformly
allocated line upgrades and full absorption of injection fluctua-
tions) proved to be consistently effective alternatives, coming close
to maximal resilience at all budgets.

This is relevant because those simple strategies are indepen-
dent of the number of prosumers and their PV size, making them
potentially feasible in a completely unregulated scenario. Particu-
larly, uniform line upgrades are even independent of the prosumer
locations, which entirely eliminates the need to react to their emer-
gence. Therefore, the power lines could instead be upgraded pro-
phylactically and thereby the grid would be made robust instead of
resilient. Whether the trade-off between this independence and the
suboptimal budget efficiency is desirable, however, will depend on
additional considerations.

Considering real-world conditions, the installation of batteries
in prosumer households is arguably simpler to realize than upgrad-
ing all power lines, especially if the latter are built underground.
Therefore, a combination of both response strategies is probably
most feasible: Installing batteries that are large enough to absorb
all fluctuations, but also upgrading selected power lines to be able
to cope with the increased average power injections by prosumers.
Optimizing this combined strategy for all instances of adverse influ-
ences will require a higher-dimensional analysis considering the
parameters of both response options simultaneously.
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It can further be noted that both of the examined response
strategies (in general, not only the simple cases mentioned above)
actually have the potential to provide robustness instead of
resilience: If the installation of PV by prosumers simply were to be
regulated, the responses could be implemented before the PV mod-
ules are actually connected to the power grid. This principle may
actually apply to social-technological systems in general due to the
innate ability of its agents to communicate.

Drawing an analogy to the classification of resilience based on a
system’s response options by Donges and Barfuss,21 one may be able
to classify adverse influences based on their temporal shape. Stay-
ing in the context of power grids, one could differentiate between
temporary changes in energy production vs permanent changes in
energy production vs permanent risk of permanent changes in energy
production. Translating these categories of adverse influences to
dynamical systems in general, one might classify state perturbations
asmomentary external force pulses vs constant external forces vs per-
manently variable external forces. These three categories may even
correspond somewhat to persistence, adaptation and transformation
as the responses necessary to cope with them.

Further, Donges and Barfuss21 analyze resilience from a multi-
agent-environment perspective. They introduce the concepts of gen-
eral vs specific resilience (resilience of the whole social-technological
system vs of a sub-system, for example, the technological sub-
system), as well as first-order vs second-order resilience (resilience
for single agents vs resilience that mutually benefits other agents).
In this regard, one could say that the power grid model examined
in this paper had multiple independent agents driving the adverse
influence (consumers turning into prosumers) and a single agent
managing the response options (the grid operator upgrading lines
or installing batteries).

This aspect could be potentially expanded upon by consid-
ering multi-agent adverse influences that are dependent on each
other (e.g., consumers copying their neighbor’s decision to install
PV if they perceive it to be advantageous) as well as multi-agent
responses (e.g., prosumers copying their neighbor’s battery instal-
lation decision or even sharing their battery capacities with one
another).
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The single-node model is implemented using the programming
language Python in version 3.9.16. The power grid model is imple-
mented using the programming language Julia32 in version 1.5.3.
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from the corresponding author upon request.

APPENDIX: DETAILS: PROBABILISTIC POWER GRID

MODEL

1. Network structure

The nodes are embedded in the two-dimensional Euclidean
plane and their coordinates are drawn randomly from a uniform
distribution. Connections are made according to attachment rules
controlled by a small set of parameters. The parameter values used
in the growth algorithm were chosen empirically to make the graphs
resemble real-world low-voltage power grids, matching the scenario
of small-scale decentralized PV power generation by prosumers. The
chosen parameter values and their roles are summarized in Table I.

2. Power data sources

The power consumption data stem from the NOVAREF
project33 of the German Aerospace Center (DLR). It was kindly
provided by Elisavet Proedrou at the DLR Institute of Networked
Energy Systems in Oldenburg, Germany. It represents the averaged
load profile of 12 residential houses in Oldenburg, Lower Saxony,
measured throughout the year 2013.

The PV power generation data set is part of a larger publicly
available data collection by Open Power System Data.34 It consists
of the solar irradiance measured by a suburban residential house’s
rooftop PV system in the south of Germany, covering a time span
from 2015 to 2017. The irradiance measurements are treated as
power measurements.
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TABLE I. Parameter roles in the network growth algorithm by Schultzet al.29 and the

values used in our power grid model.

Parameter Value Role

N 100 Total number of nodes
N0 15 Initial number of nodes, connected

by minimum spanning tree
s 0 Probability of creating a new node

by splitting a random existing line
in half (vs creating one in a random
location and linking it to its closest

neighbor)
p 0.15 Probability of linking a newly

created node to the network via a
second, redundant line

q 0.15 Probability of linking an existing
node via a second, redundant line

r 0.2 An exponent that determines which
lines are preferred when creating

redundant lines

3. Initial power line capacities

The optimization of the initial power line capacities for central-
ized supply is achieved by generating random power demand time
series where all nodes are treated as regular consumers.

Here, however, the time series are not coherently generated
from daily chunks, but instead only from a random subset of their
time steps (which are still aligned across the nodes regarding time
of day). This can be thought of as a collection of snapshots from
a longer, coherent time series. This way, it takes less time steps
to capture the variability of the power consumption, reducing the
computing time.

From this snapshot time series, the power flows are calculated
and, for each edge, the maximum occurring flow is extracted. The
absolute values of these maximum flows are then multiplied with a
safety factor to produce the line capacities. The length of the snap-
shot time series was chosen as 1000 time steps and the safety factor
as 1.75.

4. Response options

a. Power line upgrade allocation. For the purpose of line
upgrade allocation, the shortest path distance d∗ of an edge to a node
is defined as follows:

d∗
e,n = min{dsrc(e),n, ddst(e),n} + 1, (A1)

where n is a node index, e is an edge index, di,j is the shortest path
distance between two nodes i and j, and src(e) and dst(e) are the
incident nodes of edge e.

To make the capacity upgrades proportional to the weighted
distances to the prosumers, the adaptation budget portion allocated
to each line also has to be proportional to the length l of the line itself.
Therefore, the capacity upgrades 1c are determined by the following

formula:

1ce =
1

le
× βL ×

∑

n∈Up
le × d∗

e,n
ε

∑

f

∑

n∈Up
lf × d∗

f,n
ε , (A2)

where e and f are edge indices, n is a node index, Up is the set of all
prosumer node indices, and ε is the line allocation parameter.

b. Battery mechanism. Since all consumer and prosumer nodes

have an identical average demand of d = 1 p.u., the reference value
E0 for the battery budget is calculated as follows:

E0 = 99 × 1 p.u. × 1 d = 142, 560 p.u. × s. (A3)

Without batteries, the power injection j at each node simply
equals the difference between the node’s power supply s and its
demand d. The batteries convert j into a modified injection j∗ in a
very rudimentary way by limiting how far it can deviate from the
mean injection j. Any deviation exceeding the limits will be absorbed
by the battery such that the remaining injection equals the limit
value, if possible. This, of course, depends on the battery size bmax

and the battery’s energy content b from the previous time step,

1bn(t) =



























min
{

jn(t) − jmax, bn,max − bn(t − 1)
}

if jn(t) > jmax

min
{

jn(t) − jmin, bn(t − 1)
}

if jn(t) < jmin

0 else,
(A4)

j∗n(t) = jn(t) − 1bn(t),

where 1b is the battery charge/discharge, n is a node index, t is a
time step index, and jmin and jmax are the limits of allowed injection
values.

After having installed the batteries at t = t4, they are initiated
at 50% charge so that they can absorb injection deviations in both
directions equally well,

bn(t4) = 0.5 × bn,max. (A5)

The distribution of all possible power injections is generated

from the fixed distribution of power demand (d = 1 p.u.) and the
variable distribution of power supply (s = rp p.u.). An exemplary
combined distribution for the case rp = 1 is illustrated as a logarith-
mic histogram in Fig. 11. As evident, it is not symmetrical around its
mean and, therefore, the upper and lower deviation limits have to be
different to preserve the mean j∗ = j = (rp − 1) p.u.

It is decided to control the maximum injection jmax using the
secondary battery response parameter and determine the minimal
injection jmin such that the mean injection j∗ = j is preserved. To
determine a sensible value for jmax, we introduce a quantity which
we call the excess injection 1j+ and which is dependent on jmax. 1j+
is defined as the sum of all additional injections above jmax, weighted
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FIG. 11. Logarithmic histogram of the distribution of possible injection values j

for a prosumer ratio of rp = 1. The mean value is j = (rp − 1) p.u. = 0. The
red columns indicate the excess above the limit jmax ≈ 1.87 p.u. which is chosen

such that δj+(jmax) = 0.5. The blue columns are the opposite excess below jmin
≈ −0.47 p.u. which has to be absorbed to preserve the mean injection value.

by their probability of occurrence,

1j+(jmax) =
∑

j>jmax

(j − jmax) × Pr(J = j), (A6)

where J is the random variable from which the prosumers’ power
injections are drawn. 1j+ is deliberately not normalized to reflect
the difference in probability of excess injection depending on the
limit value jmax. That way, 1j+ reflects the amount of energy that
is redirected from the PV supply to the battery periodically. The
maximum value for this excess quantity is achieved when jmax = j,
meaning when all deviations above the mean are eliminated. For
easier notation, we define the relative excess injection δj+,

δj+(jmax) =
1j+(jmax)

1j+(j)
. (A7)

The secondary battery response parameter, called the battery
threshold parameter λ, now proportionally controls the value of this
relative excess which the batteries absorb. However, besides λ, both
influence parameters rp and np are considered as well: Increasing rp

means increasing the variance of the distribution of possible values
for j and thereby the maximum excess injection. This dependency
is empirically found to be approximately 1j+(j) ∝ rp. It, therefore,

makes sense to choose δj+(jmax) ∝ 1
rp

.

Further, increasing np reduces the size of each individual bat-
tery (given a fixed budget) and, therefore, lessens the amount of

fluctuations it can absorb. For this reason, the relative excess is
chosen to have a dependency δj+(jmax) ∝ 1

np
.

Combining these dependencies, we get an implicit formula that
defines the injection limit jmax via

δj+(jmax) = min

{

1,
λ

rp

10
×

np

99

}

, (A8)

where the minimum function ensures that δj+ ≤ 1. The additional
factors in the denominator are chosen such that λ equals the min-
imum relative excess which is absorbed in the case of the most
extreme influence (rp = 10, np = 99).

As mentioned earlier, the lower injection limit jmin is now
defined by the implicit condition that the altered injection j∗ main-
tains the same mean value as the unaltered injection j:

j∗(jmin, jmax) = j = (rp − 1) p.u. (A9)
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