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Reliability of vegetation resilience estimates 
depends on biomass density

Taylor Smith    1   & Niklas Boers2,3,4

Concerns have been raised that the resilience of vegetated ecosystems may 
be negatively impacted by ongoing anthropogenic climate and land-use 
change at the global scale. Several recent studies present global vegetation 
resilience trends based on satellite data using diverse methodological 
set-ups. Here, upon a systematic comparison of data sets, spatial and 
temporal pre-processing, and resilience estimation methods, we propose 
a methodology that avoids different biases present in previous results. 
Nevertheless, we find that resilience estimation using optical satellite 
vegetation data is broadly problematic in dense tropical and high-latitude 
boreal forests, regardless of the vegetation index chosen. However, for wide 
parts of the mid-latitudes—especially with low biomass density—resilience 
can be reliably estimated using several optical vegetation indices. We 
infer a spatially consistent global pattern of resilience gain and loss across 
vegetation indices, with more regions facing declining resilience, especially 
in Africa, Australia and central Asia.

Vegetated ecosystems worldwide are threatened by both intensifying 
land use and the growing impacts of anthropogenic climate change  
such as the increasing frequency and severity of droughts and heat 
waves1. Thoroughly monitoring the resilience of natural vegetation 
to changing shocks and stressors is therefore of crucial importance 
for anticipating and mitigating the impacts of ecosystem shifts,  
most importantly in terms of ecosystem services, food security and 
biodiversity loss2.

A common approach to quantify the resilience of a given system is 
based on estimating its recovery rate from large perturbations3; the less 
resilient a system, the longer it will take to recover. A growing number of 
studies rely on satellite data to understand the climatic drivers of spatial 
variations in ecosystem resilience4,5 and to quantify resilience changes 
through time3,6–8 based on the concept of critical slowing down (CSD). 
CSD refers to the fact that, as a given system loses resilience, the restor-
ing rate to its equilibrium state weakens, which can be measured in 
terms of rising variance and lag-one autocorrelation (AC1)9–12; the latter  
two CSD indicators have also been termed ‘early-warning signals’11. The 
core of the CSD framework is that indicators such as AC1 or variance 
are theoretically related to the recovery rate of the system from large 

perturbations and in that sense to its resilience. CSD hence provides 
a theoretical framework to estimate resilience and variations thereof 
from time series data, even in cases without a catastrophic shift13; more 
direct ways to detect CSD—focusing directly on the restoring rate of 
the linearized dynamics—have also been proposed3,14–16.

CSD has been applied to quantify changes in resilience or sys-
tem stability in a wide range of contexts, including paleoclimate10,17, 
present-day ice sheet dynamics18,19, ocean circulation systems15,20 and 
both global3,6,8 and regional7 vegetation systems. It should be empha-
sized, however, that CSD indicators are not the same as resilience but 
rather serve as proxies for resilience changes. In particular, there may 
in principle be other reasons for increasing variance or AC1 than CSD 
associated with resilience loss. This is why it is important to at least 
investigate both the AC1 and variance together and test whether their 
behaviour is consistent21. Note that, in situations with very high ampli-
tudes of driving noise, CSD-based signs of resilience changes, or pre-
cursor signals of impending critical transitions, can be complemented 
or even replaced by investigations of so-called flickering, which arises 
when—in response to the strong noise forcing—the system begins to 
temporarily jump forth and back between alternative stable states22.
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While several recently used approaches remove the majority of the 
seasonal and long-term nonlinear trend, there remain key differences. 
First, removing a simple linear trend from data with a nonlinear trend 
does not yield a stationary time series; there remains a warping in the 
residual (Fig. 1e,f, black line). This is carried forward into time-explicit 
estimates of AC1; not only is the AC1 in this case higher than the ‘per-
fect’ baseline overall (Fig. 1g,h, blue line), but it also does not increase 
monotonically and shows considerable spurious variations towards 
the bifurcation-induced transition. Second, seasonal trend decom-
position via Loess (STL) (Fig. 1g,h, purple line) has a similar AC1 slope 
as the perfect baseline when considering a simple seasonality model 
(STL slope = 0.9, perfect = 1.15) but overall lower AC1; we interpret this 
as STL overfitting the time series and thus removing too much of the 
actual signal. Finally, the rolling mean and harmonic fit approach very 
closely follows the perfect baseline in the simple example (harmonic 
slope = 1.08, perfect = 1.15) and is still closer to the perfect baseline than 
STL for the more complex example with variable seasonal timing and 
amplitude (Fig. 1b,d,f,h). Both the STL and the rolling mean detrender 
are unstable at the beginning and the end due to the well-known edge 
effects arising from rolling windows (that is, an incomplete number 
of data points are used to infer the slow nonlinear trend). We thus 
infer that, given a long data record (that is, where 2.5 year window can  
be discarded at the beginning and end for a 5 year rolling mean), the 
rolling mean followed by a harmonic fitting approach best reproduces 
the perfectly detrended and deseasoned data (Fig. 1g,h, red line).

It is important to note that optical remote sensing estimates of 
vegetation are highly dependent on surface cover. This means that 
data gaps are common, both over short (for example, clouds) and 
long (for example, winter snow) periods. Not all methods of removing  
trend and seasonality work equally well in the presence of gaps; for 
example, STL29 was not originally designed to handle gaps. While there 
exist gap-aware implementations of the STL algorithm, it remains 
much more sensitive to gaps than a harmonic deseasoning approach. 
Regardless of the specific deseasoning method, it has been common 
practice to interpolate over or fill in missing data to create continuous 
time series. For example, ref. 6 used climatological means to gap-fill 
their vegetation data and ref. 3 used an upwards smoothing approach 
to interpolate over short gaps due to cloud cover. However, such gap 
filling will have knock-on effects on the stability of deseasoning and 
detrending methods and can easily induce biases in CSD-based resili
ence indicators30. In particular, gap filling based on climatology may 
lead to biases in variance and potentially AC1 if the distribution of gaps 
is not stationary. It is also not clear whether gap-filling is truly neces-
sary—for a simple synthetic system (Fig. 1a) it can be shown that adding 
gaps of varying lengths does not bias the AC1 estimate systematically 
(Methods and Supplementary Figs. 1–3).

Adding longer and longer gaps (for example, up to 9 months of 
the year) increases the variability of the relationship between the AC1 
of gappy and gap-free data but does not bias the relationship between  
the true AC1 and the AC1 inferred from the gappy data (Supplementary  
Fig. 2); this also holds true for the variance (Supplementary Fig. 3).  
Further, temporal resampling—as is often done to time-aggregate 
optical satellite data—decreases uncertainties in AC1 estimation and 
implies focusing on longer recovery timescales without biasing the 
AC1 estimates (Supplementary Fig. 4). We thus conclude that resilience  
can in fact be well constrained—given sufficiently long data records—
without relying on any complex interpolation or gap-filling schemes 
that might subsequently bias resilience estimators.

From this we can draw two important conclusions: (1) our pro-
posed deseasoning and detrending methodology is robust against 
data gaps, and (2) data gaps of varying sizes and frequencies found in 
the spatio-temporal field of real satellite vegetation data are unlikely 
to produce a systematic bias in CSD-based resilience indicators, at least 
over sufficiently long time windows. It is important to note that this 
is not necessarily true for all methods of deseasoning or detrending; 

The theoretical relationships between the CSD indicators vari-
ance and AC1 and empirical estimates of the recovery rate after large 
perturbations have recently been confirmed for vegetation systems 
using global vegetation optical depth data3. However, the reliability 
of resilience estimates inferred from satellite vegetation data remains 
difficult to quantify, especially given the wide range of data sets avail-
able to monitor ecosystem health. The role of data aggregation (for 
example, spatial or temporal resolution) in biasing resilience estimates 
is also not well constrained. To obtain continuous records for longer 
periods, data are often constructed by combining signals from different 
satellites and sensors that were active across different time spans23–25. 
As different sensors generally have varying signal-to-noise ratios, this 
leads to non-stationary higher-order statistical characteristics even if 
means and trends are adjusted; this can therefore easily lead to spuri-
ous changes in CSD indicators that might be erroneously attributed 
to resilience changes26.

Even with single-sensor products—for example, the range of  
vegetation indices provided by the Moderate Resolution Imaging 
Spectroradiometer (MODIS) instrument—it is not a priori clear whether 
the data capture the underlying vegetation dynamics sufficiently  
to be suitable for measuring vegetation resilience. Moreover, the  
effect of the level of temporal and spatial aggregation on the  
reliability of inferred resilience changes remains an open question. 
It has recently been shown that resilience estimates cannot easily  
be compared across land-cover types due to different baseline  
values for CSD-based resilience indicators5; the suitability and  
reliability of resilience indicators may also vary across vegetation 
types. Finally, in addition to using different data sets and resilience 
indicators, most studies quantifying vegetation resilience at regional  
to global scales do not agree on the specific methods used to 
pre-process satellite vegetation data before the analyses (for example,  
how to handle data gaps), which may lead to additional biases in 
CSD-based resilience indicators.

In this work, we first compare different data pre-processing  
methods used in recent studies quantifying vegetation resilience  
from satellite data by using synthetic data with known properties. This 
allows us to identify optimal choices for removing long-term nonlinear 
trends and seasonality, both of which can lead to biases in CSD-based 
resilience indicators. We then use Google Earth Engine27 to process 
five MODIS vegetation indices—normalized difference vegetation 
index (NDVI), enhanced vegetation index (EVI), kernel NDVI (kNDVI)28, 
gross primary productivity (GPP) and leaf area index (LAI)—at a range of 
spatial resolutions to examine the impact of spatial aggregation. To do 
so, we use the optimal deseasoning and detrending scheme identified 
with synthetic data in the first step, followed by the calculation of the 
restoring rate λ from both the AC1 and variance. Theoretically, both AC1 
and variance should lead to the same estimate of the recovery rate λ; 
deviations between the two estimates can thus be used to quantify the 
reliability of the corresponding resilience estimate. The translation of 
these methods to the Google Earth Engine27 environment allows us to 
explore the suitability of different vegetation indices for measuring 
the resilience of vegetation systems globally at MODIS-native sensor 
resolution. We then quantify the impacts of the specific vegetation 
index, spatial aggregation and land-cover type on the reliability of 
resilience estimates at the global scale. Finally, we use only those loca-
tions where we find robust resilience estimates to explore recent trends 
in vegetation resilience.

Comparing data processing schemes
To estimate the resilience of a given ecosystem via CSD, the time series 
encoding its dynamics must be approximately stationary—that is, 
long-term nonlinear trends and seasonal signals need to be carefully 
removed. There exist several methods to decompose a time series into 
its long-term nonlinear trend, seasonal and residual components3,4,6,29, 
with commensurate strengths and weaknesses (Fig. 1).
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climatological means are sensitive to variable missing data (for example,  
if only one February during the full time series has data, all other  
February data will conform to that mean), and STL was not designed 
to concisely handle data gaps due to its nested local fitting approach.

The reliability of resilience estimates
A system moving towards a bifurcation-induced transition will slow 
down critically; that is, the restoring forces that bring the system back to 
its equilibrium from continuous, small-scale and random disturbances 
become weaker and vanish at the critical transition point (Methods). 
This should be reflected by increases in both the AC1 and the variance;  
a trend in only one of these two parameters is not enough to confidently 
identify a change in resilience3,21,26.

Based on the theory of CSD and Ornstein–Uhlenbeck processes, 
both AC1 and variance can be used to infer estimates of restoring  
rate λ; we will refer to them as λAC1 and λVar in the following. Both 
estimates should be approximately equal if CSD is applicable and 
the restoring rate is to be interpreted in terms of resilience12,15,21. At 
the global scale, this relationship broadly holds; however, different 
land-cover types show widely varying λVar/λAC1 relationships (Fig. 2), 

indicating that CSD is only appropriate to quantify resilience for certain 
vegetation types.

The degree to which different land-cover types follow the expected 
one-to-one relationship between λAC1 and λVar is closely related to bio-
mass—high-biomass regions tend to have lower correlations between 
λ estimates (Fig. 2e and Extended Data Fig. 1). This pattern holds true 
for the different MODIS vegetation indices (Extended Data Fig. 2) 
and across spatial resolutions (Extended Data Fig. 3). Higher spatial 
resolution data tend to have more gaps overall (Supplementary Figs. 
5 and 6); averaging over gappy or noisy data can improve the correla-
tion between λAC1 and λVar, at the cost of reduced spatial resolution and 
potential mixing of disparate vegetation types within a single spatially 
aggregated pixel. For the examination of global-scale patterns, we 
choose 5 km data, which have also been used in recent publications4,6 
(Fig. 3). Regional- or local-scale analyses may find sensor-native (250 m 
and 500 m) data more appropriate in some contexts; these data can be 
easily produced with our methodology31.

Our results show that CSD-based resilience estimates from MODIS 
vegetation indices (EVI, NDVI, kNDVI, GPP and LAI) are unreliable in 
many land covers—and especially in dense vegetation (Fig. 2 and 
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Fig. 1 | Comparison of three standard deseasoning and detrending methods 
based on two paradigmatic time series examples showing resilience loss. 
a,c,e,g, A simple sine curve is used for seasonality. b,d,f,h, A time- and amplitude-
varying annual seasonality is used. a,b, Sample synthetic time series mimicking 
a seasonal vegetation curve (black line), moving towards a state transition 
(Methods). A version of the model without driving noise is plotted in blue.  
c,d, Stationary synthetic time series created by subtracting the noiseless model 
from the noisy model, that is, creating a ‘perfectly’ detrended and deseasoned 
residual. e,f, Resulting time series after applying standard statistical methods 
of deseasoning and detrending. Red, rolling mean then harmonic seasonality 
removal (Methods); black, remove long-term daily means, then fit a simple linear 

ramp detrender6; purple, remove trend and seasonality via STL29. Grey shading 
indicates the 2.5 year time spans at the beginning and end for which the rolling 
mean and STL residuals are unreliable because of edge effects inherent in  
rolling windows (that is, incomplete data windows in the beginning and end).  
g,h, Five-year rolling AC1 for each deseasoning/detrending method, showing  
that all methods correctly find overall increases, consistent with the model 
system approaching a transition, but with distinct differences in trend stability 
through time. Dashed lines indicate AC1 values based on residuals with less 
reliable detrending, that is, the first and last 2.5 years; shaded areas cover one 
standard deviation from the mean.
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Extended Data Figs. 1–3); hence, any inferences based on trends in AC1 
or variance in those areas should be interpreted with caution (Fig. 3).  
Areas where λAC1 and λVar do not agree broadly cluster in the tropics  
and the high northern latitudes (Fig. 3). Note the particularly low  
agreement between the two λ estimates for evergreen broadleaf  
forests (Figs. 2 and 3 and Extended Data Figs. 1–3); hence, especially 
for tropical rainforests, one should be careful when interpreting CSD 
indicators as reflecting resilience. For wide regions in the tropics,  
the theoretical formulae to infer λ from AC1 and variance yield unde-
fined resilience estimates due to taking logarithms of negative values  
(Methods). It is well known that using NDVI over dense tropical forests 
is problematic due to NDVI saturation32,33; signal saturation damps 
variability and thus leads to biased estimates of vegetation dynamics.  
However, our results show that this problem for tropical forests  
is present not only for the NDVI but also for kNDVI, EVI and LAI, as 
well as GPP to a somewhat lesser degree (Extended Data Figs. 1–3  

and Supplementary Fig. 7). While we use biomass here as an explana-
tory variable for poor resilience estimates, it is likely that other factors 
such as canopy closure could also explain this relationship; whenever 
the vegetation indices do a poor job of capturing ecosystem dynamics, 
resilience estimates will be less reliable.

To ensure that these inferences are robust across deseasoning 
approaches, we have repeated our analysis using STL (Supplementary 
Fig. 8). We find that the spatial patterns of λ estimates broadly agree, 
with the caveat that there are more undefined λ estimates when STL is 
used. This is due to the poor performance of STL when considering time 
series with a considerable number of gaps or too high noise levels; in 
many cases the STL fit results are too sparse to return a usable residual. 
Our detrending and deseasoning approach, based on rolling means and 
harmonic fitting, is somewhat more forgiving, but the overall spatial 
pattern of regions where signals are unreliable is very similar (compare 
Fig. 3 and Supplementary Fig. 8).
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Fig. 2 | Relationship between AC1- and variance-based estimates of the 
recovery rate λ using NDVI data at MODIS-native resolution (250 m).  
a–d, Evergreen broadleaf (n = 10,000) (a), closed shrublands (n = 10,000) (b), 
deciduous broadleaf (n = 10,000) (c) and grasslands (n = 10,000) (d) behave 
distinctly differently, with shrublands hewing closest to the expected one-to-one 
relationship between λAC1 and λVar (red dashed line). See Extended Data Fig. 2  
for other vegetation indices. e, Pearson’s correlation for n = 100,000 points 
(n = 10,000 for each natural land-cover type), compared for all MODIS vegetation 

indices at native sensor resolution (EVI/NDVI/kNDVI, 250 m; GPP/LAI, 500 m)  
(see Extended Data Fig. 3 for a comparison of spatial resolutions). Land covers 
sorted by average above-ground biomass density (AGB)47. Global percentages  
(at 5 km resolution) of natural land-cover types on x-axis label. While most natural 
land-cover types have an overall positive correlation between λAC1 and λVar, some 
land-cover types follow the expected one-to-one relationship much more closely 
than others. CSD-based resilience estimation is problematic for land-cover types 
with lower correlation values.
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Resilience trends
Despite the revealed limitations on resilience estimation at the global 
scale, there remains a large portion of the Earth’s surface where esti-
mates of resilience and its changes via CSD metrics—based on MODIS 
vegetation indices—are viable. Further, we have shown that our method 
of deseasoning and detrending allows us to robustly estimate resilience 
despite gaps in the time series (Supplementary Figs. 2–4). A changing 

number or length of gaps would modify the variance and AC1 through 
time, potentially biasing any inferred changes in resilience26. How-
ever, we do not find a noticeable increase or decrease in the number of  
gaps over a 5 year window size; trends in the number of data points per 
window are limited to ~0.1 point per decade (Supplementary Fig. 9).  
Hence, a changing number of data points should not influence 
global-scale resilience change estimates.

We infer resilience changes—via both the AC1- and variance-based 
estimates of the recovery rate λ—using time windows of 5 years that  
are shifted by 1 year at a time (Methods). We limit this analysis  
to those areas where λVar and λAC1 do not differ by more than a factor  
of 2; only where both λVar and λAC1 have the same trend sign do we  
consider changes in resilience reliable (Fig. 4).

While large parts of the globe fail to produce reliable resilience 
estimates using any tested vegetation index (NDVI, kNDVI, EVI, GPP, 
LAI), there remain substantial regions where trends can be consid-
ered reliable. Eastern and southern Africa have large areas of reduced 
resilience across all indices, potentially driven by drying trends and 
changing human land use34; a multi-index resilience loss is also found 
in Australia (Extended Data Figs. 4–6). Central Asia shows consist-
ent resilience loss across indices over a large area spanning from the 
Caspian sea to Mongolia, with the exception of a contiguous region 
in Kazakhstan showing resilience gains. The Americas show a more 
complex spatial pattern of resilience gains and losses (Fig. 4).

To take into account the combined information from the  
different vegetation indices, we compute the number of indices  
that agree on trend direction (Extended Data Fig. 6). We further  
confirm these results using STL to deseason the data (Supplementary 
Fig. 10); the spatial pattern of resilience gains and losses is similar,  
albeit with fewer inconsistent trends and more undefined trends  
than when deseasoning using a harmonic fitting approach.

Discussion
MODIS data are widely used in studies of vegetation resilience4–7,26,35–38. 
For studying temporal trends in resilience—for example, in the con-
text of the impacts of anthropogenic climate and land use change—
the MODIS vegetation indices (EVI, NDVI, kNDVI, GPP, LAI) have the 
substantial advantage that they are single-sensor products; possible 
biases in resilience trends caused by the merging of signals from dif-
ferent sensors as, for example, for other NDVI25, vegetation optical 
depth23 or radar-based24 data sets can hence be ruled out a priori26. 
However, systematic tests of the suitability of MODIS vegetation indi-
ces for resilience estimation are crucial, in particular regarding (1) 
specific detrending and deseasoning methods, (2) the role of spatial 
aggregation, (3) differences in baseline values of CSD-based resilience 
estimates (for example, due to plant physiology—grasses grow faster 
than trees), as well as in their reliability for specific land-cover types5, 
and (4) differences in reliability of resilience estimates for different 
vegetation indices.

Our synthetic experiment (Fig. 1 and Supplementary Figs. 1–4) 
indicates that the specific means of detrending and deseasoning vege
tation indices into stationary time series can exert strong effects on 
inferred resilience changes. Our proposed methodology is robust to 
multiple different seasonality models (Methods) and has the added 
benefit of working over data with gaps without the need for infill-
ing those gaps which can, in turn, bias CSD indicators. For optical 
vegetation indices—like those from MODIS—gaps are common; a 
pre-processing method that does not rely on interpolation or infill-
ing of climatology to handle data gaps hence minimizes potential  
induced biases in the resulting stationary time series30.

We find—at the global scale—very similar results regarding  
CSD-based resilience estimators and their trends when using  
STL instead of the harmonic deseasoning approach (Supplementary 
Figs. 8 and 10). However, STL is much more sensitive to data with  
frequent or large gaps or data with high noise levels. In this way it may 
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land cover mask (grey) and undefined λ (magenta). Black areas indicate a large 
deviation (less than half or above a factor of 2) from the expected one-to-one 
relationship between λAC1 and λVar. Tropical rainforests and high-latitude boreal 
forest and tundra areas are unlikely to yield reliable estimates of changes in 
resilience based on MODIS vegetation indices. See Supplementary Fig. 7 for the 
same analysis using EVI, kNDVI, LAI and GPP, and Supplementary Fig. 8 for data 
processed with STL.
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be considered a more conservative approach; only well-behaved time 
series with minimal data gaps can be successfully processed with STL. 
Hence, the resilience trend maps produced using STL provide qualita-
tively similar outcomes but with fewer inconsistent trends and more 
undefined trends (Supplementary Fig. 10).

Satellite data are not always analysed at sensor-native resolution; 
in many cases some degree of spatial aggregation is desirable to reduce 
noise or ease processing constraints. We find that—in general—spatial 
aggregation does not strongly distort spatial patterns in the recov-
ery rate (Extended Data Fig. 7). However, high spatial resolution data 
are more prone to data gaps (Supplementary Figs. 5 and 6) and have 
lower overall correlations between λAC1 and λVar (Extended Data Fig. 3).  
This effect is particularly strong in dense vegetation (for example, 
rainforests) and relatively weaker in open vegetation landscapes (for 
example, grasslands, shrublands). We posit this is due to a mixing 
effect—aggregated time series will, all else being equal, be smoother 
due to the averaging out of independent noise and some data gaps 
and will hence have more stable residuals. There is thus a trade-off 
with spatial resolution—high spatial resolution has more uncertain 
time series but also less mixing of vegetation types. Globally, there is 
no one ‘ideal’ spatial resolution—the degree of aggregation required 
for λ estimates to agree varies greatly.

We carefully excluded grid cells from our analysis where MODIS 
land-cover data indicate human activity, as well as any grid cells where 
the land-cover type has changed during the study period to ensure that 
our results, and especially the trends shown in Fig. 4, are not biased 
by anthropogenic land use change. Nevertheless, it should be noted 
that it is difficult to categorically exclude the possibility of anthro-
pogenic influences, for example, under dense canopy cover where 
satellite-based estimates of human activity would be difficult.

Despite the robustness of our recovery rate estimates to both 
spatial resolution and data gaps, we find that MODIS vegetation indices 
are not appropriate for resilience estimation in all landscapes. In addi-
tion to the fact that vegetation types have different baseline values of 
CSD-based resilience estimates (AC1, variance or λ)5, we have shown 
here that the reliability of CSD-based resilience estimates inferred from 
optical satellite vegetation indices varies strongly across land covers, 
with generally increasing difficulties for denser vegetation types (Fig. 2  
and Extended Data Figs. 1–3). In particular, resilience estimates and 
changes thereof should be treated with caution in tropical rainforests, 

where most of the AC1-based recovery rate estimates are undefined 
(Fig. 3 and Extended Data Fig. 7). These undefined estimates in the 
tropics are most common for NDVI, for which the susceptibility to 
saturation in high-biomass regions is well known32,33; surprisingly, 
however, recent improvements such as the EVI and kNDVI28, and alterna-
tive metrics such as LAI, still show large and spatially coherent regions  
of undefined recovery rates in the tropics. Regions of undefined  
recovery rate in the densely vegetated tropical regions are smallest—
but still considerable—for GPP (Supplementary Fig. 7). High-northern 
latitude boreal forests also produce undefined recovery rates, albeit 
primarily due to problems with λVar, rather than λAC1. This effect is likely 
due to short growing seasons followed by long periods of snow cover, 
which make λVar estimates unstable (Methods). To confidently predict 
resilience and trends therein, both λAC1 and λVar should be defined and 
furthermore should have similar values and trends (Methods).

We find that differences in the reliability of resilience estimates 
across land-cover types are broadly similar for each of the five MODIS 
vegetation indices considered here. As noted above, dense tropical 
forests and high-latitude regions including boreal forests present the 
greatest difficulties for resilience estimation. The general issues with 
NDVI saturation in tropical forests have been discussed widely32,33; 
any saturation will damp the dynamics measured by vegetation indi-
ces and hence lead to poor autocorrelation and variance estimates. 
We confirm that CSD-based resilience estimates perform poorly in 
high-biomass regions; our results imply that kNDVI and EVI are also 
impacted by saturation in high-biomass regions. GPP—while far from 
perfect—performs best in tropical forests and has the additional advan-
tage of higher temporal resolution (8 days) compared to the EVI, NDVI 
and kNDVI indices (16 days). It should be emphasized that different 
indices perform better on different land covers; for example, EVI, NDVI 
and kNDVI outperform LAI and GPP in mixed and deciduous forests, 
as well as in woody and open savannas (Fig. 2). All five indices broadly 
perform better in low-biomass, ‘open’ landscapes such as shrub and 
grasslands than in high-biomass, ‘closed’ environments such as forests 
(Fig. 2). While further work is needed to fully constrain the reason for 
this difference, it is likely that optical vegetation indices do a better 
job of measuring ecosystem dynamics in low-biomass ecosystems.

The fact that CSD-based resilience estimation is particularly prob-
lematic in forests is unfortunate as both tropical and boreal forests have 
been suggested to be especially at risk of large-scale state transitions 
or even dieback in response to anthropogenic climate and land use 
change7,37–40. For these two crucial vegetation zones, other satellite 
vegetation data sets should generally be preferred. Given the issues 
in NDVI revealed here, we posit that Advanced Very High Resolution 
Radiometer NDVI data25 would be particularly problematic for inferring 
resilience changes, as it suffers from both the problems related to NDVI 
itself and potential biases due to the merging of different sensors26.

Nevertheless, we find that CSD-based resilience estimates are reli-
able in large parts of the world, especially in mid-latitude temperate 
and dryland environments with open vegetation cover (Fig. 3), and that 
there are many regions where trends agree across vegetation indices 
(Fig. 4 and Extended Data Figs. 4–6). Eastern and southern Africa, Aus-
tralia and large parts of central Asia show a loss of resilience across all 
vegetation indices; however, parts of the southern United States and 
south-east Africa show a gain in resilience. Overall, losses in resilience 
outweigh gains; this finding is consistent across all MODIS vegetation 
indices. Based on our robustness checks, we conclude that resilience 
cannot be estimated reliably in some key regions, for example, in the 
higher northern latitudes or in the rainforests of the Amazon, Congo 
and Indonesia. In these regions, other vegetation metrics such as 
vegetation optical depth, which are less prone to saturation in dense 
vegetation23, are likely to provide more reliable resilience estimates3.

Our work shows that global-scale optical vegetation data can 
be used to measure vegetation resilience in land covers with more 
open vegetation cover—across spatial resolutions and despite data 

λ trend agreement (Kendall’s tau)
Inconsistent λ Undefined λ Resilience loss

16.3% 28.4% 33.6% 21.7%

Resilience gain

Fig. 4 | Global patterns of resilience change in NDVI data, based on Kendall’s 
tau trend agreement between λAC1 and λVar. Grey areas indicate land-cover types 
that are removed from our analysis a priori (Methods), magenta areas indicate 
undefined λ estimates (Methods), and black areas indicate a high λVar/λAC1 ratio 
(Fig. 3c) or disagreement in the trends of the two λ estimates. Global patterns are 
broadly consistent across different vegetation indices, with a tendency towards 
loss of vegetation resilience globally (see Extended Data Fig. 4 for the same 
analysis using EVI, kNDVI, LAI and GPP, Extended Data Fig. 5 for the same analysis 
using linear trends and Supplementary Fig. 10 for data processed with STL).
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gaps—given appropriate data preparation methods. We find that NDVI, 
EVI and kNDVI perform best for less densely vegetated landscapes such 
as grasslands. While many high-biomass, densely vegetated regions 
such as tropical rainforests or boreal forests do not provide robust 
estimates when using any optical vegetation indices, GPP slightly 
outperforms the other indices in these regions. In regions where we 
confirm the reliability of resilience estimates, we infer a tendency 
towards loss of resilience during the period 2000–2022; there exist 
spatially coherent regions of both increasing and decreasing vegeta-
tion resilience across all continents.

Methods and data
Satellite data
We use MODIS EVI and NDVI data (products MOD13Q1 (250 m)41 
and MOD13A2 (1 km)42, 2000–2022, 16 day composites), as well as 
GPP (MOD17A2, 500 m, 2000–2022, 8 day composites43) and LAI 
(MCD15A3H, 500 m, 2002–2022, 4 day composites44) to examine 
global vegetation dynamics. All vegetation data sets are available via 
Google Earth Engine27; we further generate our own 1 km, 5 km, 10 km 
and 25 km resolution products via spatial averaging. We only use data 
points flagged as ‘highest quality’ in our analysis. Finally, we also gener-
ate the recently introduced kNDVI metric28 for completeness. In con-
trast to previous publications3,6, we do not gap-fill our vegetation data.

We use MODIS land-cover data (MCD12Q1, 500 m, 2001–202145) to 
both mask out non-vegetated areas (for example, urban areas) and to 
subdivide our results by land-cover type. We further mask out any land 
covers that have changed (for example, forest to agriculture) during 
the period 2001–2021 to limit the influence of ecosystem transitions 
or anthropogenic influence on our results. Land cover data at 250 m 
resolution uses a nearest-neighbour resampling; 1 km, 5 km, 10 km and 
25 km data use the mode of input land covers. To minimize the impact 
of anthropogenic and changed land cover, we further remove any  
pixels which have more than 10% of their area masked out (for example, 
a pixel that is 89% forest and 11% urban or cropland is removed). Python 
code to reproduce our land-cover masking, data pre-processing and 
data exports can be found on Zenodo31.

To create Fig. 2, we use a stratified random sample of 100,000  
locations covering the 10 relevant natural land-cover types with 
an equal number of samples (International Geosphere-Biosphere  
Programme type 145). Sample locations and script used to generate 
the random samples and export the data can be found on Zenodo31. A 
secondary sampling scheme based on 100,000 random points distri
buted evenly between World Wildlife Fund Ecoregions46 yielded similar 
results and is thus not shown here. Finally, we use a global above-ground 
biomass density estimate (2010 composite47) to assess how the reliabil-
ity of the recovery rate λ depends on biomass, averaged by land-cover 
type (Fig. 2 and Extended Data Figs. 1 and 3).

Synthetic time series
To estimate resilience using CSD, the time series in question must be 
approximately stationary, that is, without long-term (nonlinear) trends 
and seasonality. To provide an initial comparison of deseasoning and 
detrending methods, we create synthetic time series X(t) for which the 
ground truth is known by numerically integrating a paradigmatic example  
of a ‘double-well’ dynamical system that shows bistability for a certain 
parameter range and bifurcation-induced transitions between the two 
alternative stable states as the control parameter is varied, namely,

dXt = (−X 3
t + Xt − p)dt + σdW (1)

where Xt denotes the system state at time t, p is the control parameter 
which is gradually varied from −1 to +1 to produce a bifurcation-induced 
transition, W denotes a Wiener process that is used as the noise driving 
the system, and σ is the amplitude of that noise. We simulate these time 
series over a period of 31 years, using a daily time interval.

We introduce seasonality in a variety of ways to explore its influ-
ence on the different deseasoning procedures. In the simplest case 
(Fig. 1, left column), we use a stable sine curve for seasonality; we 
also perform a simulation where the seasonal amplitude and tim-
ing is randomized year-on-year (Fig. 1a,c,e,g). For further robust-
ness checks, we also include seasonal models with separate time- or 
amplitude-randomization, additional noise and multiple annual peaks 
(Supplementary Figs. 11 and 12). Python code to reproduce our syn-
thetic time series can be found on Zenodo31.

Deseasoning and detrending
A wide body of literature discussing the best way to deseason and 
detrend time series exists; we do not focus here on an exhaustive 
inter-comparison of these methods. We tested three common desea-
soning and detrending schemes on our synthetic data: (1) a rolling 
mean detrender followed by removing a third-order harmonic function 
fit to the data as a deseasoner, (2) removing long-term daily means, 
followed by a simple linear detrender6,8 and (3) STL3,29. We compare 
the performance of these methods on synthetic data with a ‘perfect’ 
deseasoner, which is created by running our synthetic model without 
the additional white noise, that is, σ = 0 and no added sine curve. Hence, 
we can create a control data set by perfectly removing the long-term 
drift and seasonal components, leaving only the stationary residual of 
interest for the CSD analysis (Fig. 1c,d). We note that other schemes—for 
example, using a rolling linear fit instead of a rolling mean, or using 
higher- or lower-order harmonic fits to deseason—perform similarly; 
to simplify our discussion, we only highlight these three methods. We 
compare the performance of these schemes by computing the 5 year 
rolling AC1 over 1,000 simulations and taking the average AC1 at each 
time point (Fig. 1g,h).

We find that removing long-term daily means and a linear  
detrender performs poorly across all model simulations (Fig. 1 and 
Supplementary Figs. 11 and 12); the resultant AC1 time series has several  
spurious jumps even for simple constant sinusoidal seasonality.  
STL performs well for simple or randomly varying seasonality; it does, 
however, tend to produce lower AC1 estimates than expected. We posit 
this is due to overfitting, where some random noise is incorrectly placed 
in the seasonality rather than the residual component.

Overall, our results suggest that a rolling-mean detrender fol-
lowed by a harmonic fit deseasoner performs best when compared to 
the true underlying detrended and deseasoned data. As we perform 
a single harmonic fit to each time series, the long-term average sea-
sonality will be removed from the time series. If seasonality changes 
randomly through time, there will not be a bias in the AC1 calculated 
over the residual. If the seasonal amplitudes increase monotonically 
through time, a trace of this may be left in the residual that could 
affect the CSD-based resilience indicators. In such cases, one would 
need to decide whether the monotonic changes in seasonality are 
part of the climatic forcing or of the vegetation response. In the 
first case, a deseasoning method designed for variable seasonal 
amplitudes would likely be preferable. In the latter case, the chang-
ing response to a constant climate forcing could be indicative of 
resilience changes and should be kept in the residual; in such cases, 
deseasoning via harmonic fitting over the entire time span should 
be preferred. As interpolation or gap-filling can bias CSD-based 
resilience metrics30, a key advantage of a harmonic deseasoner is 
that it is substantially less sensitive to data gaps than STL (Fig. 3 and 
Supplementary Fig. 8).

Data gaps and spatial resolution
At very fine spatial scales (that is, 250 m), gaps in the different MODIS 
vegetation indices are very common; it is only when these data are 
aggregated to much larger spatial scales (we compared 1 km, 5 km, 
10 km and 25 km for EVI, NDVI and kNDVI) that quasi-continuous time 
series are created (Supplementary Figs. 5 and 6). To test the impact of 
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variable data gaps on our long-term estimates of resilience, we return to 
our synthetic model (Fig. 1a). We first remove a random sample of data 
to simulate variable cloud-cover gaps and then remove increasingly 
long time periods to simulate summer or winter gaps, especially due 
to snow cover (see Supplementary Fig. 1 for an example time series). 
We also resample our data to a bi-weekly average; this is commonly 
done with satellite vegetation data to deal with cloud gaps or other 
missing data. We then calculate AC1 using a rolling 5 year window over 
the ~25 years of data.

Overall, the relationship between the AC1 of the gap-free and 
gappy time series is very close to being one-to-one; this holds true 
even for long gaps (Supplementary Figs. 1–3). For a higher number  
of gaps, variability around the one-to-one line increases, implying  
less certain AC1 estimates; however, the temporal resampling sup-
presses this variability and hence leads to more certain AC1 estimates 
(Supplementary Fig. 4).

For empirical vegetation data, we infer that within the reasonable 
bounds of 250 m and 25 km, our results remain qualitatively similar  
(Extended Data Fig. 3); however, in particular for the tropics, as 
expected there are fewer regions with undefined recovery rate  
estimates for coarser resolution due to higher amounts of spatial 
aggregation (Extended Data Fig. 7).

Estimating vegetation resilience
Concerning resilience estimates, the fundamental quantity we are 
interested in is the recovery rate from perturbations. It can be shown 
that this is the same as the restoring rate λ of a linearized version of the 
dynamics around a given equilibrium3,12, which is technically given by 
an Ornstein–Uhlenbeck process48:

dXt = λXtdt + σdW (2)

for deviations Xt from the equilibrium, where λ < 0 for stable dyna
mics, and increasing (decreasing) recovery rate λ indicates a loss 
(gain) of resilience; note that λ approaches 0 from below as the 
bifurcation points of the double-well system above (Fig. 1) are 
approached—this is the key characteristic of CSD. In order for the 
theory to be applicable in practice, the above Ornstein–Uhlenbeck 
process has to be discretized into equal time steps of size Δt (which 
we set to 1 for simplicity), which yields the characteristic order-one 
auto-regressive process49:

Xn+1 = aXn + ̃σηn (3)

where Xn denotes the system state at discrete time step n and ηn is  
independent normally distributed white noise. Note that based on this 
equation, the autocorrelation a and ̃σ 2 can be inferred from empirical 
time series by regressing Xn + 1 onto Xn.

It can be shown that the autocorrelation at lag n is given by3,49

α(n) = eλnΔt (4)

where e is the exponential function, and thus in particular α(1) = a = eλΔt. 
The variance of the discrete driving noise ̃σ 2 is given by

̃σ 2 = −σ 2

2λ (
1 − e2λΔt) . (5)

The variance of the full discretized time series can then be shown 
to be3,15,18

Var[X] = ̃σ 2

1 − e2λΔt
= −σ 2

2λ
(6)

where we used the above identity for ̃σ 2 in the second equality.

Based on the above, we directly find an estimate of the recovery 
rate based on the AC1 via

λAC1 =
1
Δt log(a) (7)

Similarly, we can infer a second estimate of the recovery rate from 
the variance, namely,

λVar =
1

2Δt log (1 −
̃σ 2

Var[X] ) . (8)

Note that, importantly, these two equations for λAC1 and λVar  
only contain quantities that can be directly inferred from a linear  
regression of Xn + 1 onto Xn for empirical time series X. It is clear that, if 
the theoretical conditions underlying the CSD theory hold, the two  
estimates for the recovery rate should agree. Deviations from  
a one-to-one relationship can therefore be used as a metric for the 
suitability of a given time series to be used for CSD-based resilience 
estimation (Figs. 2 and 3).

The two recovery rate estimates λAC1 and λVar are computed pixel-wise 
globally over the entire deseasoned/detrended time series for each of 
our EVI, NDVI, kNDVI, LAI and GPP data sets using the Google Earth Engine 
platform27 (code repository on Zenodo31). As a logarithm is present in 
both equations for the recovery rate estimates, λ cannot be inferred for  
regions where either a < 0 (for AC1) or ̃σ 2

Var[X]
> 1 (for variance). For the  

AC1, these regions are mostly found in the tropics (Fig. 3), where signal  
saturation and noise reduce the AC1 (for example, Supplementary Fig. 7).  
In large parts of the high northern latitudes, large values of ̃σ  lead to a 
negative argument of the logarithm and thus undefined estimates of  
λVar. We posit that this is driven by short growing seasons, which increase 
̃σ  while reducing Var[X], leading to unconstrained λ estimates.

Defining trends in resilience
To calculate trends in resilience, we construct overlapping 5 year  
windows between 2002 and 2020 to ensure that all windows have 
roughly the same number of data points. We then count the number 
of data points in each window and estimate both λAC1 and λVar for each 
pixel that is part of the analysis (excluding, for example, human-affected 
regions as described above) from the deseasoned and detrended data. 
We repeat this analysis for the different considered vegetation indi-
ces (EVI, NDVI, kNDVI, LAI, GPP) at 5 km spatial resolution. Trends in 
the resilience indicators are estimated via both Kendall’s tau statis-
tics (Extended Data Fig. 4) and the slope of a simple linear regression 
(Extended Data Fig. 5). We only compare trend direction, not magni-
tude, to give a general picture of where resilience change estimates 
can be considered reliable (Fig. 4). Due to the well-known edge effects 
of rolling averages (Fig. 1g,h), we also check our trends over only  
the middle period of our data (2004–2017). We find broadly similar 
spatial patterns globally, albeit with slight shifts regionally (Supple-
mentary Fig. 13); we also find that the spatial pattern of trends is very 
similar when data are pre-processed using STL instead of harmonic 
deseasoning (Supplementary Fig. 10).

Moreover, we test whether the size of gaps in the data sets has 
changed through time and find that changes in the density of data 
gaps in each window are negligible. In general, the amount of data has 
increased by one measurement per decade (that is, 0.5 measurements 
per window) in most of the world (Supplementary Fig. 9). We thus 
conclude that changes in data gaps do not have an outsize influence 
on our estimated resilience trends.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
The satellite data used in this study is publicly available41–45 and can 
be accessed offline or via Google Earth Engine27. Synthetic data can 
be reproduced via codes available on Zenodo31. The 100,000 random 
sample locations used in Fig. 2 are also available via Zenodo31.

Code availability
Python scripts to deseason/detrend and export MODIS vegetation data, 
as well as code to reproduce the synthetic data used in this study, can 
be found on Zenodo31.
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Extended Data Fig. 1 | Comparison between biomass and λVar/λAC1 correlation coefficients. The floating x-scale emphasizes the strongly linear relationship between 
correlation and biomass across all indices; n=100,000 for each index, n=10,000 per land cover type.
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Extended Data Fig. 2 | Comparison of λVar/λAC1 correlation by land cover type. Each row covers one vegetation index (n=10,000 per land cover type), from top to 
bottom: EVI (A,B,C,D), kNDVI (E,F,G,H), LAI (I,J,K,L), GPP (M,N,O,P). Correlation coefficients listed on charts, with red 1:1 line shown for reference. Minimum 3 points 
per bin.
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Extended Data Fig. 3 | Comparison of λVar/λAC1 correlation by spatial aggregation. Each row covers one vegetation index (n=100,000, n=10,000 per land cover 
type). (A) NDVI, (B) EVI, (C) kNDVI, (D) LAI, (E) GPP. Land cover types sorted by above-ground biomass (AGB). 10 km and 25 km data not included for LAI/GPP due to 
processing constraints.
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Extended Data Fig. 4 | Global Kendall-Tau trends in resilience across all 
vegetation indices at 5 km resolution. (A) NDVI, (B) EVI, (C) kNDVI, (D) LAI, 
(E), GPP. Grey areas masked for land cover (see Methods). Areas of agreement 

between variance- and AC1-based λ marked as resilience gain or loss, others as 
inconsistent (high λVar/λAC1 ratio or trend disagreement, black) or undefined λ 
(magenta).
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Extended Data Fig. 5 | Global linear trends in resilience across all vegetation indices at 5 km resolution. (A) NDVI, (B) EVI, (C) kNDVI, (D) LAI, (E), GPP. Grey areas 
masked for land cover (see Methods). Areas of agreement between variance- and AC1-based λ marked as resilience gain or loss, others as inconsistent (high λVar/λAC1 
ratio or trend disagreement, black) or undefined λ (magenta).
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Extended Data Fig. 6 | Number of instruments agreeing on the direction of resilience trend (positive/negative). (A,B) Kendall’s tau statistics and (C,D) linear 
trends. Grey areas masked out due to anthropogenic or vegetation-free land cover.
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Extended Data Fig. 7 | Long-term NDVI-based λAC1 over the Amazon showing the results of spatial aggregation on data gaps. (A) 1 km, (B) 5 km, (C) 10 km, (D) 25 km 
data. Grey areas masked for land-cover (see Methods), magenta areas show undefined λ estimates.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data assimilation and processing was done using Python [v. 3.9.13] and Google Earth Engine, based on publicly available data. 

Data analysis Data analysis was performed using the Python [v. 3.9.13] language. Analysis codes can be found on Zenodo: 10.5281/zenodo.7550255

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

We use MODIS EVI and NDVI data (products MOD13Q1 and MOD13A2), as well as GPP (MOD17A2) and LAI (MCD15A3H). We further use land-cover data from 
MODIS (MCD12Q1). The raw data used in this study are all available via Google Earth Engine. Codes to process these data are provided on Zenodo: 10.5281/
zenodo.7550255. 
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Reporting on sex and gender N/A

Reporting on race, ethnicity, or 
other socially relevant 
groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description In this study, we systematically compare the methods and data used in several recent publications for estimating vegetation 
resilience at the global scale. We first examine methodological techniques, before applying a chosen optimal method to several 
different vegetation data sets. We finally use only those regions with reliable resilience estimates to examine changes in vegetation 
dynamics through time.

Research sample We sampled all vegetated areas which had not been significantly influence by humans (e.g., farms, urban areas) and had not changed 
land-cover types (e.g., from Forest to Savanna) over the study period. We excluded human-influenced areas to study only natural 
changes in ecosystems (i.e. those not caused by e.g. agriculture). This analysis was global, and relied on multiple satellite data 
sets, all of which are publicly available (MOD13Q1, MOD13A2, MOD17A2, MCD15A3H, MCD12Q1). 
 
In a second step, we further sample 100,000 random locations for more in-depth analysis in order to compare different land cover 
types. These sample locations are availabe on Zenodo. 

Sampling strategy We have two samples. The first is all vegetated areas without human influence. The second is 100,000 samples, chosen by a stratified 
random sample to ensure an equal number of samples per land cover type (n=10,000 for each of 10 natural land cover types). Code 
to generate and duplicate our sampling approach is available on Zenodo. 

Data collection Data was collected by NASA (MODIS data) and was accessed via Google Earth Engine. We did not perform any further data collection.

Timing and spatial scale We used available MODIS data from Oct 2000 to Oct 2022 to cover complete years. We used both native-resolution data (down to 
250 m), as well as resampling our data spatially (1, 5, 10, 25 km) to mimic the data resolutions used in previous research and examine 
the role of spatial aggregation in resilience estimation.

Data exclusions Data was excluded if there was significant human land cover, as we could no longer look for relationships in natural vegetation in this 
case. E.g., farms do not follow a natural annual water cycle, but rather respond to human-induced watering changes.

Reproducibility All codes needed to reproduce our results are available in Zenodo. All data is open source.

Randomization Data was divided primarily by land-cover type. This is a necessity when comparing vegetation with different basic functions -- the 
inherent speed of plant growth varies from place to place and by ecosystem. We used a random sample from each land cover type to 
ensure that all land cover types are sampled equally, despite covering different amounts of the Earth.

Blinding Blinding was not relevant to our study.

Did the study involve field work? Yes No
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Materials & experimental systems
n/a Involved in the study
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Animals and other organisms
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Dual use research of concern
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Methods
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