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Abstract
Understanding error properties is an essential part in numerical weather pre-
diction. Predictable relationship between errors of different regions due to some
underlying systematic or random process can give rise to correlated errors. Esti-
mation of error correlation is crucial for improvement of forecasts. However, the
size of the corresponding correlation matrix is larger than what is possible to rep-
resent on geographical maps in order to diagnose its full spatial variation. Here,
we propose a complex network-based approach to analyse forecast error correla-
tions that enables us to estimate the spatially varying component of the error. A
quantitative study of the spatio-temporal coherent structures of medium-range
forecast errors of different climate variables using network measures can reveal
common sources of errors. Such information is crucial, especially in cases such
as the outgoing long-wave radiation, in which errors are correlated across very
long distances, indicating an underlying climate mechanism as the source of the
error. We show that the spatial patterns of forecast error co-variability may not
be the same as that of the corresponding climate variable itself, thereby imply-
ing that the mechanisms behind the correlated errors may be different from the
climate processes responsible for the spatio-temporal interactions of the climate
variable. Our results highlight the importance of diagnosing the full spatial vari-
ation of error correlations to understand the origin and propagation of forecast
errors, and demonstrate complex networks to be a promising diagnostic tool in
this regard.

K E Y W O R D S

complex networks, error correlation, forecast errors, numerical weather prediction,
spatial variability

1 INTRODUCTION

Analysis of errors is an integral part of numerical weather
prediction to produce improved forecasts. The Earth’s

climate is a highly complex system comprising several
components interacting with each other. The state of the
system at one location can therefore affect the state at
another location. Likewise, the error in forecasting the
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state of the system at one location can also affect that at
another location. Common error between measured val-
ues due to a common measurement gives rise to error
correlations (Herzberg, 1982), which are indicative of sys-
tematic or structured random errors (Boer, 1993). Estima-
tion of error correlations is very important for producing
quality forecasts and is a key issue for data assimilation
(Derber and Bouttier, 1999). In particular, proper estima-
tion of the spatially varying component of the error is
important to include inhomogeneities and anisotropies for
further improvement of the forecasts (Parrish and Der-
ber, 1992; Wu et al., 2002; Kleist et al., 2009). However, it
has been a significant challenge to diagnose the full geo-
graphical variations of error correlations because the total
number of elements in the correlation matrix is the square
of the number of grid points, making it difficult to repre-
sent them on geographical maps (Pereira and Berre, 2006).
An economical approach commonly used to obtain a syn-
thetic view of the spatial variability of error correlations
is to estimate the local correlation length scale and then
study its latitudinal variations (Daley and Barker, 2001;
Ingleby, 2001; Pereira and Berre, 2006).

In this work, we propose an alternative approach
to analyse and view the spatial variation of error cor-
relations based on the theory of complex networks.
In recent decades, complex networks have been used
extensively for inferring statistical interrelationships from
spatio-temporal data of spatially extended systems, such
as the human brain (Bullmore and Sporns, 2009) or the
Earth’s climate systems (Boers et al., 2021; Ludescher
et al., 2021), the latter referred to as “climate networks”.
Such an approach is useful for cases where the com-
plete knowledge of the interactions between the different
components of a complex system is lacking. Under this
framework, the spatial observation points derived from
the underlying spatio-temporal dataset are called “nodes”,
and the knowledge of their functional interdependence,
or “links”, is inferred by assessing the (pairwise) simi-
larities between their measured or simulated dynamics.
Then, measures derived from graph theory are used to
characterize the topological features of the complex net-
work so obtained (Donges et al., 2009). The climate net-
work approach has been used to study patterns of cli-
mate variability in different climate variables, such as
temperature, pressure, geopotential height, wind, and pre-
cipitation, at various scales (Tsonis and Roebber, 2004;
Yamasaki et al., 2008; Donges et al., 2009a; Ludescher
et al., 2013; Radebach et al., 2013; Runge et al., 2015; Gel-
brecht et al., 2017; Boers et al., 2019; Gupta et al., 2021;
Lu et al., 2022; Gupta et al., 2023). The methodology has
also been used in previous studies for the purpose of model
evaluation in order to identify the underestimation or over-
estimation of statistical links, and hence teleconnection

patterns, by comparing the depiction of climate interac-
tions in the reanalysis data with that in the forecasts
(Steinhaeuser and Tsonis, 2014; Boers et al., 2015; Feld-
hoff et al., 2015; Di Capua et al., 2022; Gregory et al., 2022;
Dalelane et al., 2023).

The goal of this article is to put forward the concept
of “error networks” as an effective tool to diagnose the
full geographical variation of the error correlation matrix.
Although similar to the idea of climate networks, the
approach is innovative, as in this case we are not interested
in unravelling the coupling or interaction between two
components of the Earth’s climate, but rather gain insights
into the origin of forecast errors in a climate variable
by identifying spatially coherent patterns of regions hav-
ing common sources of error. Therefore, here, we retrieve
the network representation of the spatio-temporal forecast
error dataset of a climate variable, instead of the variable
itself, by computing the pairwise statistical interdepen-
dencies (here, correlation) between the forecast error time
series of the different locations. The spatial coherence pat-
terns of the resultant error correlation matrix can then be
studied using the various network measures that charac-
terize the topological structure of the network. Further-
more, it should be noted that this approach of analysing
the underlying spatial relationships in the forecast error
data is, however, different from the aforementioned pre-
vious model evaluation applications of climate networks.
Here, the geographical variation of the network measures
computed from the error correlation matrix can reveal the
spatial heterogeneity of the errors, the pattern of which
can provide an inkling of the dominant source of error.
In this article, we demonstrate this by analysing the error
networks of different climate variables. Such an analysis,
specifically designed to study the spatially coherent struc-
tures of forecast errors, has not been performed earlier to
the best of our knowledge.

In this work, we focus mainly on analysing the error
properties of the Asia-Pacific region in the Northern Hemi-
sphere during the summer months of June, July and
August (JJA) during which the southern and the eastern
parts of Asia experience the monsoon. Using the network
approach, we gain a preliminary understanding of the
origin of the forecast error in climate variables such as
wind, geopotential height, and outgoing long-wave radia-
tion. Our results highlight the presence of crucial regions
that exhibit high influence on the error properties of a
particular climate variable at not only nearby regions but
also over very long distances. Furthermore, we show that,
for different climate variables, the topology of the error
correlation network exhibits varying levels of differences
with the respective reanalysis network of the correspond-
ing climate variable. This points towards the fact that the
spatial patterns of forecast error co-variability may not be
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the same as the co-variability pattern of the corresponding
climate variable itself, thereby suggesting that the mech-
anisms behind the correlated errors can be different from
the climate processes responsible for the spatio-temporal
interactions of the climate variable.

The remainder of the paper has been organized as
follows. In Section 2, we list the datasets employed and
then outline the methodology. In Section 3, we first show
that error correlation networks of different climate vari-
ables exhibit significant spatial patterns, and then we
discuss our findings on the properties of errors mostly
affecting the Asian summer monsoon from the analy-
sis of these networks. Thereafter, we make a compari-
son of the error network with the information inferred
from the reanalysis and forecast networks of the same
variables, thus demonstrating that the analysis of error
correlations using network measures reveals important
information about the underlying sources of errors.
Finally, in Section 4, we provide concluding remarks
regarding the relevance and the future scope of the
work.

2 DATA AND METHODOLOGY

2.1 Data and preprocessing

We use the fifth-generation European Centre for
Medium-Range Weather Forecasts Atmospheric Reanal-
ysis (ERA5) data (Hersbach et al., 2020) at a spatial
resolution of 1◦ × 1◦ and daily mean of the hourly values
for the period 1980–2020, for outgoing long-wave radi-
ation (OLR) as well as lower tropospheric (at 850 hPa)
climate variables, namely, the geopotential (Z850), and
the meridional (V850) and zonal (U850) components of
wind. Forecast data for the same variables is obtained
from the 10-day forecasts produced from the same sys-
tem by averaging over a time interval of 120–144 hr
(day 5–6). The forecast lead-time of day 5–6 is chosen
in order to focus on large-scale errors in the medium
range and also to get error propagation that is beyond
linear advection of error structures (Magnusson, 2017).
Daily anomalies of the variables are computed with
respect to the daily climatology of the whole period of
analysis. The forecast errors are computed by subtract-
ing the reanalysis from the forecast data (Figure 1). We
remove the effect of a mean bias in the forecast model
by subtracting the mean error from the forecast error
time series and take the absolute of the resultant values
in the error time series for our subsequent analysis (see
Figure 2).

We analyse the error properties during the JJA sea-
son using our climate network approach. Our analysis

is restricted to the Asian summer monsoon region and
the adjacent Indian and Pacific oceans, which play an
important role during the monsoon. The region of inter-
est extending from 35◦ N to 10◦ S and from 3◦ E to
120◦ W includes the Niño 3.4 region (5◦ N–5◦ S, 170◦
W–120◦ W) as the El Niño–Southern Oscillation (ENSO)
has a considerable impact on the interannual variabil-
ity of the Asian monsoon (Ju and Slingo, 1995). We use
the Oceanic Niño Index, which is based on variations in
3-month running means of sea-surface temperatures in
the Niño 3.4 region (NOAA, 2022), to identify the ENSO
phases.

2.2 Methods

We identify the spatial coherence pattern of the reanaly-
sis, forecast, and forecast error data by using a complex-
network-based approach. The network representation of a
complex system encodes the pairwise interactions between
its components. For given spatio-temporal data, this is
constructed using the framework of climate networks,
which are functional networks. Hereafter, we describe the
method of network construction and the measures used to
analyse and compare the network topologies.

2.2.1 Network construction

In a climate network, each geographical grid point of the
spatio-temporal climate dataset represents a node (Tso-
nis et al., 2006). Additionally, each node represents a
dynamical system which is associated with the corre-
sponding time series of the climate variable. The con-
nection between a pair of nodes is computed on the
basis of the statistical inter-dependency between them.
In our case, we calculate the links of our network by
computing the Spearman’s rank correlation coefficient
between different pairs of nodes at zero lag. Then, we
perform a significance test on our data and construct
the correlation matrix by retaining only those correla-
tions whose p−values are less than 0.05. We assume a
pair of nodes, i and 𝑗, to be connected if the absolute
value of the correlation coefficient, Ci𝑗 , between them
lies beyond a certain threshold 𝜏, that is, we consider
only the strongest correlations and ignore the sign. Here,
we choose the 95th percentile of the absolute values of
the correlation matrix as the threshold 𝜏, which ensures
considerable interconnectivity while retaining only the
strongest correlations, thereby controlling the resultant
link density (𝜌 ≈ 0.05), and is in agreement with pre-
vious studies on climate using the functional network
approach (Radebach et al., 2013; Stolbova et al., 2014;
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2884 GUPTA et al.

F I G U R E 1 Mean forecast error for June–July–August 2018 for (a) zonal wind component at 850 hPa (U850), (b) meridional wind
component at 850 hPa (V850), (c) geopotential at 850 hPa (Z850), and (d) outgoing long-wave radiation (OLR). [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 2 Mean absolute error day 5–6 for bias-corrected forecasts for June–July–August 2018 for (a) zonal wind component at
850 hPa (U850), (b) meridional wind component at 850 hPa (V850), (c) geopotential at 850 hPa (Z850), and (d) outgoing long-wave radiation
(OLR). [Colour figure can be viewed at wileyonlinelibrary.com]

Ozturk et al., 2019; Gupta et al., 2021). Thereafter, the net-
work can be represented by the adjacency matrix, which
is a binary matrix whose elements, Ai𝑗 , are set to 1 if
there exists a connection from node i to 𝑗, and 0 oth-
erwise. Mathematically, it can be represented using the
Heaviside function, Θ(x) (where Θ(x) = 1 when x > 0 and
Θ(x) = 0 otherwise), as Ai𝑗 = Θ(|Ci𝑗| − 𝜏) − 𝛿i𝑗 , where 𝛿i𝑗
is the Kronecker delta (subtracted in order to remove
self-loops). We note that, here, Ai𝑗 = A𝑗i, that is, the adja-
cency matrix is symmetric. This results in an undirected
and unweighted network. One may alternatively retain the
significant absolute correlation values as the link strengths
in order to avoid thresholding, and treat the network

as a weighted one. However, unweighted networks with
fixed link densities allow not only a comparison of net-
work patterns for different variables but also more free-
dom while using different network-based measures. For a
more detailed description on the application of complex
networks to spatio-temporal data, refer to Supplementary
Text S1.

2.2.2 Network measures

After constructing the network, we compute the network
measures degree and common component function.

 1477870x, 2023, 756, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4536 by H
elm

holtz-Z
entrum

 Potsdam
 G

FZ
, W

iley O
nline L

ibrary on [22/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


GUPTA et al. 2885

Degree
The degree of a node is defined as the number of connec-
tions it has (Newman, 2010). In the case of an undirected
network, the degree of a node i can be defined as

ki =
N∑

𝑗=1
Ai𝑗 . (1)

Alternatively, for weighted networks, Ai𝑗 in
Equation (1) should be replaced by the link strength
between nodes i and 𝑗 to compute the weighted degree. In
most cases, the high-degree nodes, those with the more
connections, play an important role in the functioning of
the system. Hence, degree can be a useful guide for focus-
ing our attention on the system’s most crucial regions,
which in this case have either strong influence on the fore-
cast errors of other regions or are strongly influenced by
them. In order to find the areas interacting with a region
R of high degree in the climate network, we calculate the
“partial degree” {ki}R of the nodes in the network, which
yields the number of links connecting a node i outside R
with the nodes within R. Mathematically, we have

{ki}R =
∑

𝑗∈R
Ai𝑗 . (2)

If the errors are uncorrelated, as in case of indepen-
dent random errors, the forecast error network would be
completely random. However, if the errors of different grid
points have a (partially) predictable relationship between
them due to an underlying deterministic or structured
random process, such as that for systematic or structured
random errors, then the errors have correlated structures
that will emerge as definite spatial patterns in the forecast
error network. Since we preserve only the highest correla-
tions to construct our network, we expect the most domi-
nant structured errors causing the strong spatio-temporal
correlation in the forecast error of the climate variable
to show up in the spatial distribution of high-degree
nodes in the network. This is a typical property of most
real-world networks, that there exists a small number of
nodes with unusually high degree, known as “hubs”, that
in some cases are known to have a dominant effect on the
behaviour of the network as a whole (Newman, 2010). As
we are interested in the relationship between errors of dif-
ferent geographical points, the significance of the degree
distribution of the forecast error network can be tested
against that of random networks in which it is not possible
for hubs to emerge as the degree ki is comparable for every
node. Therefore, we can simply compare the degree distri-
bution of the original unweighted network with the mean
degree distribution of Erdös–Rényi networks (Newman
et al., 2001) with the same number of nodes and average

degree, obtained by rewiring the links of the original net-
work entirely randomly. However, as climate networks are
spatial networks, the link probability depends on the geo-
graphical lengths of the links, due to which the influence
of spatial embedding on the network structure should also
be taken into account (Barnett et al., 2007) (refer to Sup-
porting Information Text S1). Hence, it is more appropriate
to test the significance of the degree distribution of the
original unweighted climate network against those of spa-
tially embedded random networks (Rheinwalt et al., 2012),
which preserve the number of nodes and the link-distance
distribution of the original network.

Another basic property is the “degree assortativity coef-
ficient” r, which is a measure of preferential connectivity
in networks based on the node degree; that is, whether
a node of high degree preferentially is linked to other
nodes of high degree, and vice versa. It is calculated as
the Pearson correlation coefficient of degree between pairs
of linked nodes, with its value in the range −1 ≤ r ≤ 1
(Newman, 2003). Positive values of r indicate a correla-
tion between nodes of similar degree, with r = 1 implying
that the network has a perfect assortative mixing pattern.
Negative values indicate relationships between nodes of
different degree, where r = −1 implies that the network
is completely disassortative. When r = 0 the network is
non-assortative. The degree assortativity could be used as a
way to estimate the level of homogeneity/heterogeneity of
real networks, where a more assortative network is more
homogeneous, and vice versa.

Common component function
For two unweighted, undirected networks Ga(N,Ea) and
Gb(N,Eb), defined on the same set of nodes N but with
links Ea and Eb respectively, the common component
function CCF(Ga,Gb) counts the number of common
links n(Ea ∩ Eb) between the pair of networks (Tupikina
et al., 2014):

CCF(Ga,Gb) =

∑N
𝑗,i=1(i<𝑗) Aa

i𝑗A
b
i𝑗

∑N
𝑗,i=1(i<𝑗) Aa

i𝑗A
a
i𝑗

, (3)

where Aa and Ab are the adjacency matrices of networks
Ga and Gb respectively, and

∑N
𝑗,i=1(i<𝑗)Aa

i𝑗A
a
i𝑗 =

∑N
𝑗,i=1(i<𝑗)Aa

i𝑗
is simply the number of links in the network Ga. There-
fore, the normalized CCF(Ga,Gb) takes values in the range
[0, 1]. This implies that if the networks Ga and Gb are com-
pletely identical then CCF(Ga,Gb) = 1, and CCF(Ga,Gb) =
0 if they have no common links. This network measure
enables us to measure the similarity in network topology
between two different networks. It will be useful here to
quantify the degree of similarity between the reanalysis,
forecast, and forecast error networks.
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3 RESULTS AND DISCUSSION

3.1 Spatial patterns of error correlation
networks

The forecast error networks of different climate vari-
ables are shown in Figures 3a–d. They exhibit defi-
nite significant spatial patterns of degree, unlike ran-
dom networks (Figure 4). This indicates the presence
of an underlying systematic or random process that
leads to spatio-temporally interrelated errors. We see that
the degree distribution of the forecast error networks
(Figure 4) have long right tails, indicating that few nodes
have very high degrees. We focus on the high-degree nodes
in the forecast error networks of Figure 3, which are impor-
tant regions affecting the behaviour of the forecast error
patterns of the whole region. Since the network measure
degree counts the number of links (representing pairwise
interactions) of each node, the dominant errors causing
a pattern of influence on the forecast of multiple regions
show up as a particular pattern of locally or distantly con-
nected high-degree nodes in the network. We note that
the spatial pattern of weighted degree corresponding to

weighted networks of forecast error, constructed using
the absolute values of the significant correlations as link
weights for the different climate variables (Supporting
Information Figure S1), are similar to those obtained from
the unweighted error networks (Figure 3a–d).

In the case of both the wind components at 850 hPa
(U850 and V850), the part of the western North Pacific
Ocean adjacent to southern China and the Maritime Con-
tinent has the highest degree (Figure 3a,b). Furthermore,
we find that the connections of these high-degree nodes
are limited to the nodes in this region only (Figure 5a,b).
The mean absolute forecast errors of U850, V850, and Z850
in Figure 2a–c show that the region a bit more north of the
highest degree regions of the wind error networks is asso-
ciated with large error in the western Pacific subtropical
high (WPSH). Though the area of the WPSH in Figure 3a,b
shows higher degree than most of the other regions, it
appears that the southern boundary of the WPSH exhibits
the highest correlated error structures, as seen from the
region of the highest degree. WPSH is an important cir-
culation pattern that affects the Asian summer monsoon
and the tropical cyclone activities in the highly active
western North Pacific Ocean basin. Recent studies (Qian

F I G U R E 3 (a–d) Spatial patterns of network measure degree for networks constructed from mean absolute model bias corrected 5-day
forecast error data for the June–July–August season of the climate variables (a) zonal wind component at 850 hPa (U850), (b) meridional
wind component at 850 hPa (V850), (c) geopotential at 850 hPa (Z850), and (d) outgoing long-wave radiation (OLR). (e–h) Same (a)–(d), but
for networks constructed from fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis data for the
JJA season of the climate variables: (e) U850, (f) V850, (g) Z850, and (h) OLR. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 4 Degree distribution comparison of forecast error network (FE) with Erdös–Rényi (ER) network and spatially embedded
random network (SERN) for (a) zonal wind component at 850 hPa (U850), (b) meridional wind component at 850 hPa (V850), (c)
geopotential at 850 hPa (Z850), and (d) outgoing long-wave radiation (OLR). [Colour figure can be viewed at wileyonlinelibrary.com]

et al., 2013; Magnusson et al., 2019; Tang et al., 2021) have
shown that subsequent track forecast errors of tropical
cyclones are strongly sensitive to small initial errors in the
predictions of the WPSH, which can fluctuate on synop-
tic time-scales, and, therefore, are prone to non-systematic
errors (Tang et al., 2021). Gao et al. (2022) also showed
that there are systematic biases in the WPSH forecasts,
such as a smaller area and an eastward and southward
shift of location. The predictability of WPSH is a prerequi-
site for the improved prediction of not only western North
Pacific tropical cyclones but also the Asian summer mon-
soon rainfall (Wang et al., 2013). The small high-degree
region over southwest India is locally systematic or corre-
lated and may be related to the wind errors associated with
monsoon onset over India.

However, the region of the WPSH is not seen to
exhibit a high degree in the forecast error network of Z850
(Figure 3c). Instead, we see a high degree in the region of
the equatorial central Pacific Ocean, along with a lighter
patch of comparatively lower degree in the equatorial

Indian Ocean. These regions are also associated with large
mean forecast errors in Z850 (Figure 1c) and show diverg-
ing wind error fields. This suggests that the error might
be related to the intertropical convergence zone (ITCZ),
as also seen in the mean absolute forecast error of OLR
(Figure 2d). The connections of the high-degree nodes
in the equatorial central Pacific region are limited to the
nodes in the same region (Figure 5c), although the connec-
tivity structure appears to be much smoother than those
of the wind error networks (Figure 5a,b). Furthermore,
even though all the forecast error networks (Figure 3) are
assortative (i.e., high-degree nodes have a tendency to be
connected to high-degree nodes), as seen from Support-
ing Information Table S1, the Z850 forecast error network
(Figure 3c) in particular has a very high degree assorta-
tivity of r = 0.8, indicating more homogeneity than the
other networks. This homogeneous large-scale coherent
structure in the Z850 error network is, in particular, sim-
ilar to the geopotential height perturbation at 850 hPa of
the zonal wave number 1 equatorial Kelvin wave (Žagar
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F I G U R E 5 Partial degree associated with the regions in yellow boxes showing the areas connected to those regions in the (a) zonal
wind component at 850 hPa (U850), (b) meridional wind component at 850 hPa (V850), (c) geopotential at 850 hPa (Z850) forecast error
networks shown in Figures 3a–c respectively. [Colour figure can be viewed at wileyonlinelibrary.com]

et al., 2016; Lee and Huang, 2020), which is believed to
be the main driver of the Madden–Julian oscillation sys-
tem (Kikuchi et al., 2018; Raphaldini et al., 2021). This
suggests that the coherent error pattern in Z850 is pos-
sibly due to significant uncertainties in both weather
forecasts and climate models, associated with a lack of
direct observations of wind profiles and the representa-
tion of the unbalanced tropical circulation consisting of
inertio-gravity waves (Žagar et al., 2015; Žagar et al., 2016).

The forecast error network of OLR (Figure 3d) shows
multiple regions of very high degree. There are three sepa-
rate patches of high degree in the Pacific Ocean: two in the
Northern Hemisphere and one just below the Equator. The
grid points in the Maritime Continent and northwest India
and Pakistan also exhibit high degree. Moreover, parts
of the western Indian Ocean along the Somalian coast,
extending latitudinally from 10◦ S up to the Arabian Sea in
the north, also have high degree. This high-degree region
in the western Indian Ocean coincides with the path of
the cross-equatorial southwesterly low-level Somalian jet,
which is a primary source of moisture for the Indian
summer monsoon. We find the regions connected to all
the aforementioned high-degree regions by computing the
partial degree of some nodes within the region (Figure 6a,b
and Supporting Information Figure S2). It is observed that
the three high-degree regions in the Northern Hemisphere
are interconnected to each other, in spite of being sepa-
rated by very long distances (Figure 6a and Supporting
Information Figure S2a,b). A similar interconnectivity pat-
tern is observed among the high-degree regions in the
western Indian Ocean, the Maritime Continent, and the
Pacific Ocean region centred around 160◦ W below the
Equator, although the number of links is comparatively
less (Figure 6b and Supporting Information Figure S2c,d).
These high-degree regions are observed to be associated
with the longitudinal extents where the vertical veloc-
ity changes sign – that is, the transition zones between
the ascending/descending limbs of the Walker circulation,
as shown in the longitude versus height plots of vertical
velocity for the ENSO neutral years (Figure 6c,d), classified

on the basis of the Oceanic Niño Index (NOAA, 2022). Fur-
thermore, the high-degree OLR error connectivity pattern
is sensitive to the ENSO phases. For example, the pattern
during the warm and cold phases of ENSO is compara-
tively weaker than the ENSO neutral years (refer to Sup-
porting Information Figure S3). This is possibly because
the system is more sensitive during weakly forced years
(i.e., without an El Niño or La Niña event). ENSO phases
are known to affect the Walker circulation, which further
strengthens the argument that the coherent OLR error pat-
tern is associated with the Walker circulation. This relation
to the Walker circulation points towards cloud biases in the
forecasts that lead to systematic errors in the simulation of
the ITCZ, as seen from Figure 2d.

The error network analysis of the Asian summer mon-
soon region and adjacent oceans during the boreal sum-
mer thus reveals that the important drivers of the mon-
soon system, such as the WPSH, tropical circulation, and
the Walker circulation, are significant sources of forecast
errors in different climate variables in the medium-range
forecasts. However, a possible mechanism suggesting that
the error sources in all the climate variables investi-
gated may be related is that the misrepresentations of
ocean–atmospheric interactions (Li and Xie, 2014) and the
thermodynamic processes in the equatorial Pacific might
induce errors in the Walker circulation, which in turn
affect the predictability of the WPSH (Chung et al., 2011;
Wang et al., 2013; Toh et al., 2018) and then show up as dif-
ferent topological patterns in the forecast error networks.

In view of the aforementioned discussion, an impor-
tant finding is that forecast errors can be highly correlated
over very long distances, such as those observed in the
OLR error network. The distribution of the geographical
distances of the links in the respective error networks, cal-
culated using the Haversine formula for spherical Earth
projected on to a plane, fits well to a power law distribution
for most networks, indicating the presence of long-range
error connectivity (Supporting Information Figure S4).
This further emphasizes the significance of performing an
analysis of the spatial correlations of forecast error.
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F I G U R E 6 (a, b) Partial degree associated with the regions in yellow boxes showing the areas connected to those regions in the
outgoing long-wave radiation (OLR) forecast error network shown in Figure 3d. (c, d) Longitude versus vertical velocity plots at different
pressure levels of fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis June–July–August
climatology of vertical velocity (Pa⋅s−1) for El Niño–Southern Oscillation neutral years between 1980 and 2020 for the longitudinal range of
35◦ E–120◦ W, averaged over (c) 10◦ N–17◦ N and (d) 0◦–10◦ S. Negative values indicate upward motion (ascent), whereas positive values
indicate downward motion (sinking air). The regions of high degree in (a) and (b) coincide with regions with vertical velocity where vertical
velocity changes sign, denoted by corresponding black dashed lines in the upper and lower rows, and shaded grey boxes in (c) and (d).
[Colour figure can be viewed at wileyonlinelibrary.com]

3.2 Effect of statistical relationships
in reanalysis/forecast data on error
correlations

Following from the aforementioned discussion, it is impor-
tant to understand whether the spatio-temporal connectiv-
ity pattern of the error is inherited from the connectivity
structure of the observed or predicted climate observable.
In other words, for a given climate variable, whether the
existence of a high statistical dependency between two
regions may cause a correlation between their predictabil-
ity skills due to common errors arising from the same
process that connects them. In terms of climate network,
this question transforms to whether the interaction struc-
ture of reanalysis (and forecast) data resembles that of the
forecast error data.

We compute CCF to count the fraction of common
links between the reanalysis, forecast (Supporting Infor-
mation Figure S5), and forecast error networks (Figure 3)
of the different climate variables (Table 1). We see that the
connectivity structures of forecast error networks have a
varying degree of similarity with corresponding reanalysis

or forecast networks for different climate variables. For
instance, the similarity between the forecast error net-
work and reanalysis network is the highest for Z850
(CCF(R,FE) ≈ 0.8), less similar for OLR, and least similar
for the wind components U850 and V850. This indicates
that, for a given climate variable, if two regions have a
high statistical interdependency between them, their pre-
dictability skills may not be correlated. It can be inferred
that, for Z850, the underlying climate phenomena respon-
sible for the interaction pattern in the reanalysis data is
highly likely to be the cause of the correlations between
the forecast errors. This is, however, only partially the case
for OLR, and is even less so for the wind components. The
underlying climate interactions responsible for the spa-
tial coherence patterns of the reanalysis/forecast data are
outside the current scope of this work.

It must be mentioned that there is high, although not
exact, resemblance between the reanalysis and forecast
networks (CCF(R,F) ≈ 0.9); that is, the state-of-the-art
ERA5 system simulates the real climate system well. How-
ever, it must be clarified that the 5-day forecast error net-
works do not simply reproduce the excess/missing links
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T A B L E 1 Common component function (CCF) values
between forecast error (FE), reanalysis (R) and forecast (F)
networks of zonal wind component at 850 hPa (U850), meridional
wind component at 850 hPa (V850), geopotential at 850 hPa, and
outgoing long-wave radiation (OLR).

Variable CCF(R,FE) CCF(F,FE) CCF(R,F)

U850 0.580 0.579 0.909

V850 0.535 0.527 0.881

Z850 0.808 0.784 0.937

OLR 0.620 0.620 0.858

between the reanalysis and forecast network (Supporting
Information Figure S5). This can be verified by compar-
ing the pattern of the difference in degree of reanalysis
and forecast networks (Supporting Information Figure S6)
with Figure 3. Except for Z850 (Supporting Information
Figure S6c), the error networks of other variables bear little
resemblance with the degree difference pattern between
reanalysis and forecast. The degree difference for U850
(Supporting Information Figure S6a) shows missing inter-
actions in the western North Pacific Ocean. Several dif-
ferences between the reanalysis and the forecast networks
of wind (Supporting Information Figure S6a,b) also occur
in the northern Indian Ocean, and the monsoon-affected
regions of south India, southern China, and the Maritime
Continent. Errors related to overestimation/underestima-
tion of links in the ITCZ can also be seen in the degree
difference between reanalysis and forecast networks of
OLR (Supporting Information Figure S6d). However, as
our purpose here is not the evaluation of climate interac-
tions predicted by models (Steinhaeuser and Tsonis, 2014;
Boers et al., 2015; Gregory et al., 2022; Dalelane et al., 2023),
we do not seek a detailed understanding of the differences
between the reanalysis and forecast network connectivity
structure. But from our aforementioned discussion, it is
clear that the topological structure of the forecast error cor-
relation network of the climate variable indeed highlights
the primary source of structured error in that variable,
which may not be revealed from the connectivity structure
of the variable itself.

4 CONCLUSION

Understanding error properties is a very important aspect
of data assimilation and numerical weather forecasting. In
this article, we have used a methodology based on com-
plex networks to study the spatially coherent structures of
the forecast errors of different climate variables. By intro-
ducing the concept of error networks to represent error
correlations, we were able not only to visualize the N × N

error correlation matrix on an N-grid-point geographical
space but also perform an in-depth analysis of the local and
global effects of errors by applying measures derived from
graph theory. This innovative approach allowed us to char-
acterize the spatial heterogeneity present in the error prop-
erties of different climate variables, which further revealed
the key error source regions, thereby demonstrating the
importance of studying the spatially varying component of
the error.

Using one of the basic network centrality measures, the
degree, which counts the number of (highly correlated)
connections a node has with other nodes of the network,
we highlighted the effectiveness of the network-based
approach to study error correlations. We illustrated using
examples of some typical variables, namely, the zonal (U)
and meridional (V) components of wind and geopoten-
tial (Z) at 850 hPa, and OLR, that their respective error
correlation networks showed definite spatial patterns of
degree that are significantly different from that of ran-
dom networks. This implied the presence of significant
spatially coherent structures in forecast error data. Such
coherent structures indicate the existence of underlying
systematic or structured random processes that give rise
to a relationship between errors. Our analysis performed
on the Asia-Pacific region for the JJA period revealed the
dominant errors in the medium-range forecasts of the cli-
mate variables. In particular, from the wind forecast error
networks, we found that the southern boundary of the
western North Pacific subtropical high exhibits high cor-
related errors, whereas the Z850 error network revealed
errors in the representation of the tropical circulation. We
found that the high-degree regions in the OLR error net-
work coincide with the ascending/descending limbs of
the Walker circulation during the neutral ENSO years,
whereas the spatial connectivity gets strongly reduced dur-
ing warm and cold phases of the ENSO. This suggested
that errors in OLR forecast errors might be associated with
cloud biases in the ITCZ. In contrast to the wind and
geopotential error networks, which exhibited a large struc-
ture of correlated errors, the OLR error network reveals
several distant regions of high degree connected to each
other. The distribution of the geographical distances cor-
responding to the links of the error networks are mostly
heavy tailed, indicating the presence of a significant num-
ber of long-distance connections between errors of differ-
ent regions, which is an important result.

In conclusion, our work demonstrates that the analy-
sis of the spatial coherent patterns of forecast errors can
provide an initial understanding of the origin of the errors.
Such a study specifically designed to investigate the spa-
tial properties of forecast errors has not been conducted
previously, to the best of our knowledge. The framework
of error networks introduced in this article can be a very
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promising diagnostic tool in this direction. As described
earlier, the use of one of the basic network measures, the
degree, already provides clear insights into the sources of
the forecast error in different climate variables. It may be
speculated that further understanding of the spatial prop-
erties of errors can be obtained using several other complex
network measures (not shown here). In the following,
we outline some network measures that can be used to
derive other quantities of interest from the error correla-
tion matrix. Mean geographical link distance (Supporting
Information Figures S4 and S7), which calculates the mean
of the spatial great-circle distances of a node to all its con-
nected neighbours (Malik et al., 2012; Boers et al., 2013;
Gupta et al., 2021), can be used to obtain an estimate of
correlation length scale associated with each grid point
(Ingleby, 2001; Pereira and Berre, 2006). The triangular
or hexagonal structure of error correlations can be stud-
ied using measures of cliques and clustering in networks
(Donges et al., 2009; Newman, 2010; Gupta et al., 2021).
Diagnosis of the main direction and intensity of the local
correlation anisotropies is interesting to evaluate the prop-
erties of heterogeneous covariance formulations (Pereira
and Berre, 2006). This can be studied using network mea-
sures characterizing the spatial directedness of connec-
tions, such as edge anisotropy (Molkenthin et al., 2017) and
edge directionality (Rheinwalt et al., 2016). It must be men-
tioned here that these network measures may be affected
to varying levels by the artificial boundaries introduced to
conduct a regional analysis, because of which a correction
procedure to remove boundary effects should be applied
(Rheinwalt et al., 2012). However, it is more appropriate
to compute measures such as the mean geographical link
distance and edge anisotropy for a global network to get
a correct estimation, in which case boundary correction is
not necessary.

Additionally, one can study vertical correlations in a
similar fashion to the horizontal correlations shown here.
The method can also be extended to analyse multivariate
correlations using the concept of a network of networks
(Donges et al., 2011) instead of univariate correlations as
performed here. A future scope of the work is to extend
the analysis to the whole globe and to conduct a detailed
investigation on the seasonal dependence of the coherent
error structures, as well as their dependence on the ENSO
forcing. Furthermore, it is instructive to conduct this anal-
ysis for longer lead times of forecast; that is, subseasonal
time-scales.
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