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A B S T R A C T   

Understanding the behavioral response dynamics to risks is important for informed policy-making at times of 
crises. Here we elucidate two response channels to Covid-19 risk and show that they weakened over time, prior 
to the availability of vaccines. We employ fixed-effects panel regression models to empirically assess the rela-
tionship between actual Covid-19 risk (daily case numbers), the perceived risk (attention paid to the pandemic 
via related Google search requests) and the resulting behavioral response (personal mobility choices) over two 
pandemic phases for 113 cities in eight countries, while accounting for government interventions. Prolonged 
exposure to Covid-19 reduces risk perception which in turn leads to a weakened behavioral response. Attention 
responses and mobility reductions across all three mobility types are weaker in the second phase, given the same 
levels of actual and perceived risk, respectively. Our results provide evidence that the risk response attenuates 
over time with implications for other crises evolving over long timescales.   

1. Introduction 

Understanding the behavioral response of individuals to systemic as 
well as personal risks is key for assessing the scope and effectiveness of 
societal adaptation and identifying the need for effective policy- 
interventions. Individuals navigate risk-based tradeoffs between per-
sonal costs and benefits which impact not only themselves but also so-
ciety more broadly. Profound systematic threats such as the spread of 
infectious diseases or anthropogenic climate change unfold on longer 
timescales and require both sustained awareness and behavioral 
adjustment from individuals such as engagement with public in-
terventions designed to mitigate risk (e.g. compliance with preventive 
health interventions). Meta-analyses as well as experimental and 
observational studies suggest that the perception of risk is a decisive 
factor for behavioral change (Ferrer and Klein, 2015; Sheeran et al., 
2014). However, risk perception can evolve dynamically over time as 
individuals reevaluate risks and the estimated impacts on their lives as 
more information becomes available or their priorities shift (Loewen-
stein and Mather, 1990; Betsch et al., 2020). Moreover, personal risk 

perception does not necessarily reflect an objective risk as it is influ-
enced by a number of complex psychological and emotional factors 
(Loewenstein and Mather, 1990; Slovic et al., 1980; Wang et al., 2022; 
Duong et al., 2021; Man et al., 2019; Bavel et al., 2020; Gollwitzer et al., 
2020). Understanding the evolution of risk perception over time and the 
resulting behavioral patterns is key for designing policy interventions 
which remain effective as personal responses evolve. At the same time a 
robust assessment of risk responses is challenging due to data constraints 
and a complex landscape of possible personal adaptation measures to a 
number of health and environmental risks. 

The outbreak of the Covid-19 pandemic presents a crucial opportunity 
to obtain insights into behavioral responses to risk and to explore the 
dynamic development of risk perception after prolonged exposure. A 
growing body of evidence suggests that pre-existing risk perceptions 
shaped behavioral responses to Covid-19 (Qin et al., 2021; Chan et al., 
2020; Schneider et al., 2021; Savadori and Lauriola, 2020). After the 
outbreak of the pandemic, risk perception increased (Neuburger and 
Egger, 2021; Wise et al., 2020), leading for example to low travel in-
tentions, high compliance with preventive measures and an intention to 
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accept a vaccine once it became available (Caserotti et al., 2021). How-
ever, the dynamic development of risk perception over time and the 
resulting behavioral impacts generally and more specifically in the case of 
Covid-19 are still understudied (Wang et al., 2021; Leppin and Aro, 
2009). The majority of existing time series analyses of Covid-19 focus on 
observational data from two to four time points between January and 
August 2020 or cover one place or country only (Wang et al., 2021; 
Savadori and Lauriola, 2022; Kashima and Zhang, 2021; Dönges et al., 
2022). 

Here we use the Covid-19 pandemic to empirically assess the rela-
tionship between weekly actual risk, risk perception and behavioral 
responses for 113 cities in eight countries from April 2020 to March 
2021. As of March 2021, the World Health Organization had confirmed 
more than 116 million reported Covid-19 cases and more than 2.7 
million deaths worldwide (WHO, 2023b). This international emergency 
constitutes a particularly suitable case study for quantitatively investi-
gating risk responses across countries for three main reasons. First, the 
virus newly emerged and spread rapidly around the world, posing a 
comparable threat to all countries included in the study. Second, during 
the timeframe of the pandemic assessed in this study (April 2020 to 
March 2021), vaccines were not available to the general public. With no 
known effective medicines available, prevention and self-protection 
were the only feasible risk mitigation responses, yielding a clear 
rational behavioral response to the threat posed by Covid-19: Social 
distancing, reducing personal contact and staying at home. This makes 
the Covid-19 pandemic suitable to empirically measure risk mitigation 
behavior as opposed to other threats where strategies to mitigate risk 
might vary. Third, the Covid-19 pandemic prominently disrupted nearly 
every aspect of everyday life for more than one year before vaccines 
became available, making it a suitably long time period to study the 
dynamic response of risk perception and behavioral response, including 
potential risk normalization. Risk normalization describes the process of 
gradually lowering perception of a risky or dangerous behavior or 
circumstance such that it becomes acceptable over time (Lima et al., 
2005; Parkhill et al., 2010) and is for example explained as a psycho-
logical response to cope with prolonged exposure to a threat (Lima et al., 
2005; Lima, 2004; Richardson et al., 1987). 

Our empirical approach is embedded in a simple theoretical frame-
work (Fig. 1) based on three main components: actual risk, risk 
perception and behavioral response. Actual risk is measured using the 
weekly total of new Covid-19 cases per 100,000 inhabitants in each city 
which we assemble from a variety of public data sources (compare SI 
Appendix, Section 1, Table S1). Following recent literature (Barrios and 
Hochberg, 2021; Ahundjanov et al., 2021; 2020), we use attention paid 

to the Covid-19 pandemic as an indicator for the perceived risk. Spe-
cifically, we employ Google Trends to extract the weekly number of 
Google searches for a number of pandemic-related keywords (“Covid”, 
“Corona”, “Covid-19”, “Covid19”, “Coronavirus”) on the smallest 
geographic resolution available for each city (compare Materials and 
Methods, SI Appendix, Section 1, Table S2). With a market share of more 
than 90% and handling more than 2 trillion search requests every year 
(Parmy Olson, 2022), Google is by far the most popular search engine. 
Google Trends data have been used to empirically analyze attention 
patterns and behavioral changes such as spatiotemporal trends in food 
poverty (Eskandari et al., 2019), impact of the Olympic games on 
physical activity (Bauman et al., 2021), trading behavior in financial 
markets (Preis et al., 2013), awareness to poor air quality (Burke et al., 
2022) or antipsychotic drug search intensities (Ågren, 2021). In the 
context of Covid-19, Google Trends data have been used, inter alia, in 
machine learning models that forecast pandemic hotspot locations 
(Ward et al., 2022), to compute measures of well-being in Chile (Díaz 
et al., 2022) and changes in pornography habits during quarantine 
(Zattoni et al., 2021). In our analysis of Google Trends data we start our 
attention time series in mid-April, when all countries included in the 
analysis reported multiple thousand cumulative cases (Our World in 
Data, 2023b). We choose this start date rather than the emergence of the 
first Covid-19 cases because the general novelty of the virus caused 
excessive global attention prior to the relevance of local pandemic risk. 
Time-series of Covid-19 searches show a peak and decline in Google 
searches across countries prior to this date, indicating that our choice 
limits the potential bias of global interest in the pandemic (see SI Ap-
pendix section 3.j for details). Our main findings are qualitatively robust 
to this specific choice of start date (see SI Appendix, Fig. S19). Google 
requests containing the chosen keywords (“Covid”, “Corona”, “Covid- 
19”, “Covid19”, “Coronavirus”) are provided by Google Trends in a 
normalized format ranging from zero to 100, where 100 corresponds to 
the day with the maximum search requests in a location and the time-
frame of interest (here April 2020 to March 2021). The variable can 
therefore be interpreted as the weekly search interest as percent of the 
maximum search interest. Finally, we employ mobility data to assess the 
behavioral response. Social distancing and stay-at-home measures were 
the dominant strategies to contain Covid-19 before the availability of 
vaccines, engagement with which are both reflected clearly in re-
ductions in personal mobility (Haug et al., 2020; Arenas et al., 2020; 
Hsiang et al., 2020; Chinazzi et al., 2020; Kraemer et al., 2020; Tian 
et al., 2020; Ku et al., 2021; Kraus and Koch, 2021). Moreover, survey- 
based, regional studies (Wang et al., 2021; Hotle et al., 2020; Parady 
et al., 2020; Airak et al., 2023) indicate that higher risk perception is 

Fig. 1. The theoretical framework underlying the 
empirical assessment of the overall risk response. 
We hypothesize that Covid-19 cases pose the actual risk. 
If Covid-19 cases increase the perceived risk increases 
(positive impact). The perceived risk is approximated by 
attention paid to the Covid-19 pandemic, measured as 
Google search requests for the terms “Covid”, “Corona”, 
“Covid-19”, “Covid19” or “Coronavirus”. We further 
hypothesize that, if risk perception is high, there is a 
stronger behavioral response (positive impact), implying 
reductions in personal mobility as individuals adjust their 
behavior to avoid the risk. Previous research has shown 
that, if the behavioral response increases, contact is 
avoided and cases decrease (inverse impact). Overall, we 
obtain a negative feedback loop in which a higher risk 
perception inhibits the spread of Covid-19. (icons: Fla-
ticon.com)   
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associated with reduced mobility, providing further foundation for the 
choice of mobility changes as a measure of behavioral changes to risk. 
Data on personal mobility comprise the daily percentage changes in 
private vehicle, public transportation and pedestrian use in comparison 
to a pre-pandemic reference day recorded by Apple Maps (Apple, 2021). 

Our theoretical framework (Fig. 1) addresses the impact of the sub-
jective risk perception on behavior by separately assessing the response 
of risk perception to actual risk and the behavioral response to risk 
perception. This framework hypothesizes a positive effect of the level of 
actual risk (new Covid-19 cases) on the level of perceived risk (attention 
paid to pandemic via Google search requests, Fig. 1, arrow a), as well as 
a positive impact of the perceived risk on the behavioral response. In our 
analysis a strong behavioral response means a strong mobility reduction 
(Fig. 1, arrow b). A direct impact of behavioral changes, specifically 
changes in mobility, on case numbers (Fig. 1, arrow c) has been iden-
tified in previous literature with more protective behavior leading to 
smaller case numbers (Kraemer et al., 2020; Ilin et al., 2021; Soucy et al., 
2020; Levy et al., 2022). 

From the time series alone, considerable changes in attention paid to 
the pandemic and personal mobility are notable for all countries, with 
periods of high case numbers generally coinciding with high attention 
and personal mobility reductions (Fig. 2). We empirically validate the 
theoretical framework using fixed effects panel regression models. In all 
our models we explicitly account for government policy interventions, 
as non-pharmaceutical interventions had a large impact on both 
mobility behavior and attention paid to the pandemic. To this end, we 
use data on the stringency of governmental interventions regarding 
Covid-19 which is provided by the Oxford Covid-19 government 
response tracker (Hale et al., 2021). This measure is a combination of 
different indicators documenting the strictness of various government 
policies which primarily restrict the behavior of the population such as 
movement restrictions, transport closures, gathering restrictions or 
closures of schools and other facilities of public life. It has been used, for 
instance, to control for lockdown interventions in studies linking 
meteorological factors to Covid-19 transmission (Sera et al., 2021) or 
analyzing the impact of Covid-19 on global trade (Verschuur et al., 
2021). We control for these policy measures in a number of ways: by 
including all indicators separately (Fig. S7), focusing specifically on the 
indicators most related to mobility change (Fig. S8), as well as by using a 
Principal Component Analysis to obtain composite indicators which 
contain over 60% of variation in the policy data (Figs. S10, S11). Our 
results are robust to these alternative ways of controlling for government 
interventions. Furthermore, we include city fixed effects to control for 
time-invariant differences between cities. In the model estimating the 
relationship between perceived risk and mobility we additionally 
consider controls for weekly Covid-19 cases, daily maximum tempera-
ture and precipitation as well as a season dummy to capture potential 
risk-independent weather and seasonal influences on the mobility 
behavior. 

We interact the principal independent variable of interest (actual risk 
as Covid-19 cases or perceived risk measured as attention for Covid-19) 
with a pandemic phase dummy to estimate the impacts for two distinct 
phases that mark the developments of the pandemic. For simplicity, we 
consider two main pandemic phases: a primary phase directly following 
the local outbreak of the disease, and a later phase following a period of 
relatively low case numbers (often over the summer of 2020). These 
phases are identified algorithmically for each country (see Materials and 
Methods) and indicated by the green horizontal lines in Fig. 2. 

2. Materials and methods 

Here we give an overview of the data used in this study and of our 
empirical strategy. 

2.1. Covid-19 case data – Acquisition and preprocessing 

For each city included in this analysis we start with data on daily 
cumulative Covid-19 cases which are considered either on city level 
resolution or on the next higher local organizational structure (munic-
ipality, county) depending on data availability. A map showing all the 
cities included in the analysis is included in the SI Appendix, Section 1, 
Fig. S1. A table displaying the specific resolution and data source for 
each country can be found in the SI Appendix, Section 1, Table S1. We 
use Covid-19 cases as the principle measure for danger from Covid-19. A 
possible alternative would be to use Covid-19 mortality data. However, 
Covid-19 mortality data are subject to similar reporting errors but may 
contain additional errors (Van Noorden, 2022; Miller et al., 2022) as the 
attribution of deaths to Covid-19 has been shown to vary across coun-
tries and time (WHO, 2023a; Our World in Data, 2023a), especially in 
the earlier stages of the pandemic. In general, Covid-19 case and mor-
tality data show very similar trends over time (SI Appendix, Section 3.i, 
Fig. S17). 

The daily number of new cases for each city is computed as the 
difference between the cumulative cases on day d and the cumulative 
cases on the previous day d − 1. If this difference is negative, measure-
ment errors have occurred in the cumulative case data and the affected 
day is excluded from the analysis. Large spikes in the timeseries can also 
occur and may be due to delayed reporting in the number of cases. To 
identify these possible additional measurement errors, we apply a sim-
ple algorithm to detect outliers in their local environment. First, we 
identify days on which case numbers are more than 3.0 median absolute 
deviations away from the median of the data, a common methodology in 
the literature (Leys et al., 2013). The median absolute deviation 
approach (MAD) was first introduced by Leys et al. (2013) and has been 
found to be more robust in comparison to, for example, standard de-
viations away from the mean. All days identified with the MAD 
approach are labeled as potential outliers. A second MAD outlier 
detection is performed on a 20-day window centered on each of these 
days. Only if this day is again labeled as an outlier, is it removed. This 
process, which is also visualized in the SI Appendix, Section 2, Fig. S3, 
ensures that local outliers are detected and removed in a computation-
ally efficient way, despite the large variation in the time series. 

For each city, population data are used on the same resolution as the 
case data (see SI Appendix, Section 1, Table S1) to compute the daily 
new cases per 100,000 inhabitants. This normalization ensures compa-
rability between the differently sized cities. Finally, we compute the 
weekly average of new Covid-19 cases per 100,000 inhabitants which is 
used as the main variable of interest in the empirical analysis. Using the 
weekly aggregation is more robust against reporting errors and delays in 
comparison to daily case data and matches the resolution of the Google 
search data. 

2.2. Google search data 

We employ Google Trends (“Google Trends”, 2023) to extract the 
attention paid to the Covid-19 pandemic. Google Trends provides an 
anonymized, categorized and aggregated sample of Google search data 
(Rogers, 2016). We use the search words “Covid”, “Corona”, “Covid-19”, 
“Covid19” and “Coronavirus” such that all web search requests that 
contain either term are included in the timeseries. The search terms are 
specific enough to very likely only capture attention related to the 
Covid-19 pandemic and at the same time generic enough that all types of 
pandemic-related inquiries are included. By contrast, it is not possible to 
use the names of specific Covid-19 variants that evolved over the course 
of 2020/2021 as sole search words: The search terms “alpha” and 
“delta” do not necessarily indicate attention for the Covid-19 pandemic 
as they are related to a number of other popular search requests in the 
time period of interest (compare SI Appendix, Section 1, Table S3 for 
details). Unlike other language related to Covid-19 such as “pandemic”, 
“mask” etc., the terms “Covid”, “Corona”, “Covid-19”, “Covid19” and 
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Fig. 2. Time series of personal mobility (driving, walking, transit), Google searches related to the pandemic and Covid-19 cases from April 2020 to March 
2021 by country. The country time series are computed as the population-weighted average of the time series for all cities in the country included in the data. The mobility data 
consist of navigation requests made to Apple maps for three different transport types (driving, walking, transit) and are reported as deviations of a baseline day before the 
outbreak of Covid-19 (13th January 2020). Weekly Google searches for “Covid”, “Corona”, “Covid-19”, “Covid19” or “Coronavirus” are reported as percentage changes 
with respect to the maximum search requests in the observation period. The time series of Covid-19 cases for each country shows new cases per 100,000 inhabitants. The green 
line marks the algorithmically detected end of the first pandemic phase. The phases are identified on the country-level as opposed to the city-level as policies and the overall 
pandemic dynamic are likely to affect a country on the national level. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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“Coronavirus” are used internationally which enables comparisons 
across languages. 

The highest available spatial resolution of the search data differs by 
country and region. For each city, search data on the highest available 
resolution are used, which usually corresponds to the county level for 
the United States and to the region or state level for the other countries 
included in this analysis. Details are provided in the SI Appendix, Sec-
tion 1, Table S2. We use data at the highest temporal resolution avail-
able, which is weekly. Google Trends does not provide information on 
the raw requests but the data are scaled between zero and 100, where 
100 corresponds to the maximum search interest for the time and 
location selected. Due to this relative normalization, the timespan for 
which the data are scraped makes a difference as the maximum might 
change. We extract all data from the week starting on 5th April 2020 to 
the week starting on March 14th 2021. The start date of the analysis is 
April 19th 2020 to avoid the influence of large-scale international 
pandemic-related incidents at the beginning of the Covid-19 outbreak. 
Please refer to the SI Appendix section 3.j, Fig. S18 for further discussion 
and robustness checks on the start date. The end date is informed by the 
advancements of the Covid-19 vaccination campaigns. Because of the 
scaling of the data we do not have any information about the total search 
volumes and cannot compare absolute interest across cities and coun-
tries. However, we can make statements about how the local trends 
evolve in comparison to each other. 

As Google processes billions of search queries, requests for non-real- 
time data from Google Trends, like those used in this study, are 
answered with a random sample of the data. There has been some evi-
dence of inconsistencies in the trends depending on which sample batch 
the user is assigned (Behnen et al., 2020). To ensure robustness in our 
data, we scrape the same timeseries multiple times on different days and 
using different IP addresses to get allocated a different batch of trends 
data. For each city, we assemble thirteen realizations of the timeseries 
and generate multiple country-level timeseries, averaging over possible 
combinations of the city-level data. The results show very limited vari-
ation for the search terms in which we are interested (see SI Appendix, 
Section 1, Fig. S2). 

2.3. Transportation trend data 

The data on personal mobility trends used in this study originate 
from the mobility trends reports data set collected and published by 
Apple (2021). For three different transportation types – driving, walking 
and transit – the daily percentage change of requests for directions in 
Apple Maps is reported. Given that the mobility data are reported as the 
percentage change from a reference day for each type of transport mode 
separately, they do not allow insights into mode switching. The first day 
of reporting is January 13th 2020 which provides the reference day. 
However, our analysis is centered from April 2020 to March 2021 when 
the urgency of the local pandemic development dominated global news 
related to Covid-19. For all timeseries, we compute the weekly average 
to match the temporal resolution of the Google search data. The mobility 
data set comprises instances on different levels of granularity such as the 
country, region and city levels. In this study we only consider cities for 
which all three forms of transport are reported and for which daily 
Covid-19 case data are available on a high resolution. This results in data 
from 113 cities in eight countries. Six out of the eight countries are 
European (Belgium, Germany, Netherlands, Sweden, Switzerland, 
United Kingdom), with the remaining countries originating from a 
different continent each (Brazil, United States). 

2.4. Algorithmic identification of pandemic phases 

Countries have experienced the Covid-19 pandemic in distinct pha-
ses. In this study, we focus on the differences between the first Covid-19 
wave, which started immediately after the local outbreaks of the disease 
(mid-January to late-February for all countries included in this study), 

and a later phase which for most countries started sometime after the 
summer of 2020, at different times across countries. Doing so allows us 
to compare behavioral responses across countries prior to the wide- 
spread availability of vaccines which changed optimal self-protection 
strategies and personal risk levels. 

We distinguish the first and later pandemic phases based on the 
identification of peaks in the number of new cases for each country, as 
policy interventions and general pandemic trends often have national 
effects. To that end, a shared, daily country time series based on all the 
cities of each country is computed as follows: 

casesC,d =

∑n
m=1casesm,d
∑n

m=1popm
⋅100, 000 (1) 

where casesC,d denotes the new cases per 100,000 in country C on day 
d and n stands for the number of cities in country C included in the 
analysis. casesm,d denotes the new cases in city (municipality) m on day d 
and popm corresponds to the population of city m, having applied the 
preprocessing described above. 

The resulting time series for each country are then further smoothed 
using a triangular moving average with filter size 7, corresponding to an 
aggregation over the course of one week. Compared to a simple moving 
average the triangular moving average results in less noise while 
retaining peaks. Next, we identify local peaks in the timeseries using the 
“findpeaks()” algorithm of the R package pracma (“Package PRACMA” 
[2014] 2021). For the peaks, we apply two restrictions: First, that the 
minimum height of a local peak is larger or equal to the 25th quartile. 
Second, that the distance between two local peaks amounts to at least 
100 days. The beginning of the first pandemic wave is set to be April 
19th 2020 in the main analysis. The end is defined as the minimum in 
cases between the first and the second identified peak. The country time 
series and pandemic waves are shown in Fig. 2, the algorithmic identi-
fication of the cutoff date is visualized in the SI Appendix, Fig. S4. 

2.5. Covid-19 government response controls 

The data on government policy measures with regard to Covid-19 
originate from the Oxford Covid-19 Government Response Tracker 
(OxCGRT) (Hale et al., 2021) which tracks 23 indicators in five different 
groups (Containment and closure policies, Economic policies, Health 
system policies, Vaccination policies, Miscellaneous policies) for all 
countries and dates included in our analysis. It has been employed to 
control for policy influences in multiple other studies (e.g. (Haug et al., 
2020; Sera et al., 2021; Petherick et al., 2021; Duan et al., 2021)). All 
indicators are described in detail in the OxCGRT codebook (2020a). In 
addition, the OxCGRT data set contains aggregated indices summarizing 
different aspects of the government response, measured as the number 
of relevant indicators the government has acted upon as well as the 
degree of the response, in a single number (0–100). In order to control 
for the effect of government policy on mobility behavior we use the 
“stringency” index which records the strictness of the containment and 
closure policies (C1 to C8; OxCGRT codebook (2020a)) as well as the 
presence of public information campaigns (H1; OxCGRT codebook 
(2020a)). Using the stringency index allows us to effectively control for 
the impact of the most disruptive measures to mobility without causing 
collinearities in our models by including many indicators that are very 
similar. We take the weekly average of the stringency index in our main 
models to adjust it to the resolution of the Google search data. Infor-
mation on how to calculate the specific indices can be found in the 
OxCGRT index methodology (Oxford Covid-19 Government Response 
Tracker, 2020b). 

In the main specification we use the national stringency index for 
consistency. However, for three countries included in the analysis 
(Brazil, United Kingdom, United States) there is a subnational stringency 
index available. For these countries, we conduct a robustness analysis 
using subnational stringency (compare SI Appendix, Section 3.g, 
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Table S8, Fig. S13-S14), results of which agree with the main analysis. 
As a further robustness check we conduct the analysis using the in-

dicators C1 to C8 as individual controls (see SI Appendix, Section 3e, 
Fig. S7, Tables S6, S7). Additionally, we use indicators that directly 
affect local transport (public transport closure and internal movement 
restrictions) as explicit controls and combine the remaining indicators to 
a residual index (see SI Appendix, Section 3e, Fig. S8, S9). Finally, we 
perform a robustness check using a dimensionality-reduced represen-
tation of the different measures obtained through principle component 
analysis (see SI Appendix, section 3.f, Fig. S10, S11). 

2.6. Population and climate data 

To compute the new Covid-19 cases per 100,000 inhabitants it is 
necessary to pair the case data with population estimates for each 
location included in the analysis. The population data for each place are 
used at the same granularity as the case data (compare SI Appendix, 
Section 1, Table S1). Population data on city level originate from the 
simplemaps World Cities Database (Simplemaps, 2021) and the United 
Nations Statistics Division (UNdata, 2021). The county population data 
(2019) for the United States originate from the US census (2021). 

In order to control for climate influences on the transport changes, 
the daily precipitation and daily maximum temperature for each city are 
approximated. We here use daily maximum temperature instead of daily 
average temperature to avoid bias through cold nights that have no 
influence on the mobility behavior in the day itself. Daily maximum 2m 
air temperature data on a 0.25-degree grid originate from the ERA-5 re- 
analysis data set (Dee et al., 2011). Daily precipitation data stem from 
the Global Precipitation Climatology Project (Bolvin et al., 2009; Huff-
man et al., 1997) and are also used on a 0.25-degree grid. Each city is 
approximated as a latitude-longitude point and paired with the daily 
precipitation and maximum temperature of the grid cell in which it falls. 
Daily precipitation and maximum temperature for each city are then 
aggregated to the weekly level to match the time resolution of the 
Google search data. 

2.7. Empirical strategy 

The goal of our empirical strategy is to measure the behavioral 
response to Covid-19 risk in two separate analyses: First we evaluate the 
impact of the actual risk (Covid-19 cases per 100,000) on the perceived 
risk (attention paid to the pandemic, Google searches for “Covid”, 
“Corona”, “Covid-19”, “Covid19” and “Coronavirus”). Next, we assess 
the relationship between the perceived risk on a behavioral change 
(personal mobility behavior). 

To assess the overall impact of the actual Covid-19 risk on the 
perceived risk, we apply a fixed effects panel regression model exploit-
ing within-city changes in the weekly mean of new Covid-19 cases per 
100,000 inhabitants (independent variable, casesm,w with m indicating 
municipalities (cities) and w standing for weeks) and analyzing the 
respective percentage change in risk perception of the pandemic 
(dependent variable, Rm,w, Google searches). Rm,w expresses the weekly 
number of Google search requests for the search words as a percentage 
of the day with the maximum search requests in the timeframe. The 
inclusion of city fixed effects (σm) strengthens the inference of causality 
in the findings by limiting omitted variable bias arising from time- 
invariant differences between cities (Huntington-Klein, 2021; Auff-
hammer, 2018; Hsiang, 2016; Dell et al., 2013). Furthermore, the SC,w 

variable describes the stringency index (compare section 2.5) which is 
used to account for the strictness of government response measures to 
Covid-19 that likely affect attention patterns for each country C. To 
estimate the effect in the different pandemic phases, we interact dummy 
variables for the country-specific first (p1) and second (p2) phase with 

the independent variable. The coefficients α1 and α2 are the main co-
efficients of interest (Fig. 3, Overall results). The overall model thus 
reads as 

Rm,w = α1casesm,w⋅p1 +α2casesm,w⋅p2 + ηSC,w + σm + ∊m,w. (2) 

To conduct separate analyses for each country, the data are split and 
the same regression model is applied for each country individually 
(Fig. 3) 

In a second step, we analyze the impact of the perceived risk, 
measured as attention paid to the pandemic, on mobility behavior using 
a similar fixed effects panel regression model. The dependent variable 
here is the percentage change in Apple maps direction requests (Mm,w) in 
relation to the reference day for either driving, walking or transit. We 
conduct separate regressions with each of the transport types as the 
dependent variable using the same model. The independent variable is 
the risk perception for the pandemic (Rm,w, Google searches). As in the 
model described above, we use interaction terms with phase dummies p1 
and p2 to estimate the overall effect for the first and second phase 
respectively and use city fixed effects and the stringency control. In 
addition, we use controls for mean weekly maximum temperature 
(Tmaxm,w) and average weekly precipitation (Prm,w) in city m as well as a 
season dummy (Dw) to control for weather and seasonal influences on 
mobility behavior. Furthermore, the weekly average of new Covid-19 
cases per 100,000 inhabitants is here used as a control. The overall 
model thus reads as 

Mm,w = α1Rm,w⋅p1 + α2Rm,w⋅p2 + βPrm,w
+γTmaxm,w + ζcasesm,w + ηSC,w + θDw + σm + ∊m,w

(3) 

Again, α1 and α2 are the main coefficients of interest (Fig. 4, Overall 
response). For analyses on the country level, the data are again split and 
the same model is applied to the individual country-level datasets 
(Fig. 4). 

Some cities included in our analysis might be subject to common 
shocks, for example through government policies released on country- 
or state levels. In the country-level regressions, we hence cluster stan-
dard errors by state. The exception is the United Kingdom, where all 
cities are in England and errors are therefore clustered on the city-level. 
For the overall panel regressions, we perform robustness checks by 
clustering errors on the city-, state- and country-level, respectively 
(compare SI Appendix, Section 3, Table S4, Table S5). The city-level 
clustering likely underestimates the error, the country-level clustering 
likely overestimates it. 

Estimating the relationships between Covid-19 cases, perceived risk 
and mobility behavior changes in two separate regressions avoids con-
cerns regarding endogeneity as the associations between actual risk 
levels and behavioral response could imply causality in either direction. 
In the main model, we use Covid-19 cases as a control variable. How-
ever, as this variable is a potentially endogenous control term which 
might bias the results (Bellemare, 2015), we conduct a robustness check 
excluding this control which largely preserves the results (compare SI 
Appendix, Section 3, Fig. S6). 

As an alternative to the linear model with interactions for the first 
and second pandemic phases, we employ binned fixed-effects panel 
regression models (for details see SI Appendix, Section 3.h). This 
approach flexibly allows for nonlinearities and hence provides a 
robustness check as to whether the relationships we assess are approx-
imately linear. As an additional check, we provide scatter plots of the 
demeaned variables. Both checks for equation (2), analyzing the influ-
ence of new Covid-19 cases per 100,000 inhabitants on attention paid to 
the pandemic, show near-linear relationships for both phases for the 
overall panel (SI Appendix, Section 3.g, Fig. S14, S15). The robustness 
tests for equation (3), assessing the impact of attention paid to the 
pandemic on mobility, show near-linear decays of mobility with rising 
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attention in the first pandemic phase (SI Appendix, Section 3.g, Fig. S14, 
S16). In the second phase, we find some non-linearities, in particular a 
saturation response with higher attention levels. However, the com-
parisons of average effect sizes across pandemic phases are preserved 
using this non-linear approach. Overall, the linear modeling approach 
has the advantage of allowing for a precise comparison between the 
pandemic phases, as they are estimated within the same model which 
facilitates interpretation. 

2.8. Indicator data and correlation analysis 

We qualitatively assess a range of indicators related to de-
mographics, mobility infrastructure, government trust and Covid-19 
policy that potentially contribute to the heterogeneity in the risk re-
sponses observed between countries. National income data, measured as 
the pre-tax national per capita income at purchasing power parity in 
2020, as well as an inequality indicator, defined as the national income 
share of the bottom 50%, both originate from the World Inequality 
Database (2021). The share of the population older than 65 years (POP 
> 65; Fig. 5) is provided in the World Bank Database (Worldbank, 2021). 
Data on the number of vehicles registered per 1000 inhabitants in 2019 
(Vehicles p. 1000; Fig. 5) stem from the European Commission (2021) 
for the EU countries, the Federal Highway Administration for the US 
(FHWA, 2021) and the national Ministry for Infrastructure for Brazil 
(2020 data) (Ministério da Infraestrutura, 2021). The rail usage indi-
cator is based on the million passenger-kilometers traveled by rail in 
2019 and originates from the OECD (2021b). The rail usage indicator is 
available for all countries but Brazil. The survey-based trust in govern-
ment indicator is also provided by the OECD and reports the share of 
people who report having confidence in the national government in 
2020 (OECD, 2021c). The population density in metropolitan areas 
(Metrop. Density; Fig. 5) is here computed as the average population 
density of the core area of the key metropolitan regions for each country 
(inhabitants per km2). A metropolitan area is defined as a functional 
urban area with a population of 250,000 or more. For more information 
on the data collection and methodology please refer to the respective 
literature (OECD, 2012; 2021a). The indicators relating specifically to 
Covid-19 policies (overall government response, health containment, 
economic support) originate from the Oxford Covid-19 Government 
Response Tracker (Hale et al., 2021) (compare section 2.5). 

To get an indication for the relationship between each effect 
measured in this study (attentiveness to Covid-19, driving response, 
walking response, transit response) in the second pandemic phase and 
each of the indicators described above, we compute pairwise Pearson 
correlation coefficients (Kirch, 2008) which measure linear association. 
The Pearson correlation coefficient ranges from − 1 to 1 where negative 
numbers indicate an inverse relationship and positive numbers a posi-
tive relationship. Coefficients close to zero suggest no linear relationship 
between the variables whereas coefficients close to − 1 or 1 indicate a 
stronger linear relationship. As the sample size in our case is low (eight 
countries) the strength of the correlation should be interpreted with 
caution. When evaluating the directionality of the association it is 
important to consider the desired direction of the response. For example, 
a positive correlation between national income and driving indicates 
that a higher income coincides with a larger (more positive) marginal 
effect of risk perception for the pandemic on driving behavior, meaning 
that if the income is high, driving is reduced less, translating into less 
risk-aware behavior. To facilitate interpretation, Fig. 5 shows the effect 
for the social indicator if the response is more protective (i.e. high risk 
perception, strong reduction in driving, walking and transit). Please 
refer to the SI Appendix, Section 5 Fig. S20 for a figure visualizing the 
raw correlations. 

3. Results 

3.1. Decreasing risk perception over the course of the pandemic 

Assessing the overall impact of weekly Covid-19 cases on the 
perceived pandemic risk across all included cities empirically confirms a 
direct positive relationship between the actual risk and the perceived 
pandemic risk (arrow a, Fig. 1): With rising case numbers, the perceived 
pandemic risk increases. The marginal effect in weekly attention paid to 
the pandemic, measured as the change in the percentage of Google 
search requests relative to the maximum search interest for Covid-19 
related terms, across all cities is positive in both pandemic phases 
(slope of the lines, Fig. 3). However, the marginal effect is larger in the 
first phase. Across all cities, an additional Covid-19 case per 100,000 
inhabitants leads to a 0.33 percentage point (p.p.) increase in perceived 
risk. For the second pandemic phase, this effect amounts to only 0.06 p. 
p., translating into a 82% reduction in perceived risk from the first to the 
second pandemic phase. To ensure comparability between both phases, 
we limit the case numbers of the second phase to the maximum case 
level that is reached in the first phase. The analysis with the full second 
phase is shown in the SI Appendix, Section 3.b, Fig. S5. For this analysis 
all trends shown in Fig. 3 are preserved but the gaps between phases are 
even more pronounced. The regression table for the overall response 
shown in Fig. 3 can be found in the SI Appendix, Section 3.a, Table S4. 

This global panel represents an average response across all cities and 
as such does not consider country-level heterogeneity due to, for 
example, differences in the strength of the local Covid-19 outbreaks and 
their containment strategies. Furthermore, most cities in the global 
panel are located in the US, implying that the panel is most strongly 
informed by the US response. To shed light on possible heterogeneity in 
risk perception across countries, we conduct separate analyses at the 
country level (Fig. 3). For six out of eight countries, the marginal effect 
of Covid-19 cases on the perceived risk is stronger in the first than in the 
second phase. The magnitude of the effect and the differences between 
the first and the second phase are however heterogeneous across 
countries. For example, Switzerland experiences large reductions in the 
marginal perceived risk between the first and second phase of around 
88%: During the first phase, an additional Covid-19 case per 100,000 
inhabitants led to a 8.44 p.p. increase in perceived risk whereas during 
the second phase this increase amounts to only 1 p.p.. In contrast, the 
Netherlands show a smaller decrease of around 28% (5.43 p.p. in the 
first phase compared to 3.93 p.p. in the second phase). 

Brazil and Sweden do not display a reduction in the marginal 
perceived risk between the first and second phase but an increase. Brazil 
shows negative marginal effects in the first phase (-0.65 p.p.) and pos-
itive effects in the second phase (0.13p.p.). Sweden displays an increase 
in perceived risk from the first to the second phase. One possible 
explanation could be the unusual governance responses to Covid-19 
taken during the first phase of the pandemic by international compari-
son. The Brazilian president publicly denied the threat posed by Covid- 
19, pursuing a defiant rhetoric and actively working against contain-
ment strategies (Bello, 2020). Multiple scientific studies have com-
mented on the lack of a coordinated health policy response of the 
Brazilian government to Covid-19, especially in the first phase after the 
outbreak (Ferigato et al., 2020; Lancet, 2020). Meanwhile, the Swedish 
Public Health Authority has adopted what was described as a “herd 
immunity approach” (Claeson and Hanson, 2021), imposing little to no 
restrictions on the public (Bjorklund and Ewing, 2020) and limiting 
tracing and testing. This could suggest that the governmental response 
had some impact on the perceived danger of the virus. 

3.2. Weaker behavioral response in second pandemic phase across all 
mobility types 

As the next step, we assess the impact of the perceived risk 
(approximated by attention paid to the pandemic) on mobility behavior 
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for three different transport types: driving, transit and walking. The 
mobility data captures changes in Apple maps navigation requests with 
respect to a reference day (January 13th 2020), i.e. they capture the 
number of navigation requests as percent of the pre-pandemic baseline. 
Walking and driving are personal mobility modes and as such different 
from public transport which may be perceived as more infection-prone 
by individuals (Helfers et al., 2022; Kellermann et al., 2022). We 
assess changes in all mobility types to capture the full heterogeneity of 
behavioral response to perceived risk. 

Applying the regression model to a panel containing all cities shows 
that elevated search trends lead to reductions in mobility across all 
transport types, corresponding to a strengthening of the behavioral 
response as perceived risk increases as hypothesized in Fig. 1. 
Comparing the mobility response across the first and second pandemic 
phase, we find smaller mobility reductions, i.e. a weaker effect in the 
second phase for the overall panel across all transport types. For driving 
the marginal effect decreases by around 52%. The marginal effect is 
measured as the change in navigation requests, which are reported as 
the percentage change with respect to a reference day, in response to 
changing risk perception. An increase in Google search interest by 1 p.p. 
leads to a 0.58 p.p. reduction in driving in the first phase, compared to 
0.28 p.p. in the second phase. For walking we observe a similar pattern 

with a decrease in the marginal effect of around 48% between phases 
(reduction of 0.66 p.p. to a reduction of 0.34 p.p.). For transit, we 
observe a mobility reduction of 0.35 p.p. in the first phase (negative 
marginal effect) and an increase in mobility of 0.27 p.p. in the second 
phase (positive marginal effect). The regression table for the overall 
response shown in Fig. 4 can be found in the SI Appendix, Section 3, 
Table S5. 

Analyses for the individual countries generally confirm a strong 
mobility reduction in the first pandemic phase in response to an 
increased risk perception across all transport types. The impact on the 
different transport types is heterogeneous with the most affected 
transport type varying by country. For driving, we find the strongest 
significant negative marginal effect size of around 0.79 p.p. in the first 
phase for Switzerland, followed by the Sweden (0.76 p.p.) and the 
United States (0.74 p.p.). The negative effect on transit is strongest in 
Sweden (0.7 p.p.), for walking we also observe the strongest negative 
effect in Switzerland (0.67 p.p.). In accordance with the panel including 
all cities, the mobility response across all transport types on the country 
level is generally much less pronounced in the second pandemic phase. 
This suggests that over time, the self-protective behavioral response to 
perceived risk levels weakened. A few exceptions to this pattern are 
observed, such as in Sweden, which displays a larger negative marginal 

Fig. 3. Perceived risk increases with higher case 
numbers but this response is weaker in the sec-
ond pandemic phase. The slope of each line corre-
sponds to point estimates of the impact of weekly Covid- 
19 cases per 100,000 inhabitants on risk perception for 
each pandemic phase after explicitly accounting for 
government interventions. Risk perception is approxi-
mated as attention for the pandemic, measured by Google 
search requests for pandemic-related terms. Weekly 
search requests are normalized between 0 and 100 for 
each city where 100 marks the day with the maximum 
requests. The left-hand y-axis shows the residual risk 
perception for isolating the effect of the Covid-19 cases. 
Cases are limited to the maximum case numbers of the 
first phase to ensure the comparability of risk levels. 
Marginal histograms show the count of days with a 
certain number of cases for the first and second phase 
(right-hand y-axis). Overall, the increase in risk percep-
tion is substantially larger in the first phase (red line), 
indicating a normalization of Covid-19 risk over time 
(Overall response). On the country level, this holds for all 
countries with a conventional Covid-19 policy response. 
The gap in risk perception between the first and second 
phase is heterogeneous across countries. (For interpre-
tation of the references to color in this figure legend, 
the reader is referred to the web version of this 
article.)   
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effect in the second phase across all transport types. As in our inter-
pretation of Fig. 3, the unusual “herd-immunity” approach of the 
Swedish government to the pandemic is a likely source of this 
discrepancy. 

Looking at the combined effect emerging from Fig. 3 and Fig. 4 (as 
visualized in the SI Appendix, Section 4 Fig. S19) we find evidence for a 
layered effect: From the first to second pandemic phase not only did the 
gap between actual and perceived risk widen, but the behavioral 
response to perceived risk also weakened. Looking at the combined ef-
fect for risk perception and the effect on the driving response, for Ger-
many, the Netherlands, Belgium and Switzerland the overall risk 
response weakened predominantly through the channel of changes in 
attention, whereas for Brazil the United Kingdom and United States a 
weakening of the mobility response appeared more prominent. The 
combined effects for risk perception and the walking/transit responses 
are similar. Overall, we can interpret this as all countries but Sweden 
becoming less self-protective in the second pandemic phase. As large- 
scale vaccine distribution only started at the end of the second 
pandemic phase, the dominant strategy to avoid contracting Covid-19 
remained one of reducing contacts and mobility throughout the time- 
series assessed here. The weakening of the response along both the 

risk perception and the behavioral response dimensions therefore pro-
vides evidence for a risk normalization process: Despite a comparable 
threat, the self-protection effort decreased. 

3.3. Risk normalization over time – qualitative analysis of possible 
contributing factors 

Even though there is evidence for risk normalization for the majority 
of countries, the extent to which the responses weaken is heterogeneous 
across countries and transport types. Risk perception has been shown to 
be influenced by a variety of social and cultural factors (Duong et al., 
2021; Savadori and Lauriola, 2020; 2022), and the burden of Covid-19 
has been distributed unequally across socioeconomic groups (Levy 
et al., 2022; Lin et al., 2021; Carrión et al., 2021). To qualitatively 
explore the heterogeneity in the risk responses in the context of possible 
contributing factors, we compute Pearson correlations between each of 
the marginal effects assessed in this study (effect of Covid-19 cases on 
risk perception, as well as risk perception on driving/walking/transit) 
and a range of indicators. Specifically, we consider demographic vari-
ables (national income, inequality, share of population over 65), in-
dicators related to mobility infrastructure (metropolitan density, 

Fig. 4. Behavioral response to risk perception: 
Mobility is reduced but to a lesser extent in the 
second pandemic phase. The point estimates show the 
impact of risk perception (weekly attention paid to the 
pandemic, measured as the percentage of Google search 
requests for ““Covid”, “Corona”, “Covid-19”, 
“Covid19” and “Coronavirus” relative to the maximum 
search requests in the reference period) on the change in 
mobility (p.p.) for three different transport types (driving, 
transit, walking) and each pandemic phase. Mobility is 
measured in relation to a reference day in January 2020. 
Overall, the reduction of mobility in response to rising risk 
perception is substantially larger in the first phase (red 
points) for all transport types compared to the second 
phase (blue points), indicating a normalization of Covid- 
19 risk over time (Overall panel). On the country level, 
the majority of countries show a weaker response across 
all transport types in the second pandemic phase, 
providing evidence for lower self-protection efforts in 
response to the perceived risk over time. The transport 
type most affected varies by country. (For interpretation 
of the references to color in this figure legend, the 
reader is referred to the web version of this article.)   
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registered vehicles per 1000 inhabitants, rail usage), a survey-based 
government trust indicator and multiple Covid-19 policy indicators 
reporting the extent of health containment policy, the level of economic 
support and the overall government response. 

We find that higher national income coincides with a higher risk 
perception response and a stronger mobility response (i.e. stronger 
mobility reduction) across all transport types (Fig. 5). A plausible 
mechanism here is that high income may – among other privileges – 
increase the ability to work from home and thus reduce the need to 
travel. This could point to economic barriers in the ability of citizens to 
engage in risk-mitigating behavior. The number of vehicles per 1000 
inhabitants is most strongly correlated with the transit response: The 
reduction in transit is stronger if people have more cars available. 
Traveling in a car alone bears less infection risk than using public 
transport, this might indicate a substitution behavior among citizens 
with the economic means to afford private vehicle usage. Higher rail 
usage is correlated with a low risk perception response and low mobility 
responses, potentially pointing to a greater dependency on transport in 
countries with strong rail usage. A higher metropolitan density is also 
correlated with weaker mobility reductions for transit, potentially 
reflecting similar mechanisms. 

High risk perception also correlates with an older population which 
could indicate an awareness for the age-specific risk burden of Covid-19. 
High government trust is associated with a more protective response 
across risk responses and all transport types. A stronger mobility 
response is also typically seen in countries with a weak governmental 
activity (government response, economic support, health containment). 
As we control for government interventions in the model, this could 
indicate that the mobility response is reduced if government guidelines 
are in place that people can rely on. 

4. Discussion 

In this study, we found evidence for risk normalization of Covid-19 
over time across more than 100 cities from eight countries. Separate 
analyses of the relationship between the actual risk and risk perception 
as well as between risk perception and mobility behavior revealed a 
weakening behavioral response via both channels: Not only does the 
impact of Covid-19 cases on risk perception lessen over time but the 
response of mobility behavior to risk perception for three different 
transport types also weakens (i.e. mobility decreases less). In contrast to 
other survey-based studies concerned with risk behavior, we here use 
high resolution, high frequency data to assess the relationship between 
actual risk, perceived risk and behavioral response. This empirical 
approach allows us to analyze unprompted behavior, mapping natural 
reactions with little to no expectation bias. Furthermore, the high res-
olution of the data means that our analysis is informed by the behavior 
of more users than for example a survey-based set-up could capture. The 
high-frequency (weekly) data allow to identify dynamics across time. 
Specifically, we use pandemic-related Google searches to approximate 
the perceived risk. 

Data on Covid-19 cases are subject to known measurement errors 
which present potential concerns for our analysis. Our methodology 
controls explicitly for potential sources of random errors in two ways: by 
removing days with negative changes in cumulative case numbers and 
by detecting strong outliers in their local environment (see Methods 
section for further details). Using these methods likely limits sources of 
random error in our results. However, potential systematic errors may 
exist which should also be considered. First, different testing capacities 
across locations mean that data on Covid-19 cases likely underestimate 
actual Covid-19 cases to different extents across regions. Nevertheless, 

Fig. 5. Possible explanatory variables for hetero-
geneity in risk perception and mobility responses 
across countries. The opaqueness of each circle in-
dicates the strength of a Pearson correlation between the 
socioeconomic indicator listed in the row and the mar-
ginal response given in the column (see SI Appendix, 
Section 5 Fig. S21 for details). Colors indicate whether 
the indicator is high (purple) or low (orange) for a more 
protective response, with more protective meaning high 
risk perception and a larger reduction in driving, mobility 
and transit. Most notably, a more protective response 
coincides with higher trust in the government. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   
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our use of fixed-effects regressions, which remove time-invariant dif-
ferences across regions, should account for such temporally invariant 
biases. Of greater concern is the possibility that testing capacity or ef-
ficacy changed over time within countries, a potential source of bias in 
our analysis. Most likely is that testing capacity increased between the 
first and second phase which could be interpreted as a source of our 
estimation of a weaker behavioral response to rising cases in the second 
pandemic phase. Nevertheless, it is worth noting that the actual number 
of Covid-19 cases was unknown throughout the pandemic, and the re-
ported number of Covid-19 cases therefore constitutes the primary 
measure which was presented to and perceived by the public as an in-
dicator for current risk. Given that our analysis is primarily concerned 
with the behavioral response to a given level of perceived risk, the 
number of reported Covid-19 cases is arguably therefore the correct 
measure to use to assess this mechanism, regardless of whether it under- 
estimated the true number at different stages of the pandemic (Hasell 
et al., 2020). 

Even though Google Trends provides insights into attentive behavior 
via one of the most globally ubiquitous search engines, search terms 
related to the pandemic may struggle to discriminate between search 
requests pertaining to the local rather than global development of the 
pandemic risk. It is possible that global events related to the pandemic 
triggered local search interest independently of local case numbers. To 
limit this bias, we chose to start the analysis in April 2020 as opposed to 
January 2020 when more than one million cases worldwide had been 
reached and after the observed global peak in Google searches 
(Fig. S18), reframing attention paid to the pandemic from an attention- 
worthy international news item to a crucial tool for assessing personal 
risk. One potential issue here is that by choosing a later start date to 
avoid general interest in the pandemic, we start our analysis at points 
during which case numbers were peaking or declining, changing the 
interpretation of the effects identified in the first phase. Nevertheless, 
additional tests demonstrate that our results are robust to changes in the 
start dates. Furthermore, Google Trends data are only accessible in a 
normalized format where search requests are scaled between zero and 
100 across the sample period in each place. Having no insights into the 
absolute numbers of search requests, we cannot directly compare places 
and instead compare relative developments. 

Following recent literature (Barrios and Hochberg, 2021; Ahundja-
nov et al., 2021; 2020) we use attention paid to the pandemic as a proxy 
for risk perception, in line with the rationale that the demand for in-
formation on a topic is indicative of the personal concern (Barrios and 
Hochberg, 2021). This measure provides a simple, globally applicable 
indicator of perceived risk from Covid-19 and may encapsulate 
perceived risks along multiple dimensions such as direct risks to physical 
health as well as indirect risks to personal financial stability. Dis-
tinguishing between these different aspects is beyond the scope of our 
analysis but offers a fruitful avenue for future work. Moreover, it is 
possible that changes in Google searches do not necessarily reflect 
changes in perceived risk but rather changes in the general need for 
information over the course of the pandemic (e.g. because less new and 
useful information is available to manage the risk). However, all new 
Covid-19 variants which arguably generated extensive public interest 
and need for protective behavior occurred in the second phase, yet we 
still observe a weaker information seeking behavior in the second phase. 
As a further possible pathway, fewer Google searches and reduced 
mobility behavior could also be an indicator of pandemic fatigue (Sin-
clair et al., 2021; Petherick et al., 2021; Harvey, 2020; Zhang et al., 
2023) defined by the WHO as: “A natural and expected reaction to sus-
tained and unresolved adversity in people’s lives which expresses itself as 
emerging demotivation to engage in protection behaviors and seek COVID-19 
related information […]” (Copenhagen: WHO Regional Office for Europe, 
2020). Both lowered levels in risk perception and pandemic fatigue 
could plausibly explain our finding of the weakening behavioral 
mobility response over the course of the pandemic. While our method 
robustly identifies this phenomenon, the available data precludes a clear 

distinction of the specific mechanism via which the impact of Covid-19 
cases on attention paid to the pandemic weakened. 

The mobility data originate from Apple and report the daily per-
centage change of requests for directions on Apple maps. Therefore, only 
users that own an Apple device and choose to employ Apple maps for 
navigation are recorded in the data. Apple holds a large share of the 
operating system market (27.5% as of November 2022 (StatCounter, 
2021), with slightly larger or smaller shares in some of the individual 
countries of our analysis (SI Appendix Section 6, Table S9). Considering 
the demographics of Apple customers, we can expect that our results are 
slightly biased towards the personal mobility behavior of younger users 
and those with a relatively higher income (Mobile Ecosystem Forum, 
2020). Furthermore, given that the mobility data are based on routing 
requests, they comprise only journeys where the user employed navi-
gation services. Of particular relevance is the fact that the available data 
provide only percentage changes in mobility from the levels observed on 
a fixed start-date. In the absence of data on the usual level of mobility, 
our results must rely on the fact that seasonal patterns in mobility can be 
properly controlled for in our regression analysis. We use continuous 
weather variables (temperature and precipitation) and seasonal 
dummies to account for such patterns, but seasonal variation may 
continue to influence our results. Similarly, the freedom of movement 
was severely impacted by non-pharmaceutical government in-
terventions during the Covid-19 pandemic, and it is important to note 
that although we apply explicit controls for the stringency of govern-
ment restrictions (Hale et al., 2021) at different levels in multiple 
robustness tests (compare SI Appendix, Section 3.e-3.g), the diversity 
and complexity of the national restrictions make it impossible to 
perfectly control for their influence. 

Our study purposefully focuses on the time before Covid-19 vacci-
nations were widely available to the general public during which 
mobility reduction was the dominant strategy to avoid infection risk. 
Despite remaining vaccination gaps, personal risk for Covid-19 has 
declined substantially in the majority of countries around the world 
since the development and large-scale distribution of vaccines (compare 
SI Appendix, Section 7, Table S10). As the risk declines and societies 
recover, the majority of behavioral changes are likely to revert to their 
pre-pandemic patterns. Nevertheless, Covid-19 remains an insightful 
use-case for understanding how humans respond to prolonged threats. 
The correlations with social indicators found here, in particular those 
showing greater behavioral response with higher government trust and 
greater income, can be indicative of factors encouraging and enabling 
protective behavior in other crises. The World Health Organization 
published lists of the most urgent health threats and challenges of the 
coming decade (WHO, 2019; 2020). In addition to infectious diseases 
and structural problems in health systems, they list health impacts of 
climate change, noncommunicable diseases and antimicrobial resistance 
as the greatest health threats to humanity. The prevention and mitiga-
tion of each of these threats requires risk awareness and a personal 
behavioral response which implies tradeoffs between personal comfort 
and likely better health and safety outcomes. At the same time, all of 
these problems evolve on long timescales, posing a persistent threat. 
Understanding the mechanisms and dynamics of the behavioral 
response to personal risk is essential to motivate these behavioral ad-
aptations (Ferrer and Klein, 2015; Xu and Peng, 2015). The evidence 
shown here for normalization of Covid-19 risk over time may forebode 
normalization to other threats evolving over even longer timelines and 
having even more subtle warning signs. For example, a slow loss of risk 
perception for the hazards arising from climate anomalies such as a 
declining remarkability of temperature anomalies (Moore et al., 2019) 
could have serious personal and societal consequences given e.g. the 
health impacts of heat stress (Kovats and Hajat, 2008). Further research 
is needed to understand the mechanisms leading to the risk normaliza-
tion and how to best prevent it. 
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