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ABSTRACT

Synchronization among uncoupled oscillators can emerge when common noise is applied on them and is famously known as noise-induced
synchronization. In previous studies, it was assumed that common noise may drive all the oscillators at the same time when they are static
in space. Understanding how to develop a mathematical model that apply common noise to only a fraction of oscillators is of significant
importance for noise-induced synchronization. Here, we propose a direction-dependent noise field model for noise-induced synchronization
of an ensemble of mobile oscillators/agents, and the effective noise on each moving agent is a function of its direction of motion. This enables
the application of common noise if the agents are oriented in the same direction. We observe not only complete synchronization of all the
oscillators but also clustered states as a function of the ensemble density beyond a critical value of noise intensity, which is a characteristic of
the internal dynamics of the agents. Our results provide a deeper understanding on noise-induced synchronization even in mobile agents and
how the mobility of agents affects the synchronization behaviors.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146983

In most of the previous studies on noise-induced synchroniza-
tion, the oscillators were assumed static in space and common
noise was applied to all the oscillators uniformly at the same
time. This results in a single cluster of a completely synchro-
nized oscillator. However, in the scenario of mobile oscillators in
motion governed by the Vicsek model, we observe the emergence
of multiple synchronized clusters which can be tuned by vary-
ing the ensemble density. The proposed model employs a noise
field which enables the application of common noise depending
on the direction of orientation of the mobile agents in the physi-
cal space. The average size of completely synchronized clusters as
a function of the ensemble density follows a power-law distribu-
tion. The scheme is successfully implemented using the PR circuit
model, the HR neuron model, and a Gaussian map as the internal
dynamics of the mobile agents.

I. INTRODUCTION

Being the most significant and interesting emergent
phenomenon, synchronization is that facet of dynamical systems

that is given unparalleled attention and importance in research.1

Direct or indirect communications between uncorrelated oscillators,
even chaotic ones, attain a state of complete or phase synchroniza-
tion within a short span of time after initialization. The obvious
occurrence of such phenomena in both natural and artificial situ-
ations justifies the need to study them in detail in networks as well,
where a large number of identical or non-identical oscillators are
interacting through various kinds of coupling schemes, resulting in
several collective behaviors, including synchronization,2 amplitude
or oscillation death,3,4 chimera states,5–9 etc. These networks can be
classified according to the nature of the edges connecting the nodes.
The topology can either be fixed in time with a predefined adjacency
matrix10,11 or can be evolving in time.12–14

Apart from the classical models of networks with fixed or
dynamic topologies, there is another class of networks known as
mobile oscillators/agents, which are primarily inspired from real life
scenarios of social and communication networks, epidemiology, and
other biological and engineering systems.15–18 They are character-
ized by the coordinates of the moving agents in the physical space,
and interactions are active only within a defined neighborhood.
Each agent is also associated with an internal dynamics evolving
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in its corresponding state space. Such a moving neighborhood net-
work having Rössler oscillator dynamics were observed to attain
synchronization19 with the individual agents employing a random
walk. The impact of different time scales for the physical motion
and internal dynamics was also examined20 in a similar way. A study
on a time-evolving network of Kuramoto oscillators associated with
mobile agents in diffusive motion was also found to end up in a syn-
chronized state.21 There were more research on mobile oscillators
that touch upon specific features, such as amplitude death,22 fast
switching synchronization,23,24 and explosive synchronization.25,26

Multiplex networks with moving agents were also noted to have
intra- and interlayer synchronization behavior.27 A model in which
attractive or repulsive coupling is chosen based on the relative dis-
tance between the agents was another study on synchronization in
mobile oscillator systems.28 Recently, another work was done con-
sidering a direct mutual influence between the dynamics in both the
physical and state space.29

The strategy adapted for the motion of the mobile agents in
space can impact the outcome as well as the physical significance.
For example, the vision range of the agents is often considered only
in the forward direction as it is more realistic in real life situations,
such as traffic and the movement of fireflies.22 Even though random
walk strategies are very commonly used to describe the motion of
the agents in space, the Vicsek model30 can be another realistic alter-
native to it. In this framework, the particles move along the average
orientation of the nearby particles, which is perturbed by thermal
noise as well. The tendency of the individual units in motion to
get influenced by its neighbors is described well in this framework.
This is known to give rise to characteristic motion patterns, which
are sensitive to the particle density in the physical space as well as
transportation. The method was utilized in a bunch of problems pre-
viously in mobile oscillators31,32 and have inspired similar works on
swarmalators also.33–36

Synchronization of uncoupled oscillators using noise of spe-
cific intensity is an explored aspect of noise-induced phenomena
in dynamical systems. Noise-induced complete synchronization was
achieved in two identical Lorenz attractors, while phase synchro-
nization happens in non-identical attractors.37 According to the
studies carried out on various maps and flows,38 noise is respon-
sible for pushing the individual trajectories into the contraction
region of the system under consideration, eventually leading to com-
plete synchronization of the trajectories. It was also observed that
the time spent by the trajectories in the contraction region can be
improved by restricting the noise infusion to a limited range of
the state space resulting in an enhanced synchronization.39 Realis-
tic systems, such as the Pikovski–Rabinovich (PR) circuit model and
the Hindmarsh–Rose (HR) neuron model, also show noise-induced
synchronization.40 In fact, neuron models are known to have high
sensitivity to channel noises.41 The phenomenon of noise-induced
synchronization can be analyzed effusively by the largest conditional
Lyapunov exponent, which assumes a negative value if the synchro-
nization is feasible.42 It is to be noted that most of the investigation of
noise-induced synchronization observed in uncoupled oscillators is
considering the oscillators to be static in space. Noise-induced syn-
chronization in mobile oscillators is unexplored to date to the best
of our knowledge in spite of the possible practical applications of it,
especially in engineering fields.43,44

In this paper, we implement a strategy of noise-induced syn-
chronization in mobile oscillators, which are moving in the physical
space in accordance with the Vicsek model, each carrying an internal
oscillator dynamics. Unlike the previous works on mobile oscilla-
tors, here, we do not employ any coupling interactions between the
agents. Instead, the agents are allowed to move in a noise field in
such a way that the effective noise on each agent is a function of the
direction of orientation of the velocity vector associated with it. This
causes the noise experienced to be common for only those agents
that are oriented in the same direction. Hence, complete synchro-
nization of all the mobile oscillators is possible only when the density
of agents in space is beyond a threshold causing mutually parallel
motion of the agents in space. For intermediate values of density,
we observe synchronized clusters of oscillators as well, which can
be attributed to multiple domains that are formed with their own
direction of orientation common within each domain. We discuss
the general form of the proposed scheme in Sec. II. The illustration
of the scheme is done using the PR circuit model as an example of
the nodal dynamics in Sec. III A along with a detailed analysis of
the same. Sections III B and III C verify the applicability of the pro-
posed method in two more systems, which are the HR neuron model
and a 1D Gaussian map, respectively. Finally, we do a conclusive
discussion in Sec. IV.

II. THE PROPOSED MATHEMATICAL MODEL

Let us consider a set of N mobile agents in a physical space
specified by the coordinates (ζi, ξi) ∈ R

2, where i = 1, 2, . . . , N. The
motion of the agents is governed by the Vicsek model30 and obeys
periodic boundary conditions. The density of agents in space is
ρ = N/L2, where L is the edge length of the physical space. The
numerical calculation of the motion of these agents is given by

(ζi, ξi)(t + 1t) = (ζi, ξi)(t) + vv̂i(t)1t,
(1)

θi(t + 1t) = 〈θi′(t)〉r + 1θ ,

where v is the scalar magnitude of velocity with which the agents
move and θi is the angle of orientation of the unit velocity vector
v̂i = (cos θi, sin θi). The angle θi of any agent at each time step
1t = 1 is given by the average of that of the neighboring agents,
θi′ , within a circle of radius r with an additional thermal perturba-
tion 1θ chosen randomly from a uniform distribution [−κ/2, κ/2].
Here, κ is the perturbation intensity. We keep r = 1 and analyze the
system as a function of the density ρ.

Now, we assign an internal dynamics to each of the mobile

agents along with a noise vector η(t) = ηζ ζ̂ + ηξ ξ̂ acting on them,
where ηζ and ηξ are two noise components drawn from Gaus-
sian distributions of zero mean and unit variance. The dynamics of
individual agents is given by

Ẋi = F(Xi) + Aεv̂i(t) · ηi(t). (2)

Here, X = {xj} ∈ R
n is the n-dimensional state vector of the

individual agents (i = 1, . . . , N) having an intrinsic dynam-
ics F(X) = { f(xj)}. A = {Aj}, j = 1, 2, . . . , n is an array where

Aj =
{

1 if j = m,

0 otherwise ,
and xm is the state variable in which the noise
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FIG. 1. Schematic representation of the movement of N mobile oscillators
oriented at θi , i = 1, . . . ,N (red arrows) in a 2D physical space of area L2.
The angle of orientation of each agent is affected by the average angle of ori-
entation of the neighboring agents within a circle of radius r . η(t) is the noise field
of strength ε applied (blue arrows).

η(t) of intensity ε acts. The dot product εv̂i(t) · ηi(t) indicates the
component of noise along the direction of orientation of the indi-
vidual mobile agents. The range of ε and the choice of xm can
be specific to the internal dynamics attributed to the individual
agents. The direction in which the applied noise can cause synchro-
nization is dependent on the structure of the contraction region
associated with the oscillators, which is the key to attaining noise-
induced synchronization.37 A schematic representation of the model
is shown in Fig. 1.

III. RESULTS

We verify the proposed mathematical model for noise-
induced synchronization between uncoupled mobile oscillators
by considering three different systems, namely, the chaotic
Pikovski–Rabinovich circuit model, the slow–fast Hindmarsh–Rose
neuron model, and a one-dimensional Gaussian map.

A. Pikovski–Rabinovich circuit model

We first illustrate the whole model with the Pikovski–
Rabinovich (PR) circuit model45 taken as the internal dynamics of
the individual agents. We modify Eq. (2) by replacing F(Xi) with the
equations of motion of the PR system,

ẋi = yi − αzi,

ẏi = −xi + 2βyi + γ zi, (3)

żi = (xi − z3
i + zi)/δ + εv̂i · η(t),

with α = 0.66, β = 0.201, γ = 0.165, and δ = 0.047. The noise
is added in the z component, which is the optimal direction to
attain synchronization in a PR system.40 Taking v = 0.03, κ = 0.001,
ρ = 1.0, and ε = 4.0, we see that all the N number of PR oscil-
lators with random initial conditions get completely synchronized
with increasing noise intensity as shown in Fig. 2. Figure 2(a) shows
the time series of the y variable of the N = 100 oscillators with zero
noise intensity, which is nothing but the intrinsic dynamics of the
PR oscillators. However, at an elevated noise intensity ε = 4, all
the oscillators get synchronized with each other in time [Fig. 2(b)].
Note that this phenomenon of complete synchronization of all the
mobile agents is possible only when the internal dynamics of each
of the agents is subjected to common noise of sufficient intensity.
Considering the fact that the mobile oscillators in our model are
moving in an anisotropic noise field, this condition of common
noise can be fulfilled only when all the agents are oriented in the
same direction in physical space. It is a characteristic feature of the
Vicsek model30 that allows self-organization to a single direction
of orientation at a sufficiently high density of particles. Figure 2(c)

quantifies the synchronization error 〈E〉 =
∑N

i=2 |Xi − X1|/(N − 1),
where |Xi − X1|(i = 2, 3, . . . , N) are the absolute errors with X1,
with increase in the noise strength ε. We observe that the synchro-
nization error goes to zero beyond critical noise strength εc = 3.0. It
is also evident from the figure that εc is mostly independent on the
size of the system N under consideration. In Fig. 2(d), we analyze the
dependence of the occurrence of synchronization on the set of ini-
tial conditions of the mobile oscillators. It is analyzed in terms of the
basin stability,46 SB, of the completely synchronized state, which is
nothing but the ratio of the volume of the state space that converges
into the synchronized state to the total volume of the state space
considered. Here, we can see that beyond the critical noise inten-
sity, the system attains synchronization irrespective of the choice of
initial conditions as SB = 1. It is also to be noted that for a much
higher noise intensity, the oscillator dynamics goes unbounded as
well. The largest Lyapunov exponent (LLE) of the oscillations can be
monitored as a tool to infer the occurrence of the transition to the
completely synchronized state in Fig. 2(e) as the LLE goes from pos-
itive to negative at the critical noise intensity for synchronization in
agreement with the basin stability curve.

We shall also examine the effect of the density ρ of the mov-
ing agents in the physical space, on the order that is being induced
in the internal dynamics of the oscillators due to the noise field. As
we know already that the Vicsek model gives rise to unidirectional
transportation at high density, it is also observable that the moving
agents can form multiple domains, each oriented in a random direc-
tion. However, even in this case, the individual oscillators belonging
to the same domain experience common noise and, hence, achieve
synchronization. This gives rise to multiple synchronized clusters in
the internal dynamics.

Figure 3 presents a pictorial account of the above-mentioned
results. The plots in the three columns from left to right repre-
sent the three cases of ρ = 0.001, 0.1 and 2.0 with ε = 4.0. The first
row of plots shows snapshots of the position and orientation of the
mobile agents in the physical space. The angle of orientation θ of the
agents ranging from −π to π is represented as a color bar. The sec-
ond row depicts the spatiotemporal plots of the individual oscillators
associated with the agents, and the third row gives snapshots of the y
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FIG. 2. Time series of the mobile oscillators in Eq. (3) with (a) ε = 0.0, desynchronized state and (b) ε = 4.0, synchronized state. The variation of the (c) synchronization
error 〈E〉 and (d) basin stability SB as a function of the noise intensity ε for various system sizes. (e) Largest Lyapunov exponent as a function of the noise strength ε plotted
along with the basin stability. Density is kept constant at ρ = 1.0 for all the plots.

variables of the mobile oscillators. For a low density, the agents move
almost randomly, as it is visible in Fig. 3(a), and the internal dynam-
ics shows no sign of synchronization as we can see in Figs. 3(d)
and 3(g). However, at a moderate value of density, in Fig. 3(b), we
see multiple domains of agents, each having a common orientation.
This gives rise to multiple clusters of completely synchronized oscil-
lations in the internal dynamics of the agents [Figs. 3(e) and 3(h)].
In the third case of high density of agents, all the agents orient
themselves in the same direction over time [Fig. 3(c)], and all the
oscillators arrive at a state of complete synchronization as we had
discussed previously, which can be observed from Figs. 3(f) and 3(i)
as well. Multimedia views of all three cases in Figs. 3(a)–3(c) are
available.

Furthermore, in Fig. 4(a), we see that, with a continuous incre-
ment in the density ρ with a sufficiently high ε = 4.0, the average
number of synchronized clusters shows an exponential decrement
settling down to a single cluster beyond a critical value ρ = ρc = 1.5.
This implies that the noise experienced by the mobile oscillators

beyond this critical density is identical for all the agents, thus causing
the formation of a single synchronized cluster. Furthermore, on an
analysis of the average size of the synchronized clusters, 〈CSsync〉, we
identify power-law behavior. 〈CSsync〉 ∼ (ρ − ρc)

−γ , with the expo-
nent γ = 0.68. The corresponding log–log plot in Fig. 4(b) follows
a straight line with a slope −γ in the transition region. The effect
of density on the completely synchronized state can be justified by
inspecting the mutual information47 between a pair of randomly
chosen oscillators in the ensemble calculated by the formula

MI =
Nt

∑

i,j

P(i, j)log
P(i, j)

P(i)P(j)
,

where P(i) and P(j) are the individual probabilities of occurrence of
the two oscillators in the ith and jth volume cells in the phase space
and P(i, j) is the probability of the combined occurrence of them and
Nt is the total number of time steps considered. A close look at the
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FIG. 3. (a)–(c) Snapshots of the position and orientation of the mobile agents in Eq. (3) in the physical space under various ensemble densities. The corresponding
video files showing the evolution of the ensembles with ρ = 0.0001 in (a), ρ = 0.1 in (b), and ρ = 2.0 in (c) are also available. (d)–(f) Spatiotemporal plots of the
mobile oscillators. (g)–(i) Snapshots of the y variable of the individual oscillators with index i corresponding to the ensembles in (a)–(c). Here, ε = 4.0. Multimedia views:
https://doi.org/10.1063/5.0146983.1; https://doi.org/10.1063/5.0146983.2; https://doi.org/10.1063/5.0146983.3

plot in Fig. 4(c) will reinforce our observation as the critical den-
sity ρc corresponds to a maximum value of the mutual information
and remains constant thereafter. We also examine the system in the
various parameter planes in terms of the basin stability as well. We
plot the (ε − ρ), (ρ − r), and (ρ − v) parameter planes. The (ε − ρ)

parameter plane [Fig. 4(d)] reveals a range of ε over which com-
plete synchronization of all the mobile agents occurs. Apart from
this range, the oscillators are unsynchronized for low values of noise
strength, while get unbounded for higher values. We also observe the
existence of the threshold density of mobile agents beyond which all
the agents experience common noise to facilitate a completely syn-
chronized state, which is in agreement with the critical density of
agents for a single cluster formation according to Fig. 4(a). Similarly,
Fig. 4(e) shows the (ρ − r) parameter plane in which we observe
the threshold value of r required for complete synchronization of all
the oscillators as a function of the density ρ. Provided a minimum

threshold condition is satisfied, the higher the density, the lower
the value of the critical r necessary for synchronization. Figure 4(f)
shows the (ρ − v) parameter space, and it is clear from the map
that for a density beyond ρ = 1.5, even the practically immobile
ensemble of oscillators will also get synchronized. While for a lower
density, the synchronization is possible only if the agents are moving
with an appreciable velocity v.

B. Hindmarsh–Rose neuron model

We now successfully execute the scheme on another chaotic
system to verify the applicability of the proposed method. The
motion of the agents in the physical space and the noise infusion
strategy are kept the same, while the internal dynamics of the agents
is replaced by the Hindmarsh–Rose (HR) neuron model.48 Neural
systems are known to have effects, such as stochastic resonance from
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FIG. 4. (a) The average number of synchronized clusters, (b) the log–log plot of the average size of synchronized clusters, and (c) the average mutual information between
a pair of randomly chosen oscillators from the ensemble as a function of the density of mobile agents in Eq. (3) at ε = 4.0. Variation of basin stability SB by varying
simultaneously two parameters in (d) (ε − ρ), (e) (ρ − r), and (f) (ρ − v) parameter space maps.

different biologically relevant noises.49,50 Identical HR oscillators
are already known to synchronize under the influence of common
noise. We modify their intrinsic dynamics by adding the direction-
dependent noise term in the x direction, which is optimal for the HR
model.40 The modified dynamics is, thus, given by

ẋi = yi − αx3
i + βx2

i − zi + I + εv̂i · η(t),

ẏi = γ − δdx2
i − yi, (4)

żi = ζ [S(xi − χ) − zi],

where α = 1.0, β = 3.0, γ = 1.0, δ = 5.0, ζ = 0.006, S = 4.0,
χ = −1.56, and I = 3.0. We attain a completely synchronized state
with this model as well at similar ranges of mobile oscillator density
but a different critical noise intensity as it is characteristic solely of
the internal dynamics of the oscillators. In Fig. 5(a), with at ρ = 2.0,
we identify that the critical noise density in this case is ε = 2.5,
indicating the onset of complete synchronization of all the mobile
oscillators. At this critical point, the synchronization error graces

zero, and simultaneously, the basin stability curve reaches 1 assur-
ing the independence of the synchronization on the choice of initial
conditions. Figure 5(b) shows the (ε, ρ) parameter plane, indicating
the broader range of noise density over which the synchronized state
is stable for the HR model. However, one can see that the threshold
density of mobile oscillators required for complete synchronization
remains the same as it is the basic requirement to assure the exertion
of common noise.

C. Gaussian map

Finally, we adapted the model to test the scheme with a 1D
Gaussian map as well, which is given by51

xi(n + 1) = bαxi(n)exp
[

−2xi(n)2 + axi(n)
]

+ εv̂i · η(t), (5)

where α = √
e/2, a = 0, b = 7. Similar to the previous cases, a com-

plete synchronized state is attained for sufficiently high density
ρ = 1.5, and in Fig. 5(c), the synchronization error curve as well as
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FIG. 5. Synchronization error 〈E〉 and basin stability SB variation as a function
of noise strength ε at ρ = 2.0 and the (ε − ρ) parameter space basin stability
map, respectively, for (a) and (b) the HR neuron model [Eq. (4)] and for (c) and (d)
Gaussian map [Eq. (5)].

the basin stability curve show the transition to complete synchro-
nization at ε = 1.9 for ρ = 2.0. Compared to the previous case, the
noise intensity required for complete synchronization of the ensem-
ble is appreciably less in the case of the map considered. However,
in Fig. 5(d), the (ε, ρ) parameter plane indicates a deviation from
the previous cases as the dynamics of the oscillators are found to
remain synchronized for higher values of noise strengths without
going unbounded. It can be attributed to the nature of the map con-
sidered that the synchronized state remains stable even for very high
noise strengths without getting unbounded.

IV. CONCLUSION

In this work, we have formulated and executed a strategy to
synchronize the internal dynamics of an ensemble of mobile oscil-
lators with their motion in the physical space governed by the
Vicsek model. We have investigated synchronization among uncou-
pled moving oscillators when a direction-dependent noise field is
introduced in such a way that the individual oscillators experience
common noise if they are oriented parallel to each other. We have
found that the ensemble attains complete synchronization on the
application of the noise field of appropriate noise strength when the
density of the mobile agents in space is beyond a critical value. These
two critical values (noise intensity and density of mobile agents)
depend on the internal dynamics of the agents. By the nature of the
motion described by the Vicsek model with a circular neighboring

region of radius r, we have seen no synchronization for a low den-
sity of agents as the agents are oriented randomly. However, for a
moderate value of density, the formation of domains of agents hav-
ing the same orientation takes place forming multiple synchronized
clusters. Finally, after a critical value of agent’s density, we obtained
a complete synchronization state as all the agents get oriented paral-
lel with each another and common noise has been applied to all the
agents at the same time. Therefore, by increasing the density of the
agents in the physical space, the chances of common noise on more
agents increase. By this way, the direction of the movement increases
rapidly when the density of the agents increases in the physical space.

To verify our claim, we used the PR circuit model as the inter-
nal dynamics of the mobile agents for a detailed illustration of the
model and later extended the study to the HR neuron model as
well as to a Gaussian map to ensure the universality of the scheme.
The PR model was studied to show the formation of multiple syn-
chronized clusters eventually forming a single synchronized cluster
(complete synchronization) on the gradual increment of the density
of the mobile agents. The transition to a completely synchronized
state was identified to be in agreement with the switching of the sign
of the largest Lyapunov exponent to negative over gradation of noise
intensity. The influence of the model parameters, such as the density
of mobile agents ρ, the radius of interaction in the Vicsek model r,
and the velocity of motion of the agents v, was analyzed in terms
of the basin stability. Using the above three dynamical systems as
the internal dynamics of the agents, we conclude that the critical
value of noise strength for complete synchronization depends on the
internal dynamics. Moreover, the ensemble density plays a pivotal
role in determining the number of synchronized clusters. With the
backup of our findings, we expect our model to find adaptive appli-
cations in various fields, especially in wireless sensors, mobile ad hoc
networks, etc.
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