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ABSTRACT: Machine learning algorithms are able to capture complex, nonlinear, interacting relationships and are
increasingly used to predict agricultural yield variability at regional and national scales. Using explainable artificial intelli-
gence (XAI) methods applied to such algorithms may enable better scientific understanding of drivers of yield variability.
However, XAI methods may provide misleading results when applied to spatiotemporal correlated datasets. In this study,
machine learning models are trained to predict simulated crop yield from climate indices, and the impact of cross-validation
strategy on the interpretation and performance of the resulting models is assessed. Using data from a process-based crop
model allows us to then comment on the plausibility of the “explanations” provided by XAI methods. Our results show that
the choice of evaluation strategy has an impact on (i) interpretations of the model and (ii) model skill on held-out years and
regions, after the evaluation strategy is used for hyperparameter tuning and feature selection. We find that use of a cross-
validation strategy based on clustering in feature space achieves the most plausible interpretations as well as the best model
performance on held-out years and regions. Our results provide the first steps toward identifying domain-specific “best
practices” for the use of XAI tools on spatiotemporal agricultural or climatic data.

SIGNIFICANCE STATEMENT: “Explainable” or “interpretable” machine learning (XAI) methods have been in-
creasingly used in scientific research to study complex relationships between climatic and biogeoscientific variables
(such as crop yield). However, these methods can return contradictory, implausible, or ambiguous results. In this study,
we train machine learning models to predict maize yield anomalies and vary the model evaluation method used. We
find that the evaluation (cross validation) method used has an effect on model interpretation results and on the skill of
resulting models in held-out years and regions. These results have implications for the methodological design of studies
that aim to use XAI tools to identify drivers of, for example, crop yield variability.

KEYWORDS: Agriculture; Crop growth; Artificial intelligence; Machine learning;
Model interpretation and visualization

1. Introduction

The changing climate has already affected agricultural sys-
tems worldwide (Iizumi and Ramankutty 2016; Brás et al.
2021), and projections of continuing warming, increasing heat
extremes, and intensifying short-term precipitation events
suggest that further impacts can be expected in the coming
decades (Seneviratne et al. 2021). According to state-of-the-
art crop model simulations, severe shifts in agricultural pro-
ductivity due to climate change may occur within the next
20 years in several regions (Jägermeyr et al. 2021). Accurate
assessments of future climate impacts on crop yields are es-
sential for adaptation planning as the worldwide population
continues to grow, but projections of global yields remain
highly uncertain (Jägermeyr et al. 2021; Müller et al. 2021).
This can partly be attributed to uncertainty in climate model

projections, particularly in more data-scarce regions, but a
large portion of the range in yield projections arises from vari-
ance between crop models (Ruane et al. 2021; Müller et al.
2021; Jägermeyr et al. 2021).

Recent studies have found that process-based crop models
fail to capture the impact of extreme heat or drought events
on yields (Heinicke et al. 2022; Lafferty et al. 2021). Further-
more, due to the complex and nonlinear relationships between
weather, cultivar, management, soil, pests, diseases, and end-
of-season crop yields (Lesk et al. 2022), the compounding of
climate events that are not themselves extreme may result in
extreme yield losses (Zscheischler et al. 2020; Wiel et al. 2020).
An example of such an extreme impact from nonextreme cli-
mate events is the 2016 record-breaking wheat losses in
France, which were unanticipated by forecasters (Ben-Ari et al.
2018). Additionally, the impacts of extreme events may be
moderated by compounding conditions; for example, heat im-
pacts on crops can be alleviated by wet conditions, while ex-
treme wet conditions are linked to decreased yields in both
warm and cool conditions (Hamed et al. 2021).

The increasing availability of agricultural data at multiple
spatial scales has precipitated the use of data-driven methods
to disentangle the complex interactions between climate and
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crop yield. Statistical modeling has been used extensively for
yield prediction, often using annual or seasonal aggregates of
climatic variables such as temperature and precipitation (Ortiz-
Bobea et al. 2019; Laudien et al. 2020; Ribeiro et al. 2020). Re-
cent studies have included extreme indicators so as to capture
the effect of short-term climate extremes (Vogel et al. 2019),
and the use of machine learning models has been explored
(Vogel et al. 2021). A growing body of research has shown the
ability of such models to accurately predict agricultural yield
(Crane-Droesch 2018; Liu et al. 2022; Mateo-Sanchis et al.
2023). However, the “black box” nature of these tools impedes
the extraction of relationships from trained models for scientific
study.

“Explainable” or “interpretable” artificial intelligence (XAI)
methods purport to give insight into the relationships captured
by machine learning models (Rudin 2019; Ryo 2022). These
methods have been used to identify drivers of yield variability
or yield failure events in the United States and Europe (Goulart
et al. 2021; Peichl et al. 2021; Webber et al. 2020; Wolanin et al.
2020; Mateo-Sanchis et al. 2021; Martı́nez-Ferrer et al. 2020;
Newman and Furbank 2021; Schierhorn et al. 2021), as well as
drivers of natural hazards such as floods (Jiang et al. 2022) and
wildfires (Richards et al. 2023; Bakke et al. 2023; Oliveira et al.
2012). Recently, researchers have called attention to contrast-
ing, implausible, or ambiguous results (Lischeid et al. 2022;
Mamalakis et al. 2023; Liu et al. 2022; Schmidt et al. 2020),
suggesting that a deeper understanding of these methods is re-
quired. Known issues include disagreement between interpreta-
tion methods and the difficulty of satisfying the assumptions
required for validity of results on spatiotemporal data. This is
particularly relevant for agricultural studies, as due to the lack
of long agricultural yield time series even in relatively data-rich
regions, the use of data from multiple sites or regions is often
necessary.

XAI is a rapidly advancing field, with scientific articles on
the topic tripling in the last decade (Graziani et al. 2022),
largely driven by research using established “benchmark”
datasets that may have little similarity to climate or agricul-
tural data. For researchers in Earth and climate sciences, a
common challenge is the presence of autocorrelation in multi-
variate spatiotemporal data, while XAI methods often assume
that data used are independent and identically distributed.
A fundamental problem is robust model performance evalua-
tion. It has been shown that the use of random cross validation
to evaluate model skill on spatial, temporal, or spatiotemporal
data, where the assumption of identically and independently
distributed data is violated, can lead to overestimation of model
performance (Meyer et al. 2019; Meyer and Pebesma 2021,
2022; Meyer et al. 2018; Vorndran et al. 2022; Kattenborn et al.
2022; Ploton et al. 2020; Hosseini et al. 2020; Roberts et al.
2017; Beigaitė et al. 2022). There is currently no established
“best practice” for model evaluation on spatiotemporal climate
data. Recent studies have made use of a range of methods, in-
cluding a single defined test set, random k-fold, leave-one-year-
out, or spatial cross validation, but methods that consider both
the temporal and spatial dependencies of the dataset are rare
(Richards et al. 2023; Roberts et al. 2017). Furthermore, the

impact of the choice of evaluation strategy on the results of
XAI methods is not yet known.

Using a methodological approach typical of studies aiming to
identify climatic drivers of crop yield variability, we examine
the impact of model evaluation strategy on the measured per-
formance and interpretation, via permutation feature importan-
ces, of similar machine learning models. We further examine
the impact of the evaluation strategy used for hyperparameter
tuning and feature selection on the ability of the resulting mod-
els to extrapolate to years and regions that were not available
during training and testing. By using simulated data from a
process-based crop model, we are able to compare the interpre-
tations derived from the machine learning models with the
known mechanisms of the crop model and therefore comment
on the plausibility of the “explanations.”

2. Data

The global climate dataset used consists of daily values of
precipitation, minimum, maximum and average temperature
and shortwave radiation, based on the NCEP–NCAR reanal-
ysis product (Sheffield et al. 2006). The data are obtained
from the Global Gridded Crop Model Intercomparison
(GGCMI) phase 1 input datasets (Elliott et al. 2015) and
cover the period 1948–2008 at 0.583 0.58 resolution.

These data are used to drive the global gridded crop model
ensemble of GGCMI phase 1 (Müller et al. 2017, 2019) and
the Intersectoral Impact Model Intercomparison Project
(ISIMIP) phase 2a initiative. Crop-planting date and growing-
season length are prescribed at gridcell level, based on obser-
vational data of monthly irrigated and rainfed crop areas
around the year 2000 (MIRCA2000; Portmann et al. 2010), as
described in the modeling protocol (Elliott et al. 2015). Land
use is not considered, but this analysis is limited to current
cropping areas (defined according to MIRCA2000). We here
use simulated maize yield data (tonnes dry matter ha21) for
rain-fed systems from the Lund–Potsdam–Jena managed
Land (LPJmL) model. In LPJmL, yield data are computed
based on canopy-level photosynthesis, autotrophic respira-
tion, limitations in water supply, and a set of allocation rules,
driven by daily weather conditions and computed soil dynam-
ics (Bondeau et al. 2007; Fader et al. 2010; Schaphoff et al.
2013; Waha et al. 2012). The version of LPJmL used for
GGCMI phase 1 does not account for nitrogen stress, so fer-
tilizer inputs as specified by the modeling protocol (Elliott
et al. 2015) are ignored in the LPJmL simulations. As a ro-
bustness check, simulations from a global gridded modifica-
tion of the Decision Support System for Agrotechnology
Transfer (pDSSAT) crop model (Elliott et al. 2014; Jones
et al. 2003), which did account for nitrogen fertilizer inputs,
are also used.

The simulated maize yields are detrended and transformed
into yield anomalies by fitting an order-3 polynomial and sub-
tracting this from the yields at each grid point. An overview
of the data-processing, model-training, and analysis steps is
shown in Fig. 1.

For our climate predictors, we use monthly average pre-
cipitation pi, temperature ti, and shortwave radiation ri for
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FIG. 1. Overview of the experimental workflow. In the first experiment (label 1), which aims to analyze the
impact of the CV method on model evaluation and interpretation, no hyperparameter tuning or feature selec-
tion is conducted, and therefore the resulting models from each training fold are comparable. In the second ex-
periment (label 2), which aims to find the impact of the CV method used on the ability of models to extrapolate
to held-out years and/or regions, nested (inner) CV was used to tune hyperparameters and select features inside
each outer training fold.
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3 months prior to the sowing date and the subsequent 7 months,
thereby fully encompassing the growing season in all grid cells
(with subscript i used to represent the number of months before
or after sowing). We additionally include a number of extreme
indicators (Vogel et al. 2019) that are calculated over the period
from sowing to maturity date. These indicators consist of the
number of warm days (WD, defined as days above the 90th per-
centile for that grid cell); the number of cool days (CD, days be-
low the 10th percentile for that grid cell); the number of frost
days (FD, days below freezing); the maximum and minimum
temperature experienced (tmin and tmax, respectively); the maxi-
mum 5-day total precipitation (Rx5day); and the average diurnal
temperature range (DTR). The resulting dataset comprises
37 predictive features.

We withhold the last 6 years of data, along with two spatial
regions (selected from different continents and hemispheres;
see Fig. S1 in the online supplemental material), in order to
later evaluate model performance on years and locations to
which it was not exposed during training. The spatial regions
were selected arbitrarily. These held-out data are separated
into three sets, henceforth referred to as the “held-out years,”
“held-out regions,” and “held-out years and regions.” The
remaining 54 years and 30 034 grid points, which in total make
up 1 546 580 datapoints, become the “training set” used for
model fitting.

3. Method

We use a method similar to that used in recent studies at-
tempting to identify drivers of agricultural yields with ma-
chine learning, and vary only the model evaluation strategy.
While studies have employed a large variety of machine learn-
ing algorithms, random forests are frequently used for agricul-
tural studies (Vishwakarma et al. 2022). In comparison with
more complex architectures, random forests require little to
no data preprocessing and are often able to achieve excellent
performance on tabular data. We use the implementation
from the sklearnex package for the Python programming lan-
guage, an adaptation of scikit-learn (Pedregosa et al. 2011).

a. Model evaluation

Cross validation (CV) is widely used for robust machine
learning model evaluation. To evaluate model performance,
the training set is split into sections according to the chosen
CV method. Random forest models are trained on the data in
all but one of those sections (the “training fold”) and tested
on the single remaining section (the “test fold”). This process
is repeated such that each section is used as a test fold once.
The final model performance evaluation consists of the aver-
age of the resulting scores weighted by the number of data-
points in the respective test folds.

A larger number of CV folds allows more training data to
be used for model fitting, but is more computationally inten-
sive. At the most extreme, leave-one-out CV (LOOCV) is
sometimes used, where the number of folds is equal to the
number of datapoints. However, a more moderate number of
folds (10–20) has been found to be better for model selection

on real-world data (Kohavi 1995). For this study, we opt to
use 20 CV folds.

In this study, we analyze the impact of the use of six differ-
ent CV strategies. In each strategy, the training set datapoints
(across all years and grid cells) are split into 20 folds, either at
random or according to their spatial, temporal, or climatic
characteristics. The six CV strategies studied are defined as
follows. (i) random 20-fold CV, where datapoints in each fold
are selected randomly from all years and grid cells of the
training set; and (ii) temporal CV, where the training set is
split by year into 20 consecutive folds. We define two spatial
CV methods: (iii) latitude CV, where data are split by latitude
into folds containing an equal number of datapoints, and
(iv) spatially clustered CV, where datapoints are grouped into
20 clusters based on their latitude and longitude values using
the k-means clustering algorithm. Similarly, for (v) spatiotem-
porally clustered CV, datapoints are clustered according to their
latitude, longitude, and year. Finally, to consider the climatic
variation in the dataset, we define (vi) “feature-clusters CV,”
where datapoints are clustered with the bisecting k-means
algorithm on the 37 climate features previously described. Fea-
tures were not standardized before clustering. Although no
temporal or spatial information is explicitly given to the cluster-
ing algorithm, the resulting clusters (unsurprisingly) exhibit spa-
tiotemporal patterns.

As the metric of model performance, we select the coeffi-
cient of determination (R2) due to its frequent use in similar
studies. R2 represents the proportion of the variance explained
by the variables of the model. The best possible score is 1.0,
and a model that predicts the mean of the target variable
would have an R2 of 0.0; R2 can also be negative. Our results
are robust to the use of explained variance or root-mean-
square error (RMSE) as performance metric.

b. Model interpretation

In this study, we focus on permutation feature importance,
which is one of the most widely used model interpretation strat-
egies. Permutation feature importances are model agnostic and
do not require retraining (in other words, they are a post hoc
XAI method). The results are highly human comprehensible.

The model performance is first evaluated on a test set (or
CV test fold). To identify the importance of a feature, the val-
ues of that feature are randomly shuffled (permuted) over the
test set, thereby destroying any relationship between the fea-
ture and the target variable. The model performance is then
evaluated on the perturbed test set, and the difference in
score before and after permutation is the permutation feature
importance. This process is often repeated a number of times
for robustness. When using CV, this process is additionally re-
peated for each test fold.

c. Experiment 1: The effect of CV on model evaluation
and interpretation

We first examine the impact of CV strategy on the outcome
of model evaluation and interpretation, while keeping models
identical in terms of hyperparameters (Table 1) and predic-
tive features. For each of the 20 CV folds, we train one
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random forest regression model on all training fold data
(which contain multiple years and grid cells). The model is
trained to predict maize yield anomaly using the 37 climate
features described above as predictors. We then measure the
model performance and calculate permutation feature impor-
tances (repeating 10 times and averaging for robustness) on
the test fold data. This methodology is repeated for each CV
strategy tested.

To assess the accuracy of the model performance scores re-
turned, model skill is then evaluated on the held-out regions,
held-out years, and held-out years and regions after retraining
the model on the entire training set.

d. Experiment 2: The effect of CV on model skill on
held-out years and/or regions

We next investigate the impact of CV strategy on model
performance, when used during all stages of a machine learn-
ing pipeline. In each training fold, hyperparameter tuning and
feature selection are conducted using a second 20-fold CV
process (nested CV). The resulting 20 models can therefore
vary in model structure and features used. These models are
then evaluated on the respective test folds and on the held-
out regions and/or years.

Hyperparameter tuning is conducted using the Optuna
package (Akiba et al. 2019), with hyperparameters sampled
from distributions described in Table 1. After a first tuning
stage, a minimum of five and maximum of 20 features are
selected using sequential forward floating selection (SFFS)
(Pudil et al. 1994). In this process, the single predictive feature
is selected that provides the best performance (using inner
20-fold CV). Features are then iteratively added according to
which addition results in the best model performance. After
each step, model performance after removal of each feature is
tested and, if resulting in model improvement, executed. Af-
ter feature selection is complete, a second tuning stage is con-
ducted, and the models are evaluated and interpreted as in
the previous experiment.

4. Results

a. Cross-validation impact on model evaluation

Performance scores obtained on the training set for random
forest models trained to predict maize yield anomalies using
all 37 climate features, with no hyperparameter tuning, vary
widely by the CV strategy used (Fig. 2). Using random 20-fold

CV returns an estimated R2 of 0.82, with very little variation
between folds. Using temporal, spatial, spatiotemporal, or
feature-clusters CV returns lower estimations of model per-
formance (albeit with higher variation between folds).

After retraining on the entire training set, the random for-
est model achieves R2 scores of 0.43 on held-out years, 0.57
on held-out regions, and 0.40 on held-out years and held-out
regions. The difference between the score achieved on the
held-out data and the scores calculated using CV on the train-
ing set is most extreme when using random 20-fold CV, for
which the R2 on held-out years and regions is less than half of
the CV-estimated score.

Similar results are obtained for the pDSSAT crop model
output data, using identical methods and model specifications
(Fig. S2 in the online supplemental material), although model
performance is poorer overall. On held-out years and regions,
R2 of 0.25 is achieved; using 20-fold CV on the training set to
estimate model skill returns a much higher R2 of 0.62.

b. Cross-validation impact on model interpretation

Using all CV strategies, precipitation in the second and
third month after sowing (p12 and p13) are identified as im-
portant features for the prediction of yield anomalies, while
the precipitation in months outside of this period shows com-
paratively lower importance (Fig. 3c). Similarly, r13 is identi-
fied as an important feature using all CV strategies (Fig. 3b),

TABLE 1. Random forest hyperparameter values used. In the
first experiment, random forest hyperparameters are held at
the given values. In the second experiment, hyperparameters are
selected from the ranges defined during two tuning stages
conducted before and after feature selection.

Hyperparameter 1 2.1 2.2

No. of trees 400 10–500 10–500
Max tree depth 100 2–120 2–120
Min samples to split node 1 1–30 1–30
Max features considered 0.5 1.0 0.2–1.0

FIG. 2. Model skill as evaluated using various CV strategies on
the training set. Each point represents the performance as mea-
sured using one CV test fold, and crosses represent the median
score. Horizontal dashed lines denote model skill (after retraining
on the entire training set) on held-out years and regions.
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as well as WD (Fig. 3d). Some features return comparatively
low feature-importance scores across all strategies, such as FD
and the precipitation, temperature, and radiation later than
four months after sowing.

Variation between the permutation feature importances for
each fold is lowest when using random 20-fold CV (size of
circles in Fig. 3). Use of temporal CV also results in relatively
little variation between the folds, whereas variation was high-
est when using spatially clustered CV.

In general, the difference between feature importances is
highest between random 20-fold CV and feature-clusters CV.
This is evidenced by a Spearman correlation coefficient of
0.71 between the median feature importances in each CV F4
test fold (Fig. 4). In contrast, the correlation between feature
importances calculated using random 20-fold and temporal
CV is 0.99.

The permutation feature importances are strongly af-
fected by the CV method, particularly for r23 and t23. These
features are identified as important when using random
20-fold or temporal CV (in fact, r23 is found to be the most
important month of radiation). However, these features are
estimated to have low importance when using other CV
strategies (with t13 and r13 instead identified as the most im-
portant months). Although variation between folds is higher
for these methods, these features have low importance in all
CV folds.

To further explore the importance of the climate conditions
in the third month prior to sowing, we remove these features
from the dataset and repeat the model evaluation and inter-
pretation procedure with the 34 remaining features (Fig. S3 in

FIG. 3. Ranked permutation feature importances of the random forest models, calculated using different CV strate-
gies, for the following 37 climatic features: average monthly (a) temperature, (b) radiation, and (c) precipitation from
3 months before until 7 months after sowing, as well as (d) the number of warm days during the growing season
(WD), cool days (CD), frost days (FD), the maximum and minimum daily temperature (tmin and tmax), the maximum
5-day total precipitation (Rx5day), and the average diurnal temperature range (DTR). The ti, ri, and pi represent the
average monthly temperature, radiation, and precipitation during the ith month after sowing, respectively. Shading
shows the median ranked importance across 20 folds, and size of circles shows a qualitative measure of the range in
feature importances across test folds, where larger circles indicate higher variability between the folds.

FIG. 4. Spearman correlation coefficient calculated between the
median permutation feature importances in each test fold, using
each CV strategy.
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the online supplemental material). Given that these features
have high importance when using random 20-fold or temporal
CV, a decrease in model performance could be expected;
however, model performance is found to be only slightly
lower on the training set and, in fact, slightly higher on the
held-out years and regions.

While model hyperparameters are kept constant in this ex-
periment, the use of different CV strategies implies slight vari-
ation of the training folds used for each model and therefore
the data used for training, which could potentially result in
different model structures. As 20 folds are used, the differ-
ence in training folds is around 5% of the datapoints. Com-
paring the models directly is infeasible, but as an indication of
model similarity, we calculate the internal feature importan-
ces, which do not depend on a chosen test set, and find them
to be near identical (Fig. S4 in the online supplemental
material).

c. Impact of CV during hyperparameter tuning and
feature selection

The CV strategy chosen is found to have an impact on both
the values of the hyperparameters chosen when tuning and
the features selected using SFFS (Figs. S5 and S6 in the online
supplemental material). Interestingly, even the very first fea-
ture selected varies depending on the CV strategy. Using ran-
dom 20-fold or temporal CV leads to p13 being selected first
for all folds, while r12 is selected when using latitude or
feature-clusters CV. Apart from spatially clustered CV, use of
all strategies results in the maximum possible number of fea-
tures (20) being selected. The final features selected varies the
least between folds when using random 20-fold or temporal
CV, with 17 and 16 of the 20 features selected identical for all
folds.

d. Impact on model performance on held-out years
and/or regions

The resulting models are then evaluated on the held-out
years and regions (Fig. 5). The use of feature-cluster or tem-
poral CV results in better model skill on held-out years and
regions (median R2 5 0.42) than the use of random 20-fold
CV (median R2 5 0.37), and the use of spatial or spatiotem-
poral CV leads to worse model performance. The variation in
model performance scores between folds is lowest for random
20-fold CV.

Using spatially clustered CV leads to much poorer model
skill on the held-out sets than the other strategies tested. This
may be in part due to the upper bound (20) set on the number
of features selected. Inspection of the trend of the performance
of the models against the number of features used suggests that
setting a higher bound may have offset this difference
somewhat.

Results are similar when evaluating model performance on
held-out years or held-out regions (Fig. S7 in the online
supplemental material). Model performance is worse after
tuning and feature selection, with temporal CV resulting in
the best model performance on held-out years and feature-
clusters CV resulting in the best model performance on held-

out regions. The general decrease in model performance after
these steps could arise from our choice to set the maximum
number of features to 20, which may limit the achievable
model performance.

Permutation feature importances of the final models using
the different CV strategies (Fig. S8 in the online supplemental
material) show similar characteristics to those obtained in the
previous experiment. Using spatially clustered CV results in
very different permutation feature-importance results. How-
ever, as the performance of these models is very low on both
the test folds of the training set and the held-out regions and/
or years (Fig. 5, along with Fig. S7 in the online supplemental
material), these results cannot be meaningfully interpreted.

5. Discussion

a. Cross-validation strategy used has an impact on
model evaluation

The use of interpretable or explainable machine learning
tools for the identification of drivers of agricultural impacts has
become increasingly widespread (Goulart et al. 2021; Peichl et al.
2021; Webber et al. 2020; Wolanin et al. 2020; Mateo-Sanchis
et al. 2021; Mart́ınez-Ferrer et al. 2020; Newman and Furbank
2021; Schierhorn et al. 2021). Given the complex relationships

FIG. 5. Model skill on held-out years and regions, after hyper-
parameter tuning and feature selection is conducted using six dif-
ferent CV strategies. Each point represents the performance of
one resulting model that was trained on one CV training fold, and
crosses denote the median performance. The dashed line marks
the model performance from the previous experiments, where no
tuning or feature selection was done and the model was retrained
on the entire training set.
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between climate, crop phenology, and yields (Lesk et al. 2022;
Schauberger et al. 2016) and the growing availability of relevant
data, this trend seems likely to continue. Researchers have iden-
tified pitfalls in the use of XAI methods for research in geo-
sciences (Mamalakis et al. 2022, 2023), and, in parallel, studies
have called attention to issues arising from the use of random
k-fold CV for model evaluation on spatial or temporal ecology
or climate data (Meyer et al. 2019; Meyer and Pebesma 2022;
Vorndran et al. 2022; Kattenborn et al. 2022). Our results pro-
vide further evidence that random k-fold CV may overestimate
model skill in comparison with performance on held-out spatial
regions and/or years (Fig. 2). In our study, the estimated R2

score using random k-fold CV on the training set is over double
that measured on held-out years and regions.

An accurate measure of skill is necessary when training pre-
dictive models in order to assess if a sufficient performance
threshold has been reached. It is also essential when trained
models are instead used for analysis via XAI methods. The
model must successfully capture the underlying data-generation
processes in order for those processes to then be identified using
XAI (Molnar et al. 2022; Jiang et al. 2022). Good predictive
performance is therefore needed, although it is alone not proof
that the model has captured true causal drivers. Thus, this find-
ing indicates a need for the definition of best practices for the
methodology of similar studies, which would depend on both
the intended use of the model (prediction or interpretation)
and the characteristics of the dataset used.

b. Cross-validation strategy used has an impact on model
interpretation

In studies making use of XAI methods to understand physi-
cal drivers of impacts, models are rarely intended for use on
data from future years or additional spatial regions. The ap-
propriate choice of cross-validation method may therefore be
seen as less relevant, provided that the model achieves good
performance on the studied distribution. However, our find-
ing that the cross-validation method used has an impact on
the calculated permutation feature importances indicates that
the choice of model evaluation strategy is, in fact, highly rele-
vant for such studies.

We find that the largest disparity in resulting ranked per-
mutation feature importance (in terms of the Spearman corre-
lation coefficient) occurs between random 20-fold CV and
feature-clusters CV (Fig. 4). A direct comparison of the ranked
feature importances (Fig. 6) shows that the feature with the
largest discrepancy is r23. Using random 20-fold CV, r23 is
identified as the most important month of radiation and fifth-
most-important feature overall. However, it falls to the bottom
third of predictive features when using feature-clusters CV,
with r13 instead identified as the highest-importance month of
radiation and fifth-most-important feature overall. Further-
more, the other months of temperature and radiation presowing
are substantially less important using feature-cluster CV than
with random 20-fold CV, while the presowing precipitation
months are of higher importance using feature-cluster CV
(albeit in the bottom half of all features).

Crop growth and final yield are mainly determined by
weather conditions during the growing period in a diversity of
processes (Schauberger et al. 2016). Soils can, to some extent,
represent weather conditions from before the growing season
by storing water and heat. Nutrients stored in soils can also be
affected by pregrowing weather (Li et al. 2022), but nitrogen
dynamics are not considered by the LPJmL simulation data
used here. Preseason radiation and temperatures can affect
soil water and temperature at the beginning of the growing
season. However, in general, conditions closer to the growing
season should be more important than those farther away,
and conditions during the growing season are substantially
more important than conditions outside the growing season,
for example, by directly affecting photosynthesis and autotro-
phic respiration. This suggests that the feature importances
calculated using feature clusters are a more plausible reflec-
tion of the underlying data-generating model.

Further evidence for this is provided by the fact that when
r23, t23, and p23 are removed from the dataset, model perfor-
mance scores on held-out years and regions increase slightly,
while scores on the training set decrease (Fig. S3 in the online
supplemental material).

We observe differing amounts of variation in permuta-
tion feature importances between CV folds for each CV
strategy. This variation is often interpreted as a measure of
uncertainty, which would imply that the interpretations ob-
tained using random 20-fold CV carry the least uncertainty.
However, the validity of reducing highly complex, nonlin-
ear models to human-intelligible “explanations” via XAI
methods has been questioned (Molnar et al. 2022), and
we hypothesize that the variation in importances between
folds may express interacting relationships captured by the
model.

For example, we calculate the average value of WD for all
datapoints in each test fold when using feature-clusters CV
and compare this with the calculated permutation feature im-
portance of WD in that fold (Fig. 7). The importance of WD
steadily increases as the datapoints in the folds become
warmer until a maximum of 40 is reached. At that point, the
importance varies (possibly depending on other climate char-
acteristics of the test folds). This type of analysis is possible
when calculating permutation feature importance on diverse
folds in feature space, but not when using random k-fold CV,
as the datapoints in each test fold will be similarly distributed.

Some climate features are identified as having relatively
high (or low) permutation feature importance using all CV
strategies tested, which suggests that repeating the calculation
of feature importance using multiple methods could provide
more confidence in the interpretations.

c. Cross-validation strategy used has an impact on model
performance on held-out years and regions

Our results show that the choice of cross-validation strategy
not only is relevant for studies using XAI, but also has impli-
cations for the predictive skill of the model. The hyperpara-
meter values chosen and features selected are found to vary
depending on the inner 20-fold CV strategy used (Figs. S5
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and S6 in the online supplemental material), ultimately lead-
ing to models that vary in skill when evaluated on held-out
years and regions (Fig. 5). Restricting the maximum number
of features to 20 leads to decreased model skill for all evalua-
tion strategies except feature-clusters CV. Additionally, the
use of temporal CV returns models with better skill than
those created using random 20-fold CV. Tests on held-out
years and held-out regions (Fig. S7 in the online supplemental
material) show similar results, with the use of evaluation strat-
egies such as temporal CV leading to better model skill than
random k-fold.

The improved model skill when using feature-clusters CV for
feature selection, despite restricting the number of predictors to

20, suggests that the features chosen better reflect the structure
of the underlying process-based model.

d. Feature-clusters cross validation

Permutation feature importances, in common with all cur-
rent XAI methods, have numerous pitfalls (Molnar et al.
2022). Most relevant to studies using climate-related data is
their sensitivity to correlations between predictive features
(Hooker et al. 2021). One method sometimes used to remedi-
ate this issue is to group correlated features and then permute
grouped features collectively. This is challenging, however,
for high-dimensional datasets where the majority of or all fea-
tures are correlated. Furthermore, the bivariate correlations

FIG. 6. A direct comparison of the ranked feature-importance scores using random 20-fold CV vs (a) features-
clusters CV or (b) temporal CV. High-importance features are at the top, and low-importance features are at the bottom.
The dashed lines denote features representing climatic conditions before sowing, and colors represent the related climate
variable (precipitation, temperature, or radiation).
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between features may not capture all relationships in the mul-
tivariate joint distribution. A second strategy is “leave one
feature out” feature importance (LOFO), where the model is
retrained with one feature omitted, and the difference in
model performance is interpreted as the importance. This re-
quires retraining the model for each feature (which can be
computationally expensive) and therefore compares two dif-
ferent prediction models rather than evaluating a single
model. “Conditional permutation feature importances” have
also been proposed, where the shuffling of each feature is
done with respect to the joint distribution (Fisher et al. 2019;
Strobl et al. 2008), but methods are either model specific or
infeasible for high-dimensional datasets. In practice, these
methods are rarely used in applied research, in contrast to
permutation feature importances.

Our data exhibit correlations between most features. Under
these conditions, permuting generates artificial datapoints
that are far from the joint distribution (Hooker et al. 2021).
For example, in our dataset, this process could result in mod-
els being evaluated on artificial datapoints where the number
of frost days was above zero but the minimum temperature
reached during the growing season was considerably above
freezing levels. Such datapoints are physically implausible.
This issue can be tackled by the use of so-called knockoffs, ar-
tificial datapoints that preserve the multivariate correlation
structure of the dataset (Barber and Candès 2015). Genera-
tion of knockoffs is difficult in high-dimensional scenarios,
but generative deep learning models may be used (Jordon
et al. 2019; Romano et al. 2020).

Using feature-clusters CV to calculate permutation feature
importance means that datapoints are permuted across the
values in one cluster only. We find that this restricts the gener-
ation of such implausible datapoints, in comparison with the
use of random k-fold CV (Fig. 8). In fact, we find that the use

of feature-clusters CV preserves a large number of the corre-
lations between features in the artificial permuted datapoints
(Fig. S9 in the online supplemental material), and we are
thereby implicitly creating knockoffs.

However, this does not appear to be the cause for the dif-
ference in feature importances between random 20-fold CV
and feature-clusters CV. To investigate this, we create knock-
off datapoints using feature-clusters CV and then calculate
feature importance by substituting each feature’s data with
the knockoff data and measuring the difference in model skill
using random 20-fold CV. If the preserved correlation struc-
ture is driving the disparity in feature importances, we would
expect the importances to differ from those returned from
random 20-fold CV previously. However, the feature impor-
tances are similar to those originally obtained (Fig. S10 in the
online supplemental material).

A second hypothesis for the divergence in interpretations is
that when using feature-clusters CV, the model is forced to
extrapolate in feature space when predicting the datapoints in
each test fold. Features that allow the model to overfit to the
distribution of the training fold (due to spurious correlations)
would not improve model skill and therefore have low impor-
tance. High-importance features are those that generalize and
so are more likely to reflect the underlying data-generating
process. This may explain the greater plausibility of the inter-
pretations when using feature-clusters CV. In addition, this
would account for the comparatively minor differences be-
tween the ranked feature importances obtained when using
random k-fold and temporal CV; the interannual variation in
climate is relatively small, and therefore, the model is not ex-
trapolating when making predictions on the test folds.

This hypothesis suggests that the best choice of cross-
validation strategy for a study using XAI will depend on the
intended use of the interpretations. The fact that the feature
importances returned using random k-fold CV were not
changed by using the knockoff datapoints suggests that those
interpretations may accurately reflect the machine learning
model. If the purpose of the interpretations is to better under-
stand the model in order to identify bias or for model diagnos-
tics, this may be the optimal strategy. For studies attempting
to better understand the physical data-generating process, the
use of feature-clusters CV may omit features that do not gen-
eralize to held-out environments and are therefore less likely
to be true causal drivers.

An alternative explanation for the disparity in interpreta-
tions is that the features found to have high importance using
random 20-fold CV but low importance using feature-clusters
CV (e.g., r23 and t23) may be good predictors of yield anoma-
lies on a global level, but bad predictors “locally,” in comparison
with other features. However, these features have comparatively
low correlation with the target variable (maize anomalies), and
therefore, this predictive skill must depend on interaction with
other variables.

This study does not examine the impact of cross validation
on other XAI methods such as Shapley values. Furthermore,
our study is restricted to random forest models. Other studies
have found similar issues with permutation importances for
neural networks (Hooker et al. 2021), but extending this study

FIG. 7. For each of the 20 CV folds here (split by clusters in feature
space), dots denote the permutation feature-importance score of the
number of WD during the growing season against the mean WD in
that CV fold.
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to other algorithms would increase confidence in the general
applicability of our findings.

The use of simulated data from a process-based crop
model, driven by the climate forcing data and without the use
of fertilization, irrigation, or varying management practices,
ensures that the underlying data-generating process is identi-
cal across regions and years. Given this idealized setting, we
expect that the result that cross validation has an impact on
the evaluation and interpretation of machine learning models
can be assumed to be valid for other spatiotemporal datasets,
including observational datasets. However, the precise nature
of that impact will depend on the characteristics of the dataset

and data-generating process. Future research could (i) make
use of toy models where the data-generating processes is
known in order to better understand the causes of this effect
and (ii) apply similar methodology to simulated datasets with
other types of correlation structures and/or observational
datasets where the underlying process is well understood.

6. Conclusions

In this study, we directly compare the impact of six model
evaluation strategies, including random k-fold and temporal
and spatial CV methods, as well as feature-clusters CV in

FIG. 8. An illustration of the artificial datapoints used when calculating permutation feature importance using either
random k-fold CV or feature-clusters CV, for two highly correlated features (t14 and r14). Shown is a sample of
20 000 datapoints from the training set, colored by CV fold used via (a) random 20-fold CV and (b) feature-clusters
CV. Also shown are (c),(d) the same datapoints after permuting one feature in each fold using the respective CV
strategy (note that the outcome is identical regardless of which of the two features is permuted). The process using
random 20-fold CV is shown in (a) and (c), and the use of feature-clusters CV is shown in (b) and (d). Using feature-
clusters CV to generate permuted datapoints results in a distribution far closer to that of the original datapoints, which
is also seen in the resulting Spearman correlation between the two features.
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which datapoints are clustered in the space of the predictive
features. We demonstrate that model evaluation using ran-
dom k-fold CV may severely overestimate model skill on spa-
tiotemporally correlated climate data, in agreement with
existing research.

Our results show that the chosen CV strategy affects the
permutation feature importances. By using simulated maize
yield data from a process-based crop model as the target vari-
able, we are able to comment on the plausibility of the explan-
ations provided. We find that the use of random k-fold CV
returns the least plausible feature importances, and feature-
clusters CV the most. Importantly, although using temporal
CV may give a more accurate estimation of model predictive
skill on held-out years, the feature importances are very simi-
lar to those calculated using random k-fold CV (Spearman
correlation coefficient 5 0.99). This suggests that the use of
temporal CV may be sufficient for estimation of model pre-
dictive power in some cases, but it is not the optimal choice
when using XAI to study a physical process.

Last, we show that the model evaluation strategy used dur-
ing hyperparameter tuning and feature selection has an im-
pact on the skill of models on held-out years and spatial
regions. Our results suggest that careful selection of CV strat-
egy may improve the generalizability of the model. This is
particularly relevant for agricultural studies, where data avail-
ability and quality vary across countries and regions.

Overall, our results demonstrate that the choice of cross-
validation strategy has an impact on the outcome of model in-
terpretation as well as model evaluation metrics, and therefore
must be carefully chosen when conducting research using
machine learning on spatiotemporal climate data. Our findings
provide first steps toward establishing best practices for this
choice in future studies.
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