
1.  Introduction
Precipitation is a crucial climate variable, and changing amounts, frequencies, or spatial distributions have 
potentially severe ecological and socioeconomic impacts. With global warming projected to continue in the 
coming decades, assessing the impacts of changes in precipitation characteristics is an urgent challenge (Boyle 
& Klein, 2010; IPCC, 2021; Wilcox & Donner, 2007). Climate impact models are designed to assess the impacts 
of global warming on, for example, ecosystems, crop yields, vegetation and other land-surface characteristics, 
infrastructure, water resources, or the economy, in general (Kotz et al., 2022), using the output of climate or Earth 
system models (ESMs) as input. Especially for reliable assessments of the ecological and socioeconomic impacts, 
accurate ESM precipitation fields to feed the impact models are therefore crucial.

ESMs are integrated on spatial grids with finite resolution. The resolution is limited by the computational 
resources that are necessary to perform simulations on decadal to centennial time scales. Current state-of-the-
art ESMs have a horizontal resolution on the order of 100  km, in exceptional cases going down to 50  km. 
Smaller-scale physical processes that are relevant for the generation of precipitation operate on scales below the 
size of individual grid cells. These can, therefore, not be resolved explicitly in ESMs and have to be included as 
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reliable projections of the ecological and socioeconomic impacts in response to anthropogenic global warming. 
The complex cross-scale interactions of processes that produce precipitation are challenging to model, 
however, inducing potentially strong biases in ESM fields, especially regarding extremes. State-of-the-art bias 
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system models (ESMs) that solve the governing equations of the atmosphere and oceans on discretized spatial 
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crucial for precipitation cannot be simulated directly but have to be included as parameterizations of the 
resolved variables. This introduces biases that can be adjusted in a postprocessing step. However, current 
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spatial patterns on short time scales. Generative adversarial networks are designed to translate unpaired images 
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fields from ESM simulations and show that the results improve upon those obtained with a state-of-the-art 
bias correction methodology. The results show strongly improved spatial patterns with realistic intermittent 
characteristics and a similar skill in correcting temporal biases.
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parameterizations of the resolved prognostic variables. These include droplet interactions, turbulence, and phase 
transitions in clouds that play a central role in the generation of precipitation.

The limited grid resolution hence introduces errors in the simulated precipitation fields, leading to biases in 
short-term spatial patterns and long-term summary statistics. These biases need to be addressed prior to passing 
the ESM precipitation fields to impact models. In particular, climate impact models are often developed and 
calibrated with input data from reanalysis data rather than ESM simulations. These reanalyzes are created with 
data assimilation routines and combine various observations with high-resolution weather models. They hence 
provide a much more realistic input than the ESM simulations and statistical bias correction methods are neces-
sary to remove biases in the ESM simulations output and to make them more similar to the reanalysis data for 
which the impact models are calibrated. Quantile mapping (QM) is a standard technique to correct systematic 
errors in ESM simulations. QM estimates a mapping between distributions from historical simulations and obser-
vations that can thereafter be applied to future simulations in order to provide more accurate simulated precipi-
tation fields to impact models (Cannon et al., 2015; Déqué, 2007; Gudmundsson et al., 2012; Tong et al., 2021).

State-of-the-art bias correction methods such as QM are, however, confined to address errors in the simulated 
frequency distributions locally, that is, at every grid cell individually. Unrealistic spatial patterns of the ESM 
output, which would require spatial context, have so far not been addressed by postprocessing methods. For precip-
itation, this is particularly important because it has characteristic high intermittency not only in time but also in its 
spatial patterns. Multivariate bias correction approaches have recently been developed, aiming to improve spatial 
dependencies (Cannon, 2018; Vrac, 2018). However, these approaches are typically only employed in regional 
studies, as the input dimension becomes too large for global high-resolution ESM simulations. Moreover, such 
methods have been reported to suffer from instabilities and overfitting, while differences in their applicability and 
assumptions make them challenging to use (François et al., 2020).

Artificial neural networks from computer vision and image processing have been successfully applied to vari-
ous tasks in Earth system science, ranging from weather forecasting (Bi et al., 2023; Rasp & Thuerey, 2021; 
Ravuri et al., 2021; Weyn et al., 2020; Zhang et al., 2023), to postprocessing numerical weather prediction fields 
(Grönquist et al., 2021; Price & Rasp, 2022; Wang et al., 2023), by extracting spatial features with convolutional 
layers (LeCun et al., 2015). Such deep learning-based postprocessing methods can be roughly grouped into two 
categories, using either paired or unpaired training data. Wang and Tian (2022), for instance, train a supervised 
convolutional neural network  on paired data to correct temperature biases in the output of a ESM from the 
Climate Model Intercomparison Project phase 6 (CMIP6). On the other hand, Ravuri et al. (2021) use a genera-
tive machine learning model for highly skillful precipitation nowcasting.

Here, we employ a recently introduced postprocessing method (Hess et al., 2022) that can be trained on unpaired 
data, based on a cycle-consistent adversarial network (CycleGAN) to consistently improve both local frequency 
distributions and spatial patterns of state-of-art CMIP6 ESM precipitation fields. Generative adversarial networks 
(Goodfellow et  al.,  2014) in particular have emerged as a promising architecture that produces sharp images 
that are necessary to capture the high-frequency variability of precipitation (L. Harris et  al.,  2022; Price & 
Rasp, 2022; Ravuri et al., 2021). GANs have been specifically developed to be trained on unpaired image data 
sets (Zhu et al., 2017). This makes them a natural choice for postprocessing the output of climate projections, 
which—unlike weather forecasts—are not nudged to follow the trajectory of observations; due to the chaotic 
nature of the atmosphere, small deviations in the initial conditions or parameters lead to exponentially diverging 
trajectories (Lorenz, 1996). As a result, numerical weather forecasts lose their deterministic forecast skill after 
approximately 2 weeks at most, and century-scale climate simulations do not agree with observed daily weather 
records. Indeed the task of climate models is rather to produce accurate long-term statistics that agree with 
observations.

We apply our GAN approach to correct global high-resolution precipitation simulations of the GFDL-ESM4 
model (Krasting et al., 2018) as a representative CMIP6-class ESM. So far, GAN-based approaches have only 
been applied to postprocess ESM simulations either in a regional context (François et al., 2021) or to a very 
low-resolution global ESM (Hess et al., 2022). In the latter study, the aim was to improve precipitation fields from 
an efficient and computationally lightweight ESM, making the combined model a fast ESM with precipitation 
fields competitive with state-of-the art models. However, the latter study did not show if the cGAN approach 
could—in addition to contributing to an efficient, lightweight ESM—also be used for bias-correcting state-of-the-
art, CMIP6-class models for subsequent impact modeling.
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Here, we show that, indeed, a suitably designed and trained cGAN can improve even the distributions and spatial 
patterns of precipitation fields from a state-of-the-art comprehensive ESM, namely GFDL-ESM4. In particular, 
in contrast to rather specific existing methods for postprocessing ESM output for climate impact modeling, we 
will show that the GAN approach is general and can readily be applied to different ESMs and observational data 
sets used as ground truth.

In order to ensure that the cGAN-based postprocessing does not violate physical conservation laws, we include 
a suitable physical constraint, enforcing that the cGAN-based transformations do not change the overall global 
sum of daily precipitation values; essentially, this ensures that precipitation is only spatially redistributed (see 
Section 2). By framing bias correction as an image-to-image translation task, our approach corrects both spatial 
patterns of daily precipitation fields on short time scales and temporal distributions aggregated over decadal time 
scales. We evaluate the skill in improving spatial patterns and temporal distributions against the gold-standard 
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) bias-adjustment and statistical downscaling 
(ISIMIP3BASD) method framework (Lange, 2019), which relies strongly on QM.

Quantifying the “realisticness” of spatial precipitation patterns is a key problem in current research (Ravuri 
et  al.,  2021). We use spatial spectral densities and the fractal dimension of spatial patterns as a measure to 
quantify the similarity of intermittent and unpaired precipitation fields. We will show that our GAN can learn 
to recognize spatial patterns using convolutional layers and strongly improves the characteristic intermittency in 
spatial precipitation patterns. We will also show that our GAN, combined with a subsequent application of the 
ISIMIP3BASD routine, leads to the best overall performance in bias-correcting comprehensive ESM fields.

2.  Methods
2.1.  Training Data

We use global fields of daily precipitation with a horizontal resolution of 1° from the GFDL-ESM4 ESM 
(Krasting et al., 2018) historical simulation and the W5E5v2 reanalysis product (WFDE5 over land merged with 
ERA5 over the ocean [W5E5 v2.0] [Dataset], 2021) as observation-based ground truth. The W5E5v2 data set is 
based on the ERA5 (Hersbach et al., 2020) reanalysis and has been bias adjusted using the Global Precipitation 
Climatology Centre (GPCC) full data monthly product v2020 (Schneider et al., 2011) over land and the Global 
Precipitation Climatology Project (GPCP) v2.3 data set (Huffman et al., 1997) over the ocean to further improve 
the precipitation statistics of ERA5. Both data sets have been regridded to the same 1° horizontal resolution 
using bilinear interpolation following Beck et  al.  (2019). We split the data set into three periods for training 
(1950–2000), validation (2001–2003), and testing (2004–2014). This corresponds to 8,030 samples for training, 
1,095 for validation, and 4,015 for testing. During preprocessing, the training data are log transformed with 

𝐴𝐴 𝐴𝐴𝐴 = log(𝑥𝑥 + 𝜖𝜖) − log(𝜖𝜖) with ϵ = 0.0001, following Rasp and Thuerey (2021), to account for zeros in the trans-
form. The data are then normalized to the interval [−1, 1] following Zhu et al. (2017).

2.2.  Cycle-Consistent Generative Adversarial Networks

This section gives a brief overview of the GAN used in this study. We refer to Hess et  al.  (2022) and Zhu 
et al. (2017) for a more comprehensive description and discussion. Generative adversarial networks learn to gener-
ate images that are nearly indistinguishable from real-world examples through a two-player game (Goodfellow 
et al., 2014). In this setup, a first network G, the so-called generator, produces images with the objective of fooling 
a second network D, the discriminator, which has to classify whether a given sample is generated (“fake”) or 
drawn from a real-world data set (“real”). Mathematically this can be formalized as

𝐺𝐺
∗ = min

𝐺𝐺

max
𝐷𝐷

GAN(𝐷𝐷𝐷𝐷𝐷),� (1)

with G* being the optimal generator network. The loss function 𝐴𝐴 GAN(𝐷𝐷𝐷𝐷𝐷) can be defined as

GAN(𝐷𝐷𝐷𝐷𝐷) = 𝔼𝔼𝑦𝑦∼𝑝𝑝𝑦𝑦(𝑦𝑦)[log(𝐷𝐷(𝑦𝑦))] + 𝔼𝔼𝑥𝑥∼𝑝𝑝𝑥𝑥(𝑥𝑥)[log(1 −𝐷𝐷(𝐺𝐺(𝑥𝑥)))],� (2)

where py(y) is the distribution of the real-world target data. Samples from the ESM simulation data distribution, 
here denoted as px(x), are used as inputs by G to produce realistic images. The cGAN (Zhu et al., 2017) consists 
of two generator–discriminator pairs, where the generators G and F learn inverse mappings between two domains 
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X and Y. This allows defining an additional cycle-consistency loss that constraints the training of the networks, 
that is,

cycle(𝐺𝐺𝐺 𝐺𝐺 ) = 𝔼𝔼𝑥𝑥∼𝑝𝑝𝑥𝑥(𝑥𝑥)[‖𝐹𝐹 (𝐺𝐺(𝑥𝑥)) − 𝑥𝑥‖1]

+ 𝔼𝔼𝑦𝑦∼𝑝𝑝𝑦𝑦(𝑦𝑦)[‖𝐺𝐺(𝐹𝐹 (𝑦𝑦)) − 𝑦𝑦‖1].
� (3)

It measures the error caused by a translation cycle of an image to the other domain and back. Further, an addi-
tional loss term is introduced to regularize the networks to be close to an identity mapping with

ident(𝐺𝐺𝐺 𝐺𝐺 ) = 𝔼𝔼𝑥𝑥∼𝑝𝑝𝑥𝑥(𝑥𝑥)[‖𝐹𝐹 (𝑥𝑥) − 𝑥𝑥‖1]

+ 𝔼𝔼𝑦𝑦∼𝑝𝑝𝑦𝑦(𝑦𝑦)[‖𝐺𝐺(𝑦𝑦) − 𝑦𝑦‖1].
� (4)

The regularization forces the generator networks to output a similar image as given as input to the network. This 
is in line with the idea that the generator should only improve small-scale features of the image, that is, change the 
style, while preserving the large-scale features, that is, the overall content of the image. In practice, the log like-
lihood loss can be replaced by a mean squared error loss to facilitate more stable training. Further, the generator 
loss is reformulated to be minimized by inverting the labels, that is,

Generator = 𝔼𝔼𝑥𝑥∼𝑝𝑝𝑥𝑥(𝑥𝑥)

[
(𝐷𝐷𝑋𝑋(𝐺𝐺(𝑥𝑥)) − 1)

2
]

+ 𝔼𝔼𝑦𝑦∼𝑝𝑝𝑦𝑦(𝑦𝑦)

[
(𝐷𝐷𝑌𝑌 (𝐹𝐹 (𝑦𝑦)) − 1)

2
]

+ 𝜆𝜆cycle(𝐺𝐺𝐺 𝐺𝐺 ) + 𝜆̃𝜆ident(𝐺𝐺𝐺 𝐺𝐺 ),

� (5)

where λ and 𝐴𝐴 𝜆̃𝜆 are set to 10 and 5, respectively, following Zhu et al. (2017). The corresponding loss term for the 
discriminator networks is given by

Discriminator = 𝔼𝔼𝑦𝑦∼𝑝𝑝𝑦𝑦(𝑦𝑦)

[
(𝐷𝐷𝑌𝑌 (𝑦𝑦) − 1)

2
]
+ 𝔼𝔼𝑥𝑥∼𝑝𝑝𝑥𝑥(𝑥𝑥)

[
(𝐷𝐷𝑌𝑌 (𝐺𝐺(𝑥𝑥)))

2
]

+ 𝔼𝔼𝑥𝑥∼𝑝𝑝𝑥𝑥(𝑥𝑥)

[
(𝐷𝐷𝑋𝑋(𝑥𝑥) − 1)

2
]
+ 𝔼𝔼𝑦𝑦∼𝑝𝑝𝑦𝑦(𝑦𝑦)

[
(𝐷𝐷𝑋𝑋(𝐹𝐹 (𝑦𝑦)))

2
]
.

� (6)

The weights of the generator and discriminator networks are then optimized with the ADAM (Kingma & 
Ba, 2014) optimizer using a learning rate of 2e −4 and updated in an alternating fashion. We train the network for 
350 epochs and a batch size of 1, saving model checkpoints every other epoch. We evaluate the checkpoints on 
the validation data set to determine the best model instance.

2.3.  Network Architectures

Both the generator and discriminator have fully convolutional architectures. The generator uses ReLU activation 
functions, instance normalization, and reflection padding. The discriminator uses leaky ReLU activations with slope 
0.2 instead, together with instance normalization. For a more detailed description of the cGAN approach, we refer to 
our previous study (Hess et al., 2022). The general network architectures in this study are similar, but with an increase 
in the number of residual layers in the generator network (the constrained and unconstrained networks) from 6 to 7.

The final layer of the generator can be constrained to preserve the global sum of the input, that is, by rescaling

𝑦̃𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖

∑𝑁𝑁grid

𝑖𝑖
𝑥𝑥𝑖𝑖

∑𝑁𝑁grid

𝑖𝑖
𝑦𝑦𝑖𝑖

,� (7)

where xi and yi are grid cell values of the generator input and output, respectively, and Ngrid is the number of grid 
cells. The generator without this constraint will be referred to as unconstrained in this study. The global physical 
constraint enforces that the global daily precipitation sum is not affected by the cGAN postprocessing and hence 
remains identical to the original value from the GFDL-ESM4 simulations. This is motivated by the observation 
that large-scale average trends in precipitation follow the Clausius-Clapeyron relation (Traxl et al., 2021), which 
is based on thermodynamic relations and hence can be expected to be modeled well in GFDL-ESM4.

2.4.  Quantile Mapping-Based Bias Adjustment

We compare the performance of our cGAN-based method to the bias-adjustment method ISMIP3BASD v3.0.1 
(Lange,  2019,  2022) that has been developed for phase 3 of the ISIMIP3 (Frieler et  al.,  2017; Warszawski 

 23284277, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

F004002 by H
elm

holtz-Z
entrum

 Potsdam
 G

FZ
, W

iley O
nline L

ibrary on [17/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Earth’s Future

HESS ET AL.

10.1029/2023EF004002

5 of 17

et  al.,  2014). This state-of-the-art bias-adjustment method is based on a trend-preserving QM framework. It 
represents a very strong baseline for comparison as it has been developed prior to this study and used not only in 
ISIMIP3 but also to prepare many of the climate projections that went into the Interactive Atlas produced as part 
of the sixth assessment report of Working Group 1 of the Intergovernmental Panel on Climate Change (IPCC, 
https://interactive-atlas.ipcc.ch/).

In the most basic form of QM, cumulative distribution functions (CDFs) of the historical simulation Fmod,hist(x) 
and observations Fobs, hist(x) are fitted to historical observations and simulations, which can then be applied to 
bias-adjust future simulations, that is,

𝑥̂𝑥mod,proj(𝑡𝑡) = 𝐹𝐹
−1
obs, hist

[
𝐹𝐹mod,hist

(
𝑥𝑥mod,proj(𝑡𝑡)

)]
,� (8)

where xmod,proj(t) is the model variable at a given grid cell and time instance from a climate projection simulation, 
and 𝐴𝐴 𝐴𝐴𝐴mod,proj(𝑡𝑡) is the quantile-mapped estimate. The CDFs used for QM can be either empirical or parametric.

In the present study, we apply parametric QM to the GFDL-ESM4 simulation and empirical QM to the 
constrained cGAN output. The parametric QM is carried out using ISIMIP3BASD v3.0.1, with settings as speci-
fied in Lange (2019) for precipitation, that is, Bernoulli-gamma distributions are used for the CDFs and trends in 
wet-day precipitation quantiles are preserved multiplicatively in most cases. The empirical QM is carried out  in 
the same way as the parametric case, with the difference that empirical instead of parametric distributions are 
used. In both cases (empirical and parametric QM), CDFs are fitted and mapped for each grid cell and day of the 
year separately, using data from a window of 31 days width centered on the given day of the year for CDF fitting. 
We also tested empirical QM for the GFDL-ESM4 simulation and parametric QM for the constrained cGAN 
output, but those choices led to slightly worse results.

To evaluate the methods in this study, we define the grid cell-wise bias as the difference in long-term averages,

Bias(𝑦̂𝑦𝑦 𝑦𝑦) =
1

𝑇𝑇

𝑇𝑇∑

𝑡𝑡=1

𝑦̂𝑦𝑡𝑡 −
1

𝑇𝑇

𝑇𝑇∑

𝑡𝑡=1

𝑦𝑦𝑡𝑡,� (9)

where T is the number of time steps; 𝐴𝐴 𝐴𝐴𝐴𝑡𝑡 and yt the modeled and observed precipitation, respectively, at time step t.

2.5.  Evaluating Extreme Event Statistics

We are particularly interested in the cGAN’s performance in correcting the characteristics of extreme rainfall. To 
evaluate and benchmark its performance to improve temporal statistics, we compare the representation of extreme 
event statistics in the reanalysis W5E5v2 against the raw GFDL-ESM4 model output and the bias-corrected data, 
in terms of return values and waiting times.

2.5.1.  Estimating Return Values

The probability of a precipitation event X to exceed a threshold 𝐴𝐴 𝐴𝐴 ∈ ℝ is given by p = 1 − P(X ≤ t), where P(X ≤ t) 
is the CDF. The return time, that is, the average number of time steps until an event exceeds the threshold t, is then 
given by r = 1/p and t is called the return value. The aim in the following is to construct the function t = U(r) that 
maps a return time r to a corresponding return value t.

We employ a peaks-over-threshold method: denote by X(1) ≤ ⋯ ≤ X(n) the local precipitation events ordered by 
magnitude. Choose k = ⌈0.05n⌉ so that X(n−k+1), …, X(n) exceed the 95th percentile of the empirical distribution 
of local precipitation events. Following classical results from extreme value theory, for example, de Haan and 
Ferreira (2006), we can use these excesses to estimate the tail of their distribution. Here, we apply the so-called 
moment estimator (de Haan & Ferreira, 2006, Theorem 4.3.1 and Equations 3.5.2, 3.5.9, and 4.2.4):

𝑀𝑀𝑗𝑗 ∶=
1

𝑘𝑘

𝑘𝑘−1∑

𝑖𝑖=0

(log(𝑋𝑋(𝑛𝑛−𝑖𝑖)) − log(𝑋𝑋(𝑛𝑛−𝑘𝑘)))
𝑗𝑗
,� (10)

𝛾̂𝛾 ∶= 𝑀𝑀1 + 1 −
1

2

(

1 −
𝑀𝑀

2
1

𝑀𝑀2

)−1

,� (11)
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𝜎̂𝜎 ∶=
1

2
𝑋𝑋(𝑛𝑛−𝑘𝑘)𝑀𝑀1

(

1 −
𝑀𝑀

2
1

𝑀𝑀2

)−1

,� (12)

𝑈̂𝑈 (𝑟𝑟) ∶= 𝑋𝑋(𝑛𝑛−𝑘𝑘) + 𝜎̂𝜎

(
𝑟𝑟𝑟𝑟

𝑛𝑛

)𝛾̂𝛾

− 1

𝛾̂𝛾
.

� (13)

The advantage of using the moment estimator over the also common maximum likelihood approach is that the 
former is more computationally efficient and thus more suitable for the high-resolution fields in our study. Using 
Equation 13, we can determine the return value for a given, large return time and a given grid cell to compare the 
different postprocessing methods with regard to their capability of improving these features.

2.5.2.  Waiting Time Distributions

Besides return values for a specific return time, that is, the average waiting time between consecutive events, the 
distribution of waiting times is another key characteristic of extremes and crucial for hydrological impact mode-
ling. We compare the waiting time distributions of the reanalysis and modeled precipitation data by first applying 
a threshold, defined as the 95th percentile of the local empirical distribution, to the precipitation times series. 
Counting the number of days between consecutive precipitation events then determines the waiting times. We 
compare the empirical distributions of the waiting times for each grid cell between the W5E5v2 reanalysis and 
the different postprocessing methods using the Wasserstein-1 distance between distributions, defined as

𝑊𝑊1(𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦) =
∫
ℝ

|𝐹𝐹𝑥𝑥(𝑧𝑧) − 𝐹𝐹𝑦𝑦(𝑧𝑧)|𝑑𝑑𝑑𝑑𝑑� (14)

where px and py are the distributions of the modeled waiting times and of the reanalysis (W5E5v2) target waiting 
times, respectively, and Fx and Fy, their respective CDFs.

2.6.  Evaluating Spatial Patterns

Quantifying how realistic spatial precipitation fields are, is an ongoing research question in itself, which has 
become more important with the application of deep learning to weather forecasting and postprocessing. In these 
applications, neural networks often achieve error statistics and skill scores competitive with physical models, 
while the output fields can, at the same time, show unphysical characteristics, such as blurring or excessive 
smoothing. Ravuri et al. (2021) compare the spatial intermittency, which is characteristic of precipitation fields, 
using the radially averaged power spectral density (RAPSD) computed from the spatial fields; in the latter study, 
the RAPSD-based quantification was complemented by interviews with a large number of meteorological experts.

Power spectra provide a useful tool for studying patterns across wide ranges of scales (D. Harris et al., 2001) by 
applying a Fourier transform that describes the spatial signal in terms of frequencies. The power spectrum of a 
2D field f(x, y) can be defined as (Ruzanski & Chandrasekar, 2011)

𝑃𝑃 (𝑓𝑓 ) = |𝐹𝐹 (𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦)|
2
,�

where

𝐹𝐹 (𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦) =
1

𝑀𝑀𝑀𝑀

𝑀𝑀∕2−1∑

𝑥𝑥=−𝑀𝑀∕2

𝑁𝑁∕2−1∑

𝑦𝑦=−𝑁𝑁∕2

𝑓𝑓 (𝑥𝑥𝑥𝑥𝑥 )𝑒𝑒
−𝑖𝑖2𝜋𝜋

(
𝑘𝑘𝑥𝑥𝑥𝑥

𝑀𝑀
+
𝑘𝑘𝑦𝑦𝑦𝑦

𝑁𝑁

)

,�

and M and N are the dimensions of the field. The radially averaged power spectrum is then found by averaging the 
power spectrum P(f) in polar coordinates in angular direction as a function of the radius 𝐴𝐴 𝐴𝐴 =

√

𝑘𝑘
2
𝑥𝑥 + 𝑘𝑘

2
𝑦𝑦 , such that

𝑃𝑃𝑟𝑟(𝑘𝑘) =
1

𝑁𝑁𝑟𝑟(𝑘𝑘)

𝑁𝑁𝑟𝑟(𝑘𝑘)∑

𝑖𝑖=1

𝑃𝑃 (𝑘𝑘𝑖𝑖),� (15)

where Nr(k) is the number of frequency samples and the spatial radial wavelength λ = Δ/k with Δ is the grid 
spacing of the field in cartesian coordinates.
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We propose here the fractal dimension of precipitation fields as a new metric to quantify how realistic precipi-
tation patterns from generative neural networks are. The fractal dimension has been used in the past already to 
study how precipitation patterns change across scales (Lovejoy et al., 1987). We compute the fractal dimension 
via the box-counting algorithm (Husain et al., 2021; Lovejoy et al., 1987; Meisel et al., 1992). The box-counting 
algorithm divides the image into Nsq squares of linear size s that cover the boundary of binary patterns. We thus 
first transform the continuous precipitation data into binary fields by applying a global quantile threshold (see 
Figure 8 for an example). The size of the squares, that is, the scale of measurement, is then reduced iteratively 
by a factor of 2 and the number of squares or “boxes” is counted at each scale. The fractal dimension (FD) can 
then be determined from the slope of a polynomial fit of the resulting log–log scaling of Nsq as a function of the 
measured scale with

FD =
log

(
𝑁𝑁sq

)

log(1∕𝑠𝑠)
.� (16)

3.  Results
We evaluate our cGAN method on two different tasks and time scales. First, the correction of daily rainfall 
frequency distributions at each grid cell locally, aggregated from decade-long time series. Second, we quantify 
the ability to improve spatial patterns on daily time scales. Our approach is compared to the raw GFDL-ESM4 
model output, as well as to the ISIMIP3BASD methodology applied to the GFDL-ESM4 output.

3.1.  Temporal Distributions

We compute global histograms of relative precipitation frequencies using daily time series (Figure  1a). The 
GFDL-ESM4 model overestimates frequencies in the tail, namely for events above 50 mm/day (i.e., the 99.7th 
percentile). Our GAN-based method, as well as ISIMIP3BASD and the cGAN-ISIMIP3BASD combination, 
corrects the histogram to match the W5E5v2 ground truth equally well, as can also be seen in the absolute error 
of the histograms (Figure 1b).

Comparing the differences in long-term averages of precipitation per grid cell (Figure 2 and Section 2), large 
biases are apparent in the GFDL-ESM4 model output, especially in the tropics. The double-peaked Inter-Tropical 
Convergence Zone (ITCZ) bias is visible. The double-ITCZ bias can also be inferred from the latitudinal profile 
of the precipitation mean in Figure 3.

Table  1 summarizes the annual biases shown in Figure  2 as absolute averages and additionally for the four 
seasons. The cGAN alone reduces the annual bias of the GFDL-ESM4 model by 38.7%. The unconstrained 
cGAN performs better than the physically constrained one, with bias reductions of 50.5%. As expected, the 
ISIMIP3BASD gives even better results for correcting the local mean since it is specifically designed to transform 
the local frequency distributions accurately. It is, therefore, notable that applying the ISIMIP3BASD procedure 
on the constrained cGAN output improves the postprocessing further, leading to a local bias reduction of the 
mean by 63.6%, compared to ISIMIP3BASD with 59.4%. For seasonal time series, the order in which the meth-
ods perform is the same as for the annual data.

Besides the error in the mean, we also compute differences in the 95th percentile for each grid cell, shown in 
Figure S1 of the Supporting Information S1 and as mean absolute errors (MAEs) in Table 1. Also, in the case of 
heavy precipitation values, we find that ISIMIP3BASD improves upon the cGAN but that combining cGAN and 
ISIMIP3BASD leads to the best agreement of the locally computed quantiles.

3.2.  Extremes

We evaluate the error of the return values for extreme events with a 10-year return time (see Figure 4). The GFDL-
ESM4 model shows a strong overprediction of the return values in the tropics. This is also reflected in the high 
global MAE over the return value differences of 49.9. The ISIMIP3BASD method is able to reduce the MAE to 
34.37 but shows a tendency to underestimate the return values. Both the unconstrained and the constrained cGAN 
alone perform remarkably well, reducing the MAE to 30.53 and 31.44, respectively. The constrained cGAN 
shows a slight overestimate of return values in the midlatitudes. Combining the cGAN with the ISIMIP3BASD 
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method shows an overall MAE of 38.27 and does not lead to improved performance (Figure 4). We compare 
latitude profiles of the return value errors, where particularly the cGAN-based postprocessings show a significant 
error reduction in the tropics (Figure S5 in Supporting Information S1).

To measure the error in the waiting times between extremes, we report the Wasserstein distance between the 
W5E5v2 reanalysis and the modeled waiting time distributions of precipitation events above the 95th percen-
tile in Figure 5. Notably, the GFDL-ESM4 model shows a large distance to the ground truth over continental 
regions, especially in North America and East Asia, which is reduced by all employed postprocessing meth-
ods. The cGAN-ISIMIP3BASD method improves upon the other approaches with a global MAE of 11.26 in 
the Wasserstein distance, compared to 17.79 in the case of GFDL-ESM4, 11.43 for ISIMIP3BASD alone, and 
the constrained and unconstrained cGANs with MAEs of 12.38 and 12.4, respectively. A comparison with the 
number of events in Figure 5a shows that the distance in the distributions remains comparably large after correc-
tion for regions where the number of precipitation events over the 10-year test period is particularly low. Hence, 
the error in these regions might be caused by either the models themselves or the insufficient amount of precip-
itation events. We compare latitude profiles of the Wasserstein distances, which shows a general reduction of 
distances in the raw GFDL-ESM4 simulation through the postprocessing methods, with the best performance 
given by cGAN-ISIMIP3BASD (Figure S6 in Supporting Information S1).

Figure 1.  Histograms of relative precipitation frequencies over the entire globe and test period (2004–2014). (a) The 
histograms are shown for the W5E5v2 ground truth (black), GFDL-ESM4 (green), ISIMIP3BASD (magenta), cGAN 
(blue), unconstrained cGAN (orange), and the (constrained) cGAN-ISIMIP3BASD combination (cyan). (b) Distances of the 
histograms to the W5E5v2 ground truth are shown for the same models as in (a). Percentiles corresponding to the W5E5v2 
precipitation values are given on the second x-axis at the top. Note that GFDL-ESM4 overestimates the frequencies of strong 
and extreme rainfall events. All compared methods show similar performance in correcting the local frequency distributions.
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Figure 2.  Bias in the long-term average precipitation over the entire test set between the W5E5v2 ground truth (a) and GFDL-ESM4 (b), ISIMIP3BASD (c), cGAN 
(d), unconstrained cGAN (e), and the (constrained) cGAN-ISIMIP3BASD combination (f). The mean absolute error w.r.t. the W5E5v2 ground truth is shown in the 
upper right corner.
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3.3.  Spatial Patterns

We compare the ability of the cGAN to improve spatial patterns based on the W5E5v2 ground truth, against the 
GFDL-ESM4 simulations and the ISIMIP3BASD method applied to the GFDL-ESM4 simulations. To model 
realistic precipitation fields, the characteristic spatial intermittency needs to be captured accurately.

We compute the RAPSD of global precipitation fields, averaged over the test set for each method (Figure 6a). GFDL-
ESM4 shows noticeable deviations from W5E5v2 in the RAPSD (Figure 6b). Our cGAN can correct these over the 
entire range of wavelengths, closely matching the W5E5v2 ground truth. Improvements over ISIMIP3BASD are 
especially pronounced in the range of high frequencies (low wavelengths), which are responsible for the intermittent 
spatial variability of daily precipitation fields. Adding the physical constraint to the cGAN does not affect the ability 
to produce realistic RAPSD distributions. After applying ISIMIP3BASD to the GAN-processed fields, most of the 
improvements generated by the cGAN are retained, as shown by the cGAN-ISIMIP3BASD results.

Figure 3.  Precipitation averaged over longitudes and the entire test set period from the W5E5v2 ground truth (black) 
and GFDL-ESM4 (green), ISIMIP3BASD (magenta), cGAN (blue), unconstrained cGAN (orange), and the (constrained) 
cGAN-ISIMIP3BASD combination (cyan). To quantify the differences between the shown lines, we show their mean 
absolute error w.r.t. the W5E5v2 ground truth in the legend. These values are different from the ones shown in Table 1 as the 
average is taken here over the longitudes without their absolute value. The cGAN-ISIMIP3BASD approach shows the lowest 
error.

Season Percentile
GFDL-
ESM4

ISIMIP3-
BASD % cGAN %

cGAN 
(unconst.) %

cGAN-ISIMIP3-
BASD %

Annual – 0.535 0.217 59.4 0.328 38.7 0.265 50.5 0.195 63.6

DJF – 0.634 0.321 49.4 0.395 37.7 0.371 41.5 0.308 51.4

MAM – 0.722 0.314 56.5 0.419 42.0 0.378 47.6 0.285 60.5

JJA – 0.743 0.289 61.1 0.451 39.3 0.357 52.0 0.280 62.3

SON – 0.643 0.327 49.1 0.409 36.4 0.362 43.7 0.306 52.4

Annual 95th 2.264 1.073 52.6 1.415 37.5 1.213 46.4 0.945 58.3

DJF 95th 2.782 1.496 46.2 1.725 38.0 1.655 40.5 1.432 48.5

MAM 95th 2.948 1.482 49.7 1.805 38.8 1.661 43.7 1.337 54.6

JJA 95th 2.944 1.366 53.6 1.852 37.1 1.532 48.0 1.247 57.6

SON 95th 2.689 1.495 44.4 1.741 35.3 1.592 40.8 1.366 49.2

Note. The relative improvement over the raw GFDL-ESM4 climate model output is shown as percentages for each method. 
The best performance is indicated in bold font.

Table 1 
The Globally Averaged Absolute Value of the Grid Cell-Wise Difference in the Long-Term Precipitation Average, As Well 
As the 95th Percentile, Between the W5E5v2 Ground Truth and GFDL-ESM4, ISIMIP3BASD, cGAN, Unconstrained cGAN, 
and the (Constrained) cGAN-ISIMIP3BASD Combination for Annual and Seasonal Time Series (in mm/day)
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Figure 4.  The return values for 10-year return times are shown for the W5E5v2 ground truth (a) and the respective errors for GFDL-ESM4 (b), ISIMIP3BASD (c), 
the cGAN (d), the unconstrained cGAN (e), and the (constrained) cGAN-ISIMIP3BASD combination (f). The global mean absolute error (MAE) with respect to the 
W5E5v2 ground truth is shown in the top right corner of each panel, with the unconstrained cGAN exhibiting the lowest error. The hatched area indicates regions that 
were excluded from the analysis due to insufficient events.
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Figure 5.  The number of precipitation events above the 95th percentile W5E5v2 ground truth (a) and the relative Wasserstein-1 distance between the waiting 
time distributions of the ground truth and the GFDL-ESM4 (b), ISIMIP3BASD (c), the constrained cGAN (d), the unconstrained cGAN (e), and the (constrained) 
cGAN-ISIMIP3BASD combination (f). The global mean absolute error with respect to the W5E5v2 ground truth is shown in the top right corner of each panel, where 
the cGAN-ISIMIP3BASD method achieves the lowest error. The hatched area indicates regions that were excluded from the analysis due to insufficient events.
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For a second way to quantify how realistic the simulated and postprocessed precipitation fields are, with a focus on 
high-frequency spatial intermittency, we investigate the fractal dimension (Edgar & Edgar, 2008) of the lines separat-
ing grid cells with daily rainfall sums above and below a given quantile threshold (see Section 2). For a sample and 
qualitative comparison of precipitation fields over the African continent, see Figure 8, and additionally for central 
Asia and South America (Figures S2 and S3 in Supporting Information S1). The daily spatial precipitation fields 
are first converted to binary images using a quantile threshold. The respective quantiles are determined from the 
precipitation distribution over the entire test set period and globe. The mean of the fractal dimension computed with 
box counting (see Section 2; Husain et al., 2021; Lovejoy et al., 1987; Meisel et al., 1992) for each time slice is then 
investigated (Figure 7). Both the GFDL-ESM4 simulations themselves and the results of applying the ISIMIP3BASD 

Figure 6.  Radially averaged power spectral densities (RAPSDs) of the spatial precipitation fields. (a) The RAPSDs are shown as an average over all samples in 
the test set, for the W5E5v2 ground truth (black) and GFDL-ESM4 (green), ISIMIP3BASD (magenta), cGAN (blue), unconstrained cGAN (orange, dashed), and 
the (constrained) cGAN-ISIMIP3BASD combination (cyan). (b) The absolute error of the log-transformed spectra w.r.t. the ground truth is shown to highlight the 
differences. The cGANs and W5E5v2 ground truth agree so closely that they are indistinguishable. In contrast to ISIMIP3BASD, the cGAN can correct the intermittent 
spectrum accurately over the entire range down to the smallest wavelengths.

Figure 7.  The fractal dimension (see Section 2) of binary global precipitation fields is compared as averages for different 
quantile thresholds. Results are shown for the W5E5v2 ground truth (black) and GFDL-ESM4 (green), ISIMIP3BASD 
(magenta), cGAN (blue), unconstrained cGAN (orange, dashed), and the (constrained) cGAN-ISIMIP3BASD combination 
(cyan). The cGAN can accurately reproduce the fractal dimension of the W5E5v2 ground truth spatial precipitation fields 
over all quantile thresholds, clearly outperforming the ISIMIP3BASD baseline.
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postprocessing to them exhibit spatial patterns with a lower fractal dimension than the W5E5v2 ground truth, imply-
ing too low spatial intermittency. In contrast, the cGAN translates spatial fields simulated by GFDL-ESM4 in a way 
that results in closely matching fractal dimensions over the entire range of quantiles.

4.  Discussion
Postprocessing climate projections is a fundamentally different task from postprocessing weather forecast simu-
lations (Hess et al., 2022). In the latter case, data-driven postprocessing methods, for example, based on deep 
learning, minimize differences between paired samples of variables such as spatial precipitation fields (Hess & 
Boers, 2022). Beyond time scales of a few days, however, the chaotic nature of the atmosphere leads to exponen-
tially diverging trajectories. For climate or ESM output, there is no observation-based ground truth to directly 
compare to. We, therefore, frame the postprocessing of ESM projections with applications for subsequent impact 
modeling in mind as an image-to-image translation task with unpaired samples. We focus on precipitation in 
this study since it is highly relevant for impact assessment in the context of anthropogenic climate change, and 
because it is arguably the most difficult variable to model due to the high degree of intermittency both in time and 
in space. However, our method can be extended to multiple variables in a straightforward manner by including 
them as additional channels in the image.

To this end, we apply a recently developed postprocessing method based on physically constrained GANs to 
global simulations of a state-of-the-art, high-resolution ESM from the CMIP6 model ensemble, namely the 
GFDL-ESM4 (Krasting et al., 2018; O’Neill et al., 2016). We evaluate our method against the gold-standard bias 
correction framework ISIMIP3BASD. Our model can be trained on unpaired samples that are characteristic of 
climate simulations. It is able to correct the ESM simulations in two regards: temporal distributions over long 
time scales, including extremes in the distributions’ tails, as well as spatial patterns of individual global snapshots 
of the model output. The latter is not possible with established methods. Our GAN-based approach is designed 
as a general framework that can readily apply to different ESMs and observational target data sets. This contrasts 
existing bias-adjustment methods that are often tailored to specific applications.

We chose to correct precipitation because it is arguably one of the hardest variables to represent accurately 
in ESMs. So far, GANs have only been applied to regional studies or low-resolution global ESMs (François 
et al., 2021; Hess et al., 2022). The GFDL-ESM4 model simulations are hence chosen in order to test if our 

Figure 8.  Qualitative comparison of precipitation fields at the same date (31st May 2004). The global fields have been cropped to a region over the African continent 
to better visualize the small-scale representation of precipitation (see Figures S2 and S3 in Supporting Information S1 for more examples). The top row shows the daily 
precipitation fields for the W5E5v2 ground truth, cGAN, ISIMIP3BASD, and GFDL-ESM4. The bottom row shows the respective contour lines of binary fields used to 
compute the fractal dimension (FD) given in the titles.
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cGAN approach would lead to improvements even when postprocessing global high-resolution simulations of 
one of the most complex and sophisticated ESMs to date. In the same spirit, we evaluate our approach against a 
very strong baseline given by the state-of-the-art bias correction framework ISIMIP3BASD, which is based on a 
trend-preserving QM method (Lange, 2019).

Comparing long-term summary statistics, our method yields histograms of relative precipitation frequen-
cies that closely agree with corresponding histograms from reanalysis data (Figure 1). This means that the 
extremes in the far end of the tail are accurately captured, with similar skill to the ISIMIP3BASD baseline 
that is mainly designed for this task. Differences in the grid cell-wise long-term average show that the cGAN 
skillfully reduces biases (Figure 2); in particular, the often reported double-peaked ITCZ bias of the GFDL-
ESM4 simulations, which is a common feature of most climate models (Tian & Dong,  2020), is strongly 
reduced (Figure 3). The ISIMIP3BASD method—since it is specifically designed for this—produces slightly 
lower biases for grid-cell-wise averages than the cGAN; we show that combining both methods by first 
applying the cGAN and then the ISIMIP3BASD procedure leads to the overall best performance. Evaluat-
ing the representation of extremes in the bias-adjusted simulations shows that the cGAN outperforms the 
other models in terms of capturing the magnitude of return values for events with a 10-year return time. We 
note that applying the ISIMIP3BASD method on cGAN output decreases the performance for 10-year return 
values. We are able to improve waiting time distributions of precipitation events above the 95th percentile, 
with the combined cGAN-ISIMIP3BASD method performing better than the other methods. The fact that the 
combined cGAN-ISIMIP3BASD approach performs better in the latter case could be attributed to the larger 
set of events available for estimating an accurate mapping of the quantiles. The estimation might be more 
challenging for the much rarer extremes that only occur once in 10 years on average, given the 20 years of 
training data.

Regarding the correction of spatial patterns of the modeled precipitation fields, we compare the spectral density and 
fractal dimensions of the spatial precipitation fields. Our results show that, indeed, only the cGAN can capture the 
characteristic spatial intermittency of precipitation closely (Figures 6 and 7). We believe that the measure of fractal 
dimension is also relevant for other fields, such as nowcasting and medium-range weather forecasting, where blur-
riness in deep learning-based predictions is often reported (Ravuri et al., 2021) and needs to be further quantified.

Postprocessing methods for climate projections have to be able to preserve the trends that result from the nonsta-
tionary dynamics of the Earth system on long-time scales. We have therefore introduced the architecture constraint 
of preserving the global precipitation amount every day in the climate model output (Hess et al., 2022). We find 
that this does not affect the quality of the spatial patterns that are produced by our GAN method. However, the skill 
of correcting mean error biases is slightly reduced by the constraint. This can be expected in part as the constraint 
is constructed to follow the global mean of the ESM (see Figure S3 in Supporting Information S1). Hence, biases 
in the global ESM mean can influence the constrained cGAN. This also motivates our choice to demonstrate the 
combination of the constrained cGAN with the QM-based ISIMIP3BASD procedure since it can be applied to 
future climate scenarios, making it more suitable for actual applications than the unconstrained architecture. By 
construction, the ISIMIP3BASD method is trend preserving; hence, combining it with the constrained cGAN also 
produces realistic trends (see Figure S4 in Supporting Information S1). In our experiments, we also applied QM 
before the cGAN processing but did not see any notable improvements compared to the cGAN alone.

There are several directions to further develop or approach. The architecture employed here has been built 
for equally spaced two-dimensional images. Extending the GAN architecture to perform convolutions on the 
spherical surface, for example, using graph neural networks, might lead to more efficient and accurate models. 
Moreover, GANs are comparably difficult to train, which could make it challenging to identify suitable network 
architectures. Using large ensembles of climate simulations could provide additional training data that could 
further improve the performance. Another straightforward extension of our method would be the inclusion of 
further input variables or the prediction of additional high-impact physical variables, such as near-surface temper-
atures that are also important for regional impact models.
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Data Availability Statement
The Python code for processing and analyzing the data, together with the PyTorch Lightning (Falcon, 2019) code, 
is available in GAN training code [Software] (2023). The ISIMIP3BASD code in Lange (2022) is used for this 
study. The W5E5 data from WFDE5 over land merged with ERA5 over the ocean (W5E5 v2.0) [Dataset] (2021) 
are used and the GFDL-ESM4 data are available in Cmip6 gfdl-esm4 model data [Dataset] (n.d.).
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