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ABSTRACT
Land use and Land cover change (LULCC) is a major global problem, and projecting change is 
critical for policy decision-making. Understanding LULCCs at the watershed level is essential for 
transboundary river basin management. The present study aims to analyse the past and future 
LULCCs in two significant watersheds of the Senegal River basin (SRB) in West Africa: Bafing and 
Faleme. This study used Landsat images from 1986, 2006 and 2020 and the Random Forest 
classification method to analyze past LULCCs in these two watersheds. The results revealed: In 
Bafing, vegetation, settlement, agricultural areas and water increased, while the bareground 
decreased significantly between 1986-2020. In Faleme, two periods have different trends. 
Between 1986-2006, vegetation, settlement, agricultural areas and water increased, while 
bareground decreased. Between 2006-2020, settlement increased, while vegetation, agricul-
tural areas, water and bareground decreased. To predict LULCCs in 2050 under business-as- 
usual assumptions, the Multilayer Perceptron and Marcov Chain model (MLP-MC) was used. 
The MLP-MC shows better results on Bafing than on Faleme but without questioning its 
application on the two watersheds. Bafing has seen a trend towards ”more people, more 
trees”, while Faleme has seen a trend towards ”more people, more deforestation”. These results 
contribute to develop appropriate land management policies and strategies to achieve or to 
maintain sustainable development in the SRB.
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Introduction

Land use and land cover change (LULC) is a challenge 
and a key focus of global change research. Land use 
(habitat, agricultural) and land cover (forests, wet-
lands, grasslands and water) have different meanings 
and are often used interchangeably (Tadese et al.,  
2021). LULC changes are the result of changes in the 
Earth’s land surface, such as the transformation of 
natural land cover (forests, grasslands and deserts) 
into human-dominated ecosystems (cities, agricultural 
and industrial areas) (Liping et al., 2018; Winkler et al.,  
2019). These changes significantly affect critical ele-
ments of our natural capital, such as vegetation, water 
resources and biodiversity (Chang et al., 2018; Solly 
et al., 2021). The dynamics of LULC change are not the 
same in all regions of the world due to different driv-
ing factors (Berihun et al., 2019). Although anthropo-
genic factors have been proven to be the main drivers 
of changes, factors such as climate, slope, appearance 

and altitude can also influence these changes (Anwar 
et al., 2022; Mekonnen & Manderso, 2023). In West 
Africa (WA), notable LULC changes have been 
observed (Andrieu, 2018; Barnieh et al., 2020; Cabral 
& Lagos, 2017; Diallo & Zhengyu, 2018; A. Traore 
et al., 2018; S. S. Traore et al., 2022). These authors 
shown that WA has undergone significant changes 
over the years, and the causes are generally attributed 
to rapid population growth and increased agricultural 
areas. Even if the information on LULC changes at the 
regional or national scale is available, it is essential to 
study at the local scale (Fikadu & Olika, 2023). Indeed, 
studies of watershed-based LULC changes are crucial 
tools for policymakers, planners and local commu-
nities to formulate appropriate policies and strategies 
in the future (Berihun et al., 2019; Thiam et al., 2022).

Advances in remote sensing and Geospatial 
Information Systems (GIS) have resulted in high- 
resolution products and LULC models for mapping, 
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detecting and predicting LULC changes (Liping et al.,  
2018; S. K. Singh et al., 2015; Wang et al., 2021). 
Google Earth Engine (GEE) is an open-source, cloud- 
based geospatial processing platform that provides 
free access and open-source satellite datasets 
(Landsat, Modis, Sentinel) with a high spatial resolu-
tion for extended periods (L. Yang et al., 2022). Google 
Earth Engine (GEE) is the most popular big geo data 
processing platform, which provides a set of state-of- 
the-art classifiers for pixel-based classification used for 
LULC mapping. The main advantage of GEE is the 
close link between the data and the algorithms, both of 
which are accessible via an Application Programming 
Interface (API) (Gorelick et al., 2017; Shelestov et al.,  
2017). Due to its accessible and user-friendly design, it 
has grown in popularity recently (Dubertret et al.,  
2022; Jampani et al., 2020; Nasiri et al., 2022; Ougahi 
& Mahmood, 2022).

The success of any LULC mapping depends on 
several factors, including the choice of an appropriate 
classification algorithm (Lu & Weng, 2007). Advanced 
classification algorithms such as Regression Trees 
(CART), Random Forest (RF), kNearest Neighbor 
(k-NN), Support Vector Machine (SVM), Artificial 
Neural Network (ANN), Multinomial Logistic 
Regression (MLR), Maximum Likelihood 
Classification (MLC), and Bayesian classifiers have 
attracted considerable attention in image classification 
for LULC mapping (Ma et al., 2019; Macarringue 
et al., 2022). Authors such as A. D. Kulkarni and 
Lowe (2016) and Talukdar et al. (2020) have con-
ducted comparative studies between several classifica-
tion algorithms to identify the most suitable and 
accurate classification algorithm for LULC mapping. 
Their results indicated that Random Forest showed 
the best performance for the LULC classification com-
pared to other classifiers. The main factors behind its 
widespread use in multitemporal LULC classification 
are (1) effective management of outliers and noisy 
datasets; (2) satisfactory results with multi-source 
and high-dimensional datasets; (3) superior accuracy 
to other widely used classifiers, like SVM or MLC in 
many applications; and (4) speeding up processing by 
concentrating on essential factors (Amini et al., 2022; 
Noi Phan et al., 2020).

Modelling LULC changes using remote sensing 
data and determining factors helps answer the ques-
tion of how LULC change and how it may change in 
the future (Sankarrao et al., 2021). Several methods 
have been adopted to predict future LULC changes. 
These methods can be classified into non-hybrid and 
hybrid methods. The non-hybrid approaches, such as 
Markov Chain (MC), Artificial Neural Network 
(ANN), Cellular Automata (CA), have been widely 
used to identify the transitions in LULC classes and 
have been accurate in predicting LULC changes (Silva 
et al., 2020; V. G. Singh et al., 2022). The Non-hybrid 

methods have limitations in predicting LULC changes 
(Noszczyk, 2019). To overcome the limits of indivi-
dual models, hybrid models have been introduced by 
combining several modelling approaches to address 
the complexity of real-world systems (Gaur et al.,  
2020). The hybrid models can capture LULC changes 
with greater accuracy (Gaur et al., 2020; Sankarrao 
et al., 2021). Clark Labs developed an integrated 
LULC model based on GIS and remote sensing, 
known as the Land Change Modeler (LCM), to 
explore future changes in LULC using a Multilayer 
Perceptron neural network (MLP) and Markov chain 
(MC) (V. Mishra et al., 2014). Given its robustness and 
popularity, the MLP-MC model seems the most sui-
table for modelling spatiotemporal dynamics and pro-
jecting future LULC change scenarios. Gaur et al. 
(2020) used hybrid and non-hybrid models to capture 
LULC scenarios for the Subarnarekha River and found 
that the MLP_MC model was the best-suited model. 
Examples of applications can be found in (Fathizad 
et al., 2015; Leta et al., 2021; V. N. Mishra et al., 2018; 
Sankarrao et al., 2021).

The Upper Senegal River Basin (SRB), located in 
WA, is a transboundary basin bordered by four coun-
tries: Guinea, Mali, Mauritania and Senegal. It is 
formed by several watersheds. Understanding LULC 
changes at a watershed level in transboundary 
watershed management is crucial (Thiam et al., 2022). 
Unfortunately, there are few studies on LULC changes 
in the SRB. Only one previous study was conducted by 
Faty (2017). Faty (2017) used Modis-Terra satellite data 
from 2007 and 2014 and maximum likelihood classifi-
cation to analyze the LULC dynamics across the SRB. 
The main limitation of this study is that the author 
evaluated the LULC changes considering that all water-
sheds constitute a single socioeconomic, land and agri-
cultural environment. The author didn’t consider the 
influence of the socioeconomic configuration specific 
to each watershed. Although LULC change is 
a common phenomenon, it is challenging to generalize 
trends within a particular region, such as the SRB 
(Berihun et al., 2019). In addition, no study has 
attempted to simulate the future trends of LULC 
changes considering each watershed in the SRB. 
Therefore, as part of this study, we aim to fill these 
knowledge gaps to understand the spatiotemporal 
variability of LULC changes in two watersheds in dif-
ferent socioeconomic and agricultural environments at 
the SRB: the Bafing and the Faleme. This study aims: (i) 
to map the LULC (1986, 2006 and 2020) in the two sub- 
watersheds with the Random Forest (RF) classification 
method; (ii) to simulate the future trends of LULC 
change of 2050 based on the hybrid model 
(MLP_MC) in LCM and (iii) to analyze the spatiotem-
poral variability of LULC in these two watersheds. This 
study is relevant for the riparian states of the Senegal 
River basin grouped into the organization for the 
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development of the Senegal River (OMVS) to evolve 
policies specific to each watershed.

Materials and methods

Study area

The study area is in the SRB, between Senegal, Mali, 
Mauritania and Guinea Conakry (Figure 1). The two 
watersheds belong to different administrative regions:

● The Bafing is the main constituent of the Senegal 
River and originates near Mamou (Guinea 
Conakry) (nearly 1,000 m above sea level). It 
extends between latitudes 10°30“and 12°30” 
N and longitudes 12°30’ and 9°30‘W and covers 

northwest Guinea Conakry and southeastern 
Mali. It drains the entire eastern part of the 
Fouta Djalon and feeds the Manantali 
Hydropower dam (Sambou et al., 2023)

● The Faleme also has its source in the northern 
foothills of the Fouta Djalon in Guinea Conakry. 
It is a major tributary of the Senegal River, which 
it joins at the meeting point of the borders of 
Senegal and Mali at the level of the city of 
Ballou. The Faleme lies between latitudes 12° 
11′–14°27′N and longitudes 11° 12‘−12°15‘W in 
the humid tropical regions and the southern mar-
gins of the Sahel. The main biophysical 

Figure 1. Location map of the bafing and faleme in the SRB in WA, between senegal, mali, Mauritania, and guinea conakry.
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characteristics of the watersheds studied in the 
SRB are presented in Table 1.

Data source

The acquisition of satellite images is the first step in 
LULC mapping. The choice of satellite images is based 
on four criteria: spatial coverage, spatial resolution, 
available years, and cloudiness (minimum) (Horning,  
2004; Martignac,). Landsat satellite images were cho-
sen, in this study. It is the oldest of the earth observa-
tion programs, thus having an archive of images over 
a long period (more than 30 years) (Woodcock et al.,  
2008). It offers a sufficient level of detail to identify the 
characteristics of the LULC. Google Earth Engine 
(GEE) provides surface reflectance images that are 
corrected atmospherically and improve the detection 
of changes (Wahap & Shafri, 2020). The images 
selected are presented in Table 2. As supplementary 
input data, we included the digital elevation model 
(DEM) (ALOS World 3D–30 m), distance from the 
road, distance from the river, and distance from the 
settlement.

Land use and land cover mapping

This study used GEE (Gorelick et al., 2017; Shelestov 
et al., 2017) to build the LULC map through Landsat 
image processing, supervised classification, and classi-
fication accuracy. Figure 2 describes the general steps 
followed to make the maps. Details will be provided in 
the following sections.

Preprocessing
Orthorectified and atmospheric corrected Landsat 
Surface Reflectance Tier 1 images available for Landsat 
OLI/TIRS and MSS/TM sensors were collected in GEE 
for the years of interest (1986,2006,2020). The cloud 
cover function in GEE was applied to select the collection 
of annual images with a cloud cover of < 15%. The med-
ian ee.Reducer function on GEE was then used to 

“reduce” the image collection to a single output image 
representing the median of the images (Dubertret et al.,  
2022; Noi Phan et al., 2020).

Construction of features
The spectral and topographic features were combined 
as input features for LULC classification algorithm. 
For spectral characteristics, blue, green, red, Near 
Infrared (NIR), and Shortwave Infrared (SWIR) spec-
tral image bands were selected because they have the 
potential to discriminate similar spatiotemporal phe-
nomena, thus improving the separability of LULC 
classes (Thiam et al., 2022). In addition, numerous 
studies have shown that the use of spectral features 
from indices such as normalized difference vegetation 
index (NDVI) (1), normalized water difference index 
(MNDWI) (2), normalized difference accumulation 
index (NDBI) (3) as input features for classification 
will effectively improve the accuracy of LULC (K. 
Kulkarni & Vijaya, 2021; Tsai et al., 2018). Indeed, 
the NDVI supplies information on the characteristics 
of the vegetation cover. The NDWI provides informa-
tion on the characteristics of water bodies. The NDBI 
is used to get the artificial characteristics of the earth’s 
surface. In addition, topographical features such as 
altitudes and slopes increase the accuracy of land 
cover classification (Y. Yang et al., 2021). Hence, the 
elevation and slope data were extracted from the DEM 
as features for LULC classification (Table 3). 

NDVI ¼
NIR � Red
NIR þ Red

(1) 

MNDWI ¼
Green � SWIR
Greenþ SWIR

(2) 

NDBI ¼
SWIR � NIR
SWIR þ NIR

(3) 

Classification
In this study, the RF classification algorithm was 
used to produce LULC maps for years 1986, 2006, 

Table 1. The main biophysical characteristics of the watersheds. Source: (Sane et al., 2020).
Characteristics Bafing Faleme

Area (Km2) 39.01 28.05
Mean Annual Temperature (C) 28.3 29.3°C
Agro-Ecology Zone Guinean Sudano Guinean Sudano
Mean Annual Rainfall (mm) 1166 800
Major Soil Type Gres Qtz., Dolerites, Granite, Sandstone Shale, Gres Qtz., Dolerites, Granites
Dominant Crop Cassava, Maize, Fonio, Sorghum and Millet. Maize, Rice, Millet, and Sorghum.
Dominant Livestock Bovine Bovine
Activities Fishing, Agriculture area, Livestock, Bauxite Mining Fishing, Agriculture area, Livestock, Gold Mining

Table 2. Characteristics of Landsat images selected for the LULC mapping.
Dataset Satellite Sensor Spatial resolution Date of acquisition Band

Image 1 USGS Landsat 5 (Surface Reflectance Tier 1) MSS/TM 30 m 1986 Multispectral
Image 2 USGS Landsat 5 (Surface Reflectance Tier 1) MSS/TM (Surface Reflectance Tier 1) 30 m 2006 Multispectral
Image 3 USGS Landsat 8 (Surface Reflectance Tier 1) OLI/TIRS (Surface Reflectance Tier 1) 30 m 2020 Multispectral
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and 2020, respectively. Random Forest algorithm is 
a method using tree-type classifiers {h(x,Hk), k =  
1,. . .,} where the “Hk” stands for independent iden-
tically distributed random vectors and “x” stands for 
an input pattern (Breiman, 2001). In training, the RF 
algorithm creates multiple CART-like trees, each 
trained on a bootstrapped sample of the original 
training data. It determines a split by examining 
a randomly selected subset of the input variables 
(Gislason et al., 2006). In the classification process, 
each tree provides a unit vote for the most popular 
class at input x, and the classification of each tree is 
referred to as a “vote” for that class (A. D. Kulkarni 
& Lowe, 2016). A complete mathematical presenta-
tion of RF is presented by Breiman (2001). The two 
important parameters the user must optimize to get 
more accurate results are the number of trees 
(Ntree) generated and the number of features ran-
domly chosen to divide each node (Mtry). Based on 
the pretests from our data, the number of trees was 
set to 100, and Mtry was set to the default value 
(square root of the total number of features). Five 
LULC classes were used in the classification, namely 

(1) settlement, (2) water, (3) vegetation, (4) agricul-
tural areas (5) bareground. The details are specified 
in Table 4. The same LULC classes were used for 
both watersheds to enable the analysis and compar-
ison of the trends between the two watersheds. The 
choice of these five classes was based on information 
from key stakeholders in each watershed and fol-
lowed the trend of previous regional studies, which 
employed comparable classes (Faty, 2017; Thiam 
et al., 2022). To perform RF, samples for each class 
were taken from Google Earth. These samples were 
used as regions of interest (ROI) to train the RF. 
Each ROI was given a certain LULC class designa-
tion. 70% of the sample was used for training, while 
30% was used for internal model validation.

Classification accuracy
Assessing the reliability of the classification results is 
essential in remote sensing applications. Many 
researchers recommend using a confusion matrix 
(Table 5), as well as the accuracy indicators derived 
from the confusion matrix, including overall accuracy 
(OA), user accuracy (UO), and producer accuracy 
(PO) to represent accuracy (Foody Giles, 2022; 
Szantoi et al., 2021). These indicators show the agree-
ment between the LULC classification results and the 
actual LULC (Olofsson et al., 2014). In this study, 
a confusion matrix was generated in GEE. OA (4), 
UA (5), and PO (6) and kappa index (KA) (7) were 
then used to evaluate the reliability of the classification 

Figure 2. The procedures used for the LULC classification map.

Table 3. Spectral and topographic features.
Type of features Feature Name

Spectral Bands Blue, green, red, NIR, SWIR
Indices NDVI, NDBI, MNDWI
Terrain Elevation, slope
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(Table A1). All these indices (4,5,6,7) take values 
between 0 (indicating disagreement) and 1 (indicating 
perfect agreement)). A value above 0.80 for the KA is 
considered satisfactory (Stehman, 2014). 

OAi ¼
Xq

j¼1
Pjj (4) 

UOi ¼
Pii
Pi

(5) 

POi ¼
Pjj
Pj

(6) 

Ki ¼
N
Pq

i¼1 Pii �
Pq

i¼1 Piþ �Pþ ið Þ

N2 �
Pq

i¼1 Niþ Nþ ið Þ
(7) 

P = number pixels

Land use land cover change prediction

This study used the MLP-MC model embedded in 
the LCM to simulate future LULC maps. The pre-
diction of future LULC was done in five steps: 
change analysis, identification of explanatory vari-
ables, creation of transition potential maps, change 
prediction, and validation. LULC maps of the years 
1986 and 2006 were employed to analyze the trend 
of change, to calculate transition potential maps 
and to predict the LULC map of 2020. For model 
validation, the LULC map for 2020 was compared 
with the predicted LULC map of 2020. After 
demonstrating our model’s ability to predict the 
LULC map of 2020, the same simulation technique 
was used to predict the LULC maps of 2050 using 
the LULC maps of 1986 and 2020 based on the 
business as usual (BAU) scenario (J. Mas et al.,  
2014). The BAU scenario is a scenario in which 
future LULC distributions follow the trends 

observed in the past and are formulated based on 
the transition probabilities and driving factors as 
predicted by the model. We assume that the cli-
mate will not disrupt human activities. The general 
scheme of the study is presented in Figure 3.

Changes analysis
The first step was the change analysis to define the 
transition classes. Changes are described as transitions 
from one class of LULC to another (Azari et al., 2022). 
The change analysis was performed by using the two 
earlier LULC maps with the module change analysis in 
LCM. The module change analysis estimates the gains 
and losses of each class between the two earlier LULC 
maps. Changes in terms of loss (Lij) and gain (Gij) are 
calculated using equations (8) and (9) (Thiam et al.,  
2021). 

Lij ¼ Pi � Piið Þ ð
Pj

P
j ¼ 1Pj

Þ; where i�j (8) 

Gij ¼ ðPj � PjjÞð
Pi

P
i ¼ 1Pi

Þ; where i�j (9) 

where Lij is the proportion of loss from category i to 
j under random processes of loss, Pii is the proportion 
of category i that showed persistence between the two 
times, Gij is the proportion of gain from category i to j, 
Pj is the proportion of the landscape in category j at 
the end of time, Pjj is the observed persistent propor-
tion of category j, and Pi is the entire area of category 
i at the starting point.

Identification of the explanatory variables
The second step was the identification of the explanatory 
variables that have driven past LULC changes. Based on 
the literature, we selected slope, elevation, distance to the 
river, distance to the settlement, and distance to the road 
as the main variables influencing the change in LULC 
over time (Chinwendu, 2019; Murgante et al., 2014). 
Slope and distance to the river were used to represent 
the accessibility of a neighbourhood. Distance to road 
and distance to settlement were selected to highlight the 
proximity of urbanization.

Transition potential modelling
The third step was the determination of transition 
potential maps with the multilayer perceptron (MLP) 
model in LCM. MLP is composed of a neural network 

Table 4. Description of the five classes used in the study.
Class Name Description

1 Settlement The human (urban and rural) settlement, housing, roads, transport, mining, and industry.
2 Water Rivers, streams, ponds, lakes, reservoirs, estuaries, and wetlands,
3 Vegetation Forest, savannah, riparian vegetation and mixed forest, and mixed forest land.
4 Agriculture area Agriculture area (irrigated crops, rainfed crops), Pasture.
5 Bareground Deserts, sand fields, exposed bareground rock, sand and temporary bare ground, transitional areas, mixed barren land.

Table 5. Typical confusion matrix for classification validation 
(This table has been adapted from Roland (2021)).

Classes 1 2 . . . k . . . q Total

1 P11 P12 . . . P1k . . . P1q P1+

2 P21 P22 . . . P2k . . . P2q P1+

. . . . . . . . . . . . . . . . . . . . . . . .
K Pk1 Pk2 . . . Pkk . . . Pkq Pk+

. . . . . . . . . . . . . . . . . . . . . . . .
q Pq1 Pq1 . . . Pqk . . . Pqq Pq+

Total P +1 P +2 . . . P+k . . . P+q P

6 M. H. ASTOU SAMBOU ET AL.

http://perceptron


based on a feed-forward algorithm with three layers: the 
input, hidden, and output layers (J. F. Mas & Flores,  
2008). MLP adjust the weights of the input and output 
layers using the backpropagation process. It only incor-
porates conductive factors with strong predictive capa-
city into the computation procedure, resulting in 
different transition potential maps for each sub- 
model. These maps show the ability to change from 
one LULC class to another (V. Mishra et al., 2014). 
The MLP model was trained and tested using the expla-
natory variables and the change analysis obtained 
between the two earlier images as input. The MLP 
first created a random sample of cells that transitioned 
among LULC classes during the required time and 
started the automatic training process. The sample is 
divided into two equal parts, 50% of the sample for 
training and the remaining 50% for testing the perfor-
mance. Transition potential maps were generated after 
the successful execution of MLP training for each class.

Change prediction
The fourth step was using Markov Chain (MC) in LCM 
to predict the LULC map for a specified future date. The 
historical rate change determined during the change 
analysis phase and transition potential maps are used as 
input in the MC model to predict the future LULC. The 
MC model is a stochastic process that shows the prob-
ability that one state will change into another. The MC 

model uses this information as the basis to predict future 
changes. By examining past changes, MC model creates 
a transition probability matrix of changes (V. N. Mishra 
et al., 2018). Based on a projection of the transition 
potentials into the future, the technique estimates pre-
cisely the amount of LULC expected to transition from 
the later date to the predicted date and provides 
a transition probability file.

Validation
The validation process aims to verify the accuracy 
of the predicted map compared to a reference map. 
The validation process in LCM involves cross- 
tabulation in a three-way comparison between the 
later LULC map, the predicted LULC map, and the 
actual map. Two approaches have been used for 
model validation. The first approach is to use the 
metric performance indicators relative operational 
characteristic (ROC) and the validation statistics of 
various Kappa indices (Kappa for no information 
(Kno), Kappa for location (denoted Klocation), 
KIA for Kstandard) between the classified map 
and the predicted 2020 map to assess the accuracy 
of the prediction (Pontius & Batchu, 2003). 
A LULC model is valid if the Kstandard is greater 
than 70%, according to Zadbagher et al. (2018). 
The second approach is to compare the predicted 
and actual area of each LULC class.

Figure 3. The procedures used to simulate the future LULC map.
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Results

Land use land cover maps accuracy

This section presents the results of LULC classifi-
cation for the two watersheds. Figures 4, 5, 6 and 7 
show the results of the independently classified 
images for 1986, 2006 and 2020. Table 6 presents 
the classification accuracies. The overall accuracy is 
equal to 96%, 95% and 95% for 1986, 2006 and 
2020, respectively. All these indices (user accuracy 
(UA), and producer accuracy (PA)) take values 
between 0.75 and 0.98 (indicating perfect agree-
ment). The Kappa index obtained for both maps 
is above the threshold of 0.8. A value above 0.80 is 
considered satisfactory (Olofsson et al., 2014; 
Szantoi et al., 2021). Therefore, the classification 
could be identified as accurate.

Land use land cover change detection

Bafing
According to Figures 4 and 5, in 1986, the area covered 
by bareground was the most dominant LULC class, 
covering 60% of the watershed. Over the 34 years, this 
area has gradually decreased to almost half, from 60% 

to 30%. The vegetation area represents the second 
most dominant LULC class, covering 36% of the 
watershed. This class has continuously increased 
from 36% in 1986 to 44% in 2020. Settlement were 
the third most dominant LULC class and covered 2.8% 
in 1986. However, settlement significantly increased to 
16% in 2006 and 18% in 2020. The agricultural areas 
were the fourth LULC class, covering 0.8% of 1986 in 
the watershed. The extent of agricultural areas 
increased from 0.8% in 1986 to 4% in 2020. The area 
covered by water was the lowest but increased con-
tinuously over the study period from 0.6% to 3.3%.

Faleme
Analysis of the LULC map of 1986 (Figures 6 and 7) 
shows a predominance of bareground, representing an 
area of 78% in the watershed. Overall, the area covered 
by bareground continuously decreased from 78% to 
44% during the study period. Vegetation were 
the second most dominant LULC class, covering 20% 
in 1986, as in Bafing. However, the extent of vegeta-
tion area increased from 20% to 28% in 2006 and 
decreased from 28% to 23% in 2020. Settlement were 
the third most dominant LULC class, with an area of 
1.7% in 1986. Settlement class increased steadily to 

Figure 4. LULC maps of the Bafing for the years a) 1986, b) 2006, and c) 2020.

LULC Types_Bafing

Classe Name 1986 2006 2020

1 Settlement 2.77 15.95 17.93
2 water 0.59 2.87 3.3

3 vegetation 35.66 42.73 43.85
4 cultivated_area 0.83 3.97 4.04
5 Bare ground 60.15 34.47 30.87

Total 100 100 100
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10% in 2006 and 28% in 2020, becoming the second 
most dominant LULC class. Between 1986 and 2020, 
the area covered by water increased from 0.46% in 
1986 to 1.3% in 2006 but decreased from 1.3% (in 
2006) to 1.1% in 2020. The agricultural areas repre-
sented the lowest coverage, covering less than 0.2% of 
the watershed in 1986 but increasing markedly from 
0.2% to 4.7% in 2006. However, the agricultural areas 
class showed a downwards trend between 2006 and 
2020, from 4.7% to 3.5% in 2020.

Land use land cover change prediction

Transition potential
The most significant surface state changes were ana-
lyzed between 1986, 2006 and 2020 to select the domi-
nant changes in the modelling procedure. From 1986 
to 2006 and from 2006 to 2020, conversions from 
bareground to vegetation, settlement, agricultural 
areas, and water were the most significant for Bafing. 
For Faleme, the overall distribution results for 1986, 
2006, and 2020 showed that the most significant 

Figure 6. LULC maps of the Faleme for the years 1986, 2006, and 2020.
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Figure 5. Percentage of area per LULC category for 1986, 2006, and 2020.

EUROPEAN JOURNAL OF REMOTE SENSING 9



changes for the period (1986–2006) were transitions 
from bareground to settlement, agricultural areas, 
vegetation, and water. Over 2006 and 2020, conver-
sions from vegetation and bareground to all other 
classes, including water, agricultural areas and settle-
ment, were the most significant.

Model validation
Bafing. On the simulated LULC map of 2020 
(Figure 8b), the areas occupied by settlement, vegeta-
tion, bareground, water and agricultural areas are 
18.75%, 44.76%, 28.50%, 3.91%, and 4.08%, respec-
tively, against 17.93%, 43.85%, 30.87%, 3.30%, and 
4.04%, respectively, on the reference map of 2020 
(Figure 8a).

Figure 10 shows no significant difference between 
the simulated and predicted areas. The visual compar-
ison of the simulated 2020 map with the actual map is 
reasonably similar. In addition, the validation 

indicators provide values of ROC = 81.6%, κia (kstan-
dard) = 78.34%, Klo = 79.86% and kno = 86.83% 
(reflecting the overall accuracy of the simulated 
map), which are considered satisfactory (Chinwendu,  
2019; Olofsson et al., 2014; Roland, 2021; Tiné et al.,  
2019). These results indicate that the MLP- CA model 
reasonably simulated the LULC map of 2020 and can 
be used to project future LULCC in Bafing.

Faleme. On the simulated LULC map of 2020 
(Figure 9b), the areas occupied by settlement, water, 
vegetation, agricultural areas and bareground are 
11.10%, 1.73%, 30.10%, 5.88% and 51.20%, respec-
tively, compared to 27.88%, 1.09%, 23.22%, 3.54% 
and 44.28%, respectively, on the reference map of 
2020 (Figure 9a). There is a significant difference 
between the observed and predicted areas. This differ-
ence is due to the change in trend described above 
between the period 1986–2006 and the period 2007– 

LULC Types_Faleme

Classe Name 1986 2006 2020

1 Settlement 1.7 10.15 27.88

2 water 0.46 1.33 1.09
3 vegetation 19.62 27.77 23.22
4 cultivated_area 0.2 4.71 3.54

5 Bare ground 78.02 56.05 44.28
Total 100 100 100
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Figure 7. Percentage of area per LULC category for 1986, 2006, 2020.

Table 6. Classification accuracies: user’s accuracy (U.A), producer’s accuracy (P.A), overall accuracy (O.A) 
and the Kappa accuracy (K.A) for each of the selected images.

Landcover/land use class

1986 2006 2020

PA UA PA UA PA UA

Settlement 0.84 0.96 0.94 0.93 0.97 0.95
Water 0.99 0.99 0.98 0.99 0.93 0.96
Vegetation 0.99 0.99 0.98 0.96 0.96 0.95
Agricultural areas 0.75 0.87 0.90 0.97 0.85 0.93
Bareground 0.98 0.95 0.97 0.94 0.96 0.95
Overall accuracy (O.A) 0.96 0.95 0.95
Kappa accuracy (K.A) 0.95 0.94 0.94
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Figure 8. Comparison of the Reference and Simulated Maps of Bafing for 2020.

Figure 9. Comparison of reference and simulated LULC 2020 maps of Faleme.
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2020. Although the validation indicators provide 
values of ROC = 75.92%, κia (kstandard) = 0.58%, 
Klo = 67.14% and kno = 67.14%, (reflecting the overall 
accuracy of the simulated map) deemed fair 
(Chinwendu, 2019; Olofsson et al., 2014; Roland,  
2021; Tiné et al., 2019), the simulated maps for 2020 
cannot be considered satisfactory. Thus, our model 
cannot be validated for the Faleme. Nevertheless, we 
have produced the simulated LULC map for 2050 
based on the trend (2006–2020) that describes the 
current development in Faleme.

Projected LULC maps
For Bafing, changes in LULC between 1986 and 2020 
were first analyzed, leading to transition potential maps 
and a probability matrix illustrating the significant 
LULCC. The transition probability matrix for the clas-
sified maps is presented in Table 7. Analysis of the 
Table 7 results shows that between 1986 and 2020, the 
settlement, agricultural areas, and bareground classes 
were the most dynamic. Indeed, the settlement and 
agricultural areas classes indicate a 45% and 18% prob-
ability of not changing to another LULC class, respec-
tively. At the same time, the area of agricultural areas 
and bareground has a probability of 23.6% and 219% of 
transforming into settlement. Similarly, the vegetation 
class also shows stability with a chance of 80.7%. 
Bareground have a high possibility of turning into 
vegetation at 22%.

Finally, the LULC projection scenarios for Bafing in 
2050 were simulated based on the probability matrix 
obtained using the 1986 and 2020 maps. Figure 10 
shows the predicted LULC maps for 2050. The results 
of this simulation indicate that vegetation will cover the 
largest area with 49% in 2050, followed by settlement 
with an area of 19%. Bareground will be the third most 
dominant LULC class and will cover 22% in 2050. Water 
and agricultural areas will each cover 4.8% of the area.

For Faleme (Figure 10), based on the probability 
matrix obtained using the 2006 and 2020 maps, the 
simulation results show an increase in settlement areas, 
and agricultural areas will be observed by 2050. There is 
also a decrease in water, vegetation, and bareground.

Discussion

The global environment changes are acknowledged to 
be fundamentally and significantly influenced by LULC 

changes. This study aimed to evaluate LULCC over 34  
years in two watersheds (Bafing and Faleme) of the SRB 
and to simulate future changes in LULC in 2050 with 
the status quo (BAU) assumption. This study used the 
RF classification algorithm and Landsat images from 
1986, 2006 and 2020 for the LULC mapping. RF classi-
fication results are very satisfactory with good accuracy. 
We noticed that some pixels are poorly classified, espe-
cially in Faleme. This confirms the results of Zurqani 
et al. (2018), who suggest that the RF algorithm works 
better in areas where LULC types are dominated by 
vegetation. The analysis of the post-classification 
change detection has reported significant changes in 
LULC during the study period.

Analysis of changes in Bafing between 1986 and 
2020 revealed the expansion of settlement and agri-
cultural areas at the expense of bareground. These 
results corroborate those of Herrmann et al. (2020), 
who proved that the intensity of LULC change in 
settlement and agricultural areas was high in WA. 
Studies have showed that the increase in settlement 
and agricultural areas is caused by the increasing 
population in the WA (Assede et al., 2023). Indeed, 
the average growth rates are 2.5% and 2.7% for the 
countries covering our study areas, namely, Guinea 
and Mali. Tabutin and Schoumaker (2020) observed 
a high population rate in WA and the resulting socio-
economic impacts (increase in agricultural areas). 
These results also mirror those of Berihun et al. 
(2019), who also found that population increase was 
consistent and positively correlated with the expan-
sion of agricultural areas between 1982 and 2006 in 
Ethiopia. The results on the increase in vegetation 
during 1986–2020 are in good agreement with the 
findings of previous studies conducted in Fouta 
Djallon Plateau of Bafing in Guinea. Indeed, These 
results are consistent with the results of UCAD 
(2019) and Descroix et al. (2020), who found 
a regreening in Fouta Djallon Plateau of Bafing in 
Guinea. The increase in vegetation that coincides 
with population growth suggests that population 
growth does not always lead to deforestation. Indeed, 
Descroix et al. (2020) pointed out that the densely 
populated areas of the Fouta Djallon Plateau of 
Bafing in Guinea are those where the vegetation 
cover is not threatened and where the ecological inten-
sification of rural activities has long been established. 
Therefore, the claim “more people, more trees” 

Table 7. Transition probability matrix (%) of the LULC map for the period from 1986 to 2006 of Bafing.
Bafing makana Settlement Water Vegetation Agriculture area Bareground

Settlement 0.4515 0.0158 0.2527 0.1149 0.165
Water 0.0491 0.06236 0.2236 0.0014 0.1024
Vegetation 0.0796 0.0358 0.8065 0.0139 0.13
Agriculture area 0.2364 0.0544 0.4893 0.1813 0.3122
Bareground 0.2089 0.0216 0.2157 0.0471 0.6836
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proposed in Tanzania by Kabanza et al. (2013) seems 
valid for Bafing. In addition, it should be noted that 
several projects have been adopted in the Bafing in 
Mali to fight biodiversity losses after the construction 
of the Manantali Dam. Among these projects, we can 
mention the Bafing Faunal Reserve (Mali), the status 
of biosphere reserve (Mali), the Natural Resources 
Management Project (PGRN/World Bank) in the 
1990s and 2000s, the Project for the Extension and 
Strengthening of Protected Area Systems, the Bafing 
transboundary area protected area project during the 
period 2010–2015 (Faty, 2017). Another significant 
result obtained is the increase in water between 1986 
and 2020. The observed increase in water can be 
explained by the recovery of rainfall in this region in 
the 1990s, after the drought period of 1960–1970. 
Several authors (Bodian et al., 2020; Diop et al., 2016; 
Nouaceur et al., 2020) noted a recovery in rainfall in 
WA. Bodian et al. (2020) studied the recent evolution 
of hydroclimatic variables in the SRB from 1940 to 
2013. These results show a recovery in annual rainfall 
in the SRB, which improves surface water availability. 
Recovery of annual flow was reported after the 1990s 
in Bafing (at Bafing Makana station) (Sane et al.,  
2017). It can also be attributed to the construction of 
the Manantali dam in Bafing. The Manantali Dam, 
built in 1988, has an area of approximately 477 km2 
and a capacity of 11,791.8 million m3 (Bader, 2001). It 

aims to make surface water available and sustainable 
throughout the year and to satisfy energy production 
and flow regulation, especially in the context of cli-
mate change and variability (Bader et al., 2015).

In Faleme, the analysis of the post-classification 
change detection revealed that areas occupied by set-
tlement increased from 1986 to 2020. The results also 
show that agricultural areas, vegetation and water 
increased significantly between 1986 and 2006. 
However, there was a decrease in agricultural areas, 
vegetation, and water between 2006 and 2020. These 
results can be explained by the artisanal extraction of 
gold in Faleme during the last decades. 
Overpopulation in Faleme is strongly linked to popu-
lation growth and mining activities (industrial and 
artisanal). Faleme supports the gold resources of east-
ern Senegal and Mali Artisanal gold mining has 
increased significantly in recent decades, mainly due 
to the rising price of gold on the international market 
and the difficult socioeconomic situation (Bohbot,  
2017). Artisanal gold mining is becoming 
a profession like agriculture and livestock in Faleme 
(Ministry of Economy and Finance,2018). This activ-
ity generates several sources of income in the different 
localities where it is practised, but it also causes several 
environmental impacts, including on soils, water 
resources and deforestation (Bohbot, 2017). The 
results of this study on Faleme are in good agreement 

Figure 10. Predicted LULC maps 2050 of a) Bafing and b) Faleme.
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with the conclusions of previous studies conducted in 
regions where gold panning is practiced. For example, 
results on the decrease in agricultural areas in Faleme 
are consistent with those of Atteyoub and Camara 
(2020) and Ndiaye (2020) who reported that the devel-
opment of gold panning has led to the gradual aban-
donment of agricultural practice in this area. Similarly, 
Doucouré (2015) in his book “Des pierres dans les 
mortiers et non du maïs! Mutations in the gold- 
mining villages of southeastern Senegal”, describes 
the abandonment of agricultural areas in favor of 
gold panning. The deforestation and reduced water 
surface quality in Faleme is also consistent with the 
results of Traoré (2022) at kenieba in Mali and at 
Nzema in Ghana Kaku et al. (2021).

The predicted LULC map of 2050 was performed 
using the MLP-MC model embedded in LCM with the 
BAU scenario. LULCCs prediction involves two dif-
ferent aspects. The first is the amount of change, and 
the second is the spatial distribution of change. LCM 
provides the amount of change by comparing initial 
(1986) and second (2006) LULC maps with the MLP 
and then predicting future land cover (2020) using the 
MC transition probability matrix for the future. Model 
validation is performed by comparing the simulated 
LULC map (2020) with the classifier LULC map 
(2020)’. For Bafing, the model has been validated 
with satisfactory results. The simulation results indi-
cate that the observed and predicted LULC map of 
2020 were in good agreement. During the period 
2020–2050, the prediction results (based on the past 
trend (1986–2020) revealed that vegetation would be 
the dominant LULC, but an increase in agricultural 
areas, water, and settlement will also be observed in 
2050.

For Faleme, the model has not been validated with 
satisfactory results. The results showed that the 
observed and simulated LULC maps of 2020 were 
not in good agreement, and errors for all classes were 
noted. These results can be explained by the trend shift 
between the previously mentioned periods (1986– 
2006) and (2007–2020). The results of the validation 
of the MLP_MC model on the Faleme showed 
a limitation of deterministic prediction models such 
as MLP_MC in LCM. The principle behind MLP- MC 
projections is that the rates of change observed during 
the calibration phase will remain unchanged during 
the simulation period, which in many circumstances, 
is an incorrect assumption, according to J. Mas et al. 
(2014). Approaches based on historical tendencies 
may or may not be effective. The predicted LULC 
map 2050 was then obtained based on LULC changes 
from 2006 to 2020. The results indicated that the 
settlement area increased from 10.15% to 27.88% 
from 2006 to 2020, and the prediction results confirm 
that it will continue to expand to 32.58% during 2020– 
2050, at the cost of a reduction in vegetation (23.22% 

to 19.83%). Such a loss of vegetation is expected to 
reach a critical threshold in the coming years, showing 
the need to develop better spatial planning and 
adapted sustainable development strategies. These 
combinations of results suggest that population 
growth and anthropogenic activities appear to be the 
primary driver of LULC changes in these two 
watersheds.

These two watersheds show that while population 
growth can contribute to increased pressure on land 
resources and lead to unsustainable land-use practices, 
it is not the only determinant of these issues. Other 
factors, such as socioeconomic activities, agricultural 
practices, appropriate policies and regulations, educa-
tion and awareness, also play an essential role. The 
results in Bafing showed that when population growth 
is accompanied by adopting sustainable land manage-
ment practices, it can lead to better land and water 
conservation. The presence of a large dam in Bafing 
has led to the implementation of virtuous policies 
favourable to the environment. In Faleme, mining 
activities, many of which are uncontrolled, are leading 
to environmental degradation. These divergent devel-
opment trajectories have different impacts on the 
water cycle and must be considered in water develop-
ment policies for the Senegal River basin.

The main limitation of our study is that it did 
not consider stakeholder involvement in LULCC 
modelling processes. According to Hewitt et al. 
(2014), the information of stakeholders on 
LULCC drivers, reconstruction of timelines of 
major past events and their perspective on poten-
tial future trajectories of land-use change are essen-
tial to achieve holistic results in a participatory 
manner and complement model results. This tech-
nique bridges the gap between practitioners’ per-
spectives and those of technical or policy 
stakeholders (Thiam et al., 2022). In addition, the 
use of hybrid prediction models integrating several 
individual models could improve the prediction 
and allow the simulation of LULCC to be more 
realistic (Gaur et al., 2020; Girma et al., 2022; 
Sankarrao et al., 2021). Sankarrao et al. (2021) 
compare different LULCC modelling techniques 
to predict the future LULC by testing MLP-MC, 
Logistic Regression-Markov Model (LR-MC), 
Multilayer Perceptron Markov Chain Cellular 
Automata (MLP_MC_CA) and Logistic Regression 
Markov Model Cellular Automata (LR_MC_CA) 
models on Nagavali River Basin (NRB), in 
Southern India. The results revealed that after 
combining the MLP_MC model with the Cellular 
Automata, the model was improved in terms of the 
Kappa coefficient. In addition, the hybrid model 
MLP-MC-CA had a better agreement than the 
other models. Furthermore, the study did not 
incorporate climate change and variability drivers. 
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Considering these limitations, future research can 
fill the gaps left by these shortcomings. This work 
was done to establish scenarios for the construction 
of hydropower dams and to assess the combined 
effects of LULC and climate change on the services 
these dams will provide in these watersheds 
(Sambou et al., 2023). This document allows the 
OMVS to develop adequate land and water 
resource management policies and strategies speci-
fic to each watershed, considering the sustainable 
development goals.

Conclusion

This study analyzed the historical LULCC from 1986 
to 2020 with the RF classification and the projected 
LULC for 2050 by using the MLP-MC model in the 
Bafing and Faleme in the SRB. The main results 
revealed that spatial and temporal changes have 
occurred. During 1986–2020, a significant increase in 
vegetation, water, agricultural areas and settlement 
and a decrease in bareground were found in Bafing. 
The projections of LULC for 2050 show effect for the 
environment by the increase in vegetation, agricultural 
areas and settlement. The analysis in Faleme show an 
increase in settlement, vegetation, agricultural areas, 
and water, as well as a decrease in bareground between 
1986 and 2006. Between 2006 and 2020, settlement 
increased. However, there was a decline in vegetation, 
agricultural areas, water, and bareground. By 2050 
(based on 2006–2020 trends), land use changes will 
convert in a direction incompatible with a balanced 
environment. The analysis of surface state dynamics 
revealed that population growth and changing anthro-
pogenic (socioeconomic) activities were the main dri-
vers of LULC changes. The changes in LULC are both 
positive and negative. Based on LULCC, the SRB 
experienced a trend towards “more people, more 
trees” for the Bafing and “more people, more defor-
estation” for the Faleme. These two examples show 
that population growth, accompanied by adopting 
sustainable land management practices, can lead to 
better water and land conservation. These divergent 
development pathways have different impacts on the 
water cycle and must be considered in water develop-
ment policies for the Senegal river basin.
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