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Abstract

The physical hydroclimate system of the Amazon functions on several spatial and temporal scales.
Large-scale processes control the main seasonal patterns of atmospheric circulation and rainfall.
Seasonal variability in solar forcing, associated with the low rainforest albedo, provides energy for
continental heating, convection, and the onset of the South American monsoon. Mesoscale
processes cause localized circulations such as river breeze and deforestation breeze. We assessed the
impact of different deforestation scenarios for the mid-century last decade rainy season. Here we
describe a yet unreported synoptic-scale circulation that delays the rainy season onset in southern
Amazonia. This model-predicted circulation is driven by extensive (ca. 40%) deforestation patterns
and may last as long as two months. This persistent anomalous circulation may result in a rainy
season onset delay of 30—40 d compared to the historical period. Like other synoptic-scale
phenomena, differences in surface heating drive this circulation. Given the unabated deforestation
trends, the consequences for local ecosystems, agriculture, and power generation of delayed rainy
season onset associated with this circulation may be difficult to revert.

1. Introduction

The seasonal behavior of the Amazon’s hydroclimate
is related to large-scale mechanisms such as the Inter-
tropical Convergence Zone and the South American
Monsoon System, which cause most of the region’s
rain to fall during summer (Wright et al 2017, Mu
and Jones 2022, Sierra et al 2022, Talamoni et al 2022).
In addition, the South Atlantic Convergence Zone is
a monsoon trough convergence band oriented in the
northwest—southeast direction and ranging from the
Amazon basin to the tropical South Atlantic (Sierra
et al 2022, Talamoni et al 2022). Moreover, the El
Nino—Southern Oscillation controls the main inter-
annual hydroclimate variability in Amazon (Marengo
etal 2021, Espinoza et al 2022) and has contributed to
severe droughts in the basin recently (Marengo et al
2021, Mu and Jones 2022).

Northwestward of an SW-NE diagonal ranging
from 16° S, 60° W to 4° S, 45° W, the Amazon
climate is humid, with either no dry season or just

© 2023 The Author(s). Published by IOP Publishing Ltd

a less rainy season (Koppen’s Af and Am) (Alvares
et al 2013). As this diagonal is crossed, in southern
Amazonia (SA), the climate transitions from humid
to seasonal (Koppen’s Aw). The onset of the rainy
season in SA is related to large-scale mechanisms
and heterogeneous solar heating promoting convec-
tion in the region (Leite-Filho et al 2020, Espinoza
etal 2022). The heating promotes evapotranspiration,
increasing atmospheric moisture and precondition-
ing the regional convection for the rainy season onset
(Wright et al 2017, Talamoni et al 2022).

In the last few decades, the rainy season onset
in SA has been delayed (Fu et al 2013, Leite-Filho
et al 2020). This behavior relates to changes in
atmospheric circulation, regional convective energy
(Wright et al 2017, Talamoni et al 2022), and land-use
change by deforestation (Leite-Filho et al 2020, Staal
et al 2020). Specifically, deforestation can change the
surface energy balance and surface roughness, cre-
ating feedbacks that reduces rainfall and delays the
rainy season onset (Stickler et al 2013, Lawrence and
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Vandecar 2015, Khanna et al 2017, Staal et al 2020,
Caballero et al 2022, Mu and Jones 2022).

Early studies that analyzed the effects of complete
Amazon deforestation on climate simulated a reduc-
tion in the evapotranspiration and precipitation pro-
portional to the increase in the land surface albedo,
which would impact the surface energy fluxes (latent
and sensible heat) (Shukla et al 1990, Dirmeyer and
Shukla 1994, Eltahir and Bras 1996, Costa and Foley
2000, Sampaio et al 2007). In the simulations, these
energy fluxes promoted a change in the monsoon cir-
culation, impacting the rainfall volume and rainy sea-
son timing due to anomalous subsidence over the
region.

However, current deforestation patterns are frag-
mented and on the scale of a few tens of kilo-
meters. Mesoscale forest clearing creates a thermally
driven mesoscale (10—100 km) circulation called the
deforestation breeze (Saad et al 2010, Lawrence and
Vandecar 2015, Fassoni-Andrade et al 2021). This cir-
culation may promote subsidence, diminishing rain-
fall upwind of the deforested areas (Saad et al 2010,
Khanna et al 2017).

Analyses of intermediate-scale deforestation scen-
arios in the last two decades have associated defor-
estation with rainfall decrease (Costa et al 2007,
Sampaio et al 2007, Pires and Costa 2013, Spracklen
and Garcia-Carreras 2015), but the coarse-resolution
models (~300 km) used in these analyses might not
have correctly represented the circulation dynamics
between the mesoscale and the large-scale processes.
Those models’ resolutions might also have affected
land—atmosphere interactions since there is an appar-
ent relationship between the deforestation scale and
rainfall impact (Spracklen and Garcia-Carreras 2015,
Leite-Filho et al 2021, Caballero et al 2022, Mu and
Jones 2022, Smith et al 2023).

Here we use a fine-resolution (0.9° x 1.25°)
coupled climate system model to investigate the
effects of realistic deforestation scenarios on the
Amazon’s climate and increasing atmospheric CO,
concentrations. While we follow the representat-
ive concentration pathways (RCPs) of the Coupled
Model Intercomparison Project Phase 5 (CMIP5), we
consider their land-use scenarios too optimistic for
Amazonia. RCP8.5 assumed Amazon deforestation of
20% by 2050 (Pires et al 2016), which is close to estim-
ates of the current (2020) levels of Amazon deforest-
ation (~838 000 km?) (Souza et al 2020). Instead of
using the default CMIP5 scenarios, we used two real-
istic deforestation pathways that emerged from dif-
ferent environmental policy scenarios (Rochedo et al
2018). The strong environmental governance (SEG)
scenario enhances forest legislation and conservation,
while the weak environmental governance (WEG)
scenario renounces deforestation control and rein-
forces predatory practices (Rochedo et al 2018, Leite-
Filho et al 2021). In the SEG pathway, the deforested
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area will be ~23% in 2050, while with WEG, defor-
estation could reach ~1700 000 km? (~40%) by the
same time (Rochedo et al 2018).

2. Methods

2.1. Climate simulations

We used the Community Earth System Model ver-
sion 1.0.6 (CESM) (Hurrell et al 2013). CESM is a
fully coupled model capable of simulating interac-
tions between the different components of the cli-
mate system, such as the atmosphere, oceans, cryo-
sphere, and land surface (Hurrell et al 2013, Sampaio
etal 2021). We arranged the simulations to reproduce
the original RCP2.6 and RCP8.5 CMIP5 simulations
with coupled atmosphere, ocean, sea, and ice, except
for the land-use patterns inside Brazil, where the ori-
ginal RCP land-use patterns were replaced by those of
two locally informed environmental governance (EG)
scenarios (see below).

The Community Land Model version 4 (CLM) is
the component that represents surface processes in
CESM (Hurrell et al 2013). It represents the tran-
sient land-cover change between the fractions of 15
plant functional types (PFTs), each with its own set of
physiological parameters and RCP’s emissions effects
on it.

Four initializations were performed for each scen-
ario, with initial historical conditions taken from four
ensemble members of the historical experiment with
the original CCSM4 (Community Climate System
Model version 4, former name of CESM) for the year
2005, thus replicating the original initial conditions
of the scenarios present in the RCP simulations from
CMIP5.

2.2. EG scenarios

Inside Brazil, land-use patterns for CLM were taken
from two scenarios representing land-use futures
under two levels of EG: WEG and SEG. Both EG
scenarios considered the trajectory of Brazilian envir-
onmental policy, land use, and occupation in recent
years (Rochedo et al 2018).

The WEG scenario represents the worst possible
case for the environment, indicating policies to sup-
port the development of agriculture with zero sus-
tainability. WEG was designed to replicate the defor-
estation trends of the pre-2005 period when the EG
of the Amazon and Cerrado was at its lowest. The
SEG scenario assumes that environmental policies
will be enforced and have government support, with
conservationist practices and economic incentives for
preservation, replicating deforestation rates from the
2005-2012 period when EG was substantially rein-
forced (Rochedo et al 2018).

The EG scenarios consist of yearly land-cover
information on a 25 ha grid discriminated into 31
classes. These were reclassified into crops, pasture,
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natural vegetation, and planted forest, and then fur-
ther reclassified into CLM’s 15 PFTs (table S1). Nat-
ural vegetation was mapped to a combination of PFTs
with the same fraction as those in the primary veget-
ation maps from Ramankutty and Foley (1999). For
a more detailed description of the mappings, refer to
Oleson et al (2010).

2.3. Anomalies for the decade 2040-2050

We ran the simulations for 2012-2050 for four
scenarios that combined climate forcings and EGs:
RCP2.6-WEG, RCP2.6-SEG, RCP8.5-WEG, and
RCP8.5-SEG. We calculated anomalies between the
EG scenarios (WEG-SEG) to assess their effects on
the rainy season onset. The onset is defined as the
start of the lengthiest period when rainfall exceeds
the established threshold for a specific region (sup-
plementary methods—equation (1)). We calculated
monthly averages for zonal, meridional, and vertical
wind, rainfall, net radiative flux (Rn), and heat fluxes
(latent and sensible) for 2040-2050 for September,
October, and November.

3. Results

3.1. Rainfall validation

To assess the model’s skill, we compared its rain-
fall results with an ensemble of observed precip-
itation data comprising the GPCC, CHIRPS, and
PERSIANN-CDR (described in the supplement-
ary methods). The CESM simulations behavior
(figures 1(a) and (b)) was similar to the observed
data (figures 1(c) and (d)), showing higher precipit-
ation over the northern portion of the Amazon and
decreasing the rainfall amount in the southern dir-
ection. Most anomalies were between 2 mm d~!
(figures (e) and (f)), with significant differences in
September (figure 1(e)).

3.2. Climate response to different EG scenarios
While the SEG deforestation is not much different
from 2020 deforestation levels, the WEG pathways
promote more extensive and heavier deforestation in
SA (figure 2). The difference between the WEG and
SEG scenarios is always greater than 5%, but in north-
ern Mato Grosso and along paved roads, the deforest-
ation differences are over 60% (figure 2(g)).

There was an increase in deforestation for the
2040-2050 decade (figures 2(c)—(f)), especially in the
WEG scenario AM, MT, and PA frontiers increased
deforestation. What showed a change in the PFTs
compositions with an expansion in croplands and
pasture.

The differences between deforestation scenarios
influence the energy partitioning and distribution
over the region, revealing a previously unreported
shallow synoptic-scale circulation over SA and Mato
Grosso (figure 3). This circulation can be as deep as
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600 hPa in September and October (figures 3(a), (b),
(e), (f), (1), (j), (m), and (n)) and extends from 1200
to 1500 km (figure 4). We noticed a clearer circula-
tion for RCP2.6 in September (figures 3(a) and (i)),
while RCP8.5 presented a later circulation pattern in
October (figures 3(f) and (n)), with sharper circula-
tion behavior (figures 3(e), (f), (m), and (n)). This
synoptic circulation is absent in November, when the
rainy season has already started.

Regarding the circulation pattern, we observed
a dipole behavior over SA (figure 3) with a subsid-
ence branch over northern Mato Grosso (MT) and an
ascending branch over the southern state of Amazo-
nas (figure 4). In RCP8.5, most of Mato Grosso exper-
iences a subsidence anomaly (figure 4(d)). These sub-
sidence regions cause a significant (o = 0.05) delay in
the rainy season onset (figure 5).

The subsidence occurs mostly over regions
with a negative net surface radiative flux (Rn)
anomaly (figures Sl(a)—(d)), associated with the
albedo increase due to deforestation in the region
(figure 2(g)). Rn reductions cause reductions in both
sensible heat flux (H) and the injection of water
vapor into the atmosphere (reduction in latent heat
flux LE) (figures S2 and S3). Similarly, the increased
convection occurs where Rn has a positive anomaly,
mostly in September (figures S1(a) and (b)). This
spatial energy distribution mirrors the ascending
and descending circulation branches, characterizing
a thermally induced circulation.

Global warming and deforestation patterns cause
significant rainfall anomalies (figure S4) and a signi-
ficant delay in the rainy season onset (figures 5 and
S5). For our four scenarios in SA, RCP2.6 shows an
average onset on September 30 and October 4 for
SEG and WEG, respectively (figures S5(b) and (c)),
while RCP8.5 shows an average onset on October 1
and 7 for SEG and WEG (figures S5(d) and (e)),
respectively.

The circulation anomaly exhibits a predomin-
ant subsidence movement over SA and MT dur-
ing September and October (figures 3 and 4(a)—(d))
when the rainy season usually begins in these areas
(figure S5(a)). In RCP2.6, the circulation affects
most of SA, all of MT, and Par4, with anomalies as
high as 12 d (figure 5(a)). The significant anomalies
increase spatially for RCP8.5, with higher delay values
(figure 5(b)). We also observed that, comparing the
historical (1990-2005) onset with the worst scenario
(RCP8.5 + WEG), the delay in the onset can reach
30-40d (figures S5(a) and (e)), and the areas with sig-
nificant onset delay extend geographically over most
of MT (figure 5(b)).

RCP2.6 is associated with an earlier onset than
RCP8.5 (figures S5(b)—(e)). Rainfall reductions are
more significant in September in RCP2.6, while in
RCP8.5, the main reductions happen in October
(figures S4(a) and (d)).
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Figure 1. Monthly mean precipitation and anomalies for CESM historical period and the observed data (1990-2005). CESM
precipitation (a) and (b), average observed precipitation (c) and (d), and precipitation anomalies (e) and (f). Shaded areas
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4. Discussion

4.1. Model validation
Our simulation represented the land—atmosphere
interactions over amazon as an energy-limited pro-
cess, in agreement with observations and other CESM
experiments (Baker et al 2021). Moreover, CESM
accurately represented the circulation pattern and its
impact on precipitation variability in South Amer-
ica (Olmo et al 2022). Furthermore, CESM’s pre-
cipitation behavior was similar to the observations
(figure 1), following previous multimodel evalu-
ations, including some underestimation over the
Amazon (Firpo et al 2022, Monteverde et al 2022).
Our work is innovative in presenting a monthly scale
analysis, which identifies with more detail differences
in model simulations compared to annual means.
Previous works suggested good simulations
of vegetation water cycles and energy fluxes by
land surface models (CLM included) in Amazon
(Christoffersen et al 2014, Restrepo-Coupe et al
2021). When replacing forests with C4 grasses, CLM
tends to produce higher LE values in CESM simula-
tions because C4 grasses are very productive in trop-
ical regions (Boysen et al 2020). Thus, increased val-
ues in LE coinciding with high deforestation regions
(figure S3(c)) were related to increased evapotran-
spiration due to an enhanced C4 plant’s leaf area
index (LAI) (figure S7(c)). Although this beha-
vior does not match observed evapotranspiration
after vegetation loss, neither in forests nor pastures
(Spracklen et al 2018), it could be related to the
physiological effects of CO, or may be model-specific
due to the model parametrization (Boysen et al 2020,

Pitman et al 2009) and thus may bring uncertainty
to the generalization of the results. However, we keep
the original CLM parameterization to maintain full
compatibility with the CMIP5 simulations.

Nevertheless, our simulations indicated increased
precipitation (figure S4(c)) where the LE and LAI
were higher (figures S3(c) and S7(c)), demonstrating
a cohesive relation between evapotranspiration and
rainfall over Amazon, similar to previous ESM ana-
lysis (Lawrence and Vandecar 2015, Boysen et al 2020,
Baker et al 2021).

4.2. Climate response and impacts of different EG
scenarios

Large-scale circulation patterns influence rainfall in
SA all year (Mu and Jones 2022, Sierra et al 2022,
Talamoni et al 2022), while mesoscale circulations
induced by deforestation have a much shorter dura-
tion (Saad et al 2010, Lawrence and Vandecar 2015,
Khanna et al 2017, Sierra et al 2022). Our results
showed a deforestation-induced synoptical scale cir-
culation anomaly with a duration of two months
(figures 3 and 4), impacting the early rainy season in
SA.

The additional deforestation disturbed the net
radiation balance and partitioning over SA, with neg-
ative anomalies in the Rn and LE (figures S1 and
S3), creating a subsidence circulation that reduced
the rainfall and delayed the rainy season. Moreover,
the persistence of the circulation anomaly during the
dry-to-wet transition months (September—October)
exacerbated the magnitude and spatial extent of the
delayed rainy season onset.
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Figure 2. Study area, with main roads, deforestation (historical and scenarios), and scenarios differences. Orientation map

(a) with state names (AM—Amazonas, MT—Mato Grosso, PA—Par4, and RO—Rondonia), major cities (numbered), ports
(black triangles), and highways (labeled BR). P-Q and T-U indicate two cross-sections for circulation analyses. Total
deforestation in 2005 (b), 2040 according to WEG (c) and SEG (d), and 2050 according to WEG (e) and SEG (f) pathways and the
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Despite the known impact of reducing evapora-
tion on precipitation, highlighting the significance of
surface fluxes (Findell et al 2011, Lee et al 2012), the
role of synoptic-scale phenomena is often overlooked
in such cases, particularly in the context of extensive
deforestation as discussed herein.

The expansion of roads in the Amazon has been
causing deforestation since the 1970s, transitioning
forests to agriculture around BR-230 (Moran 2016,
Li et al 2019). Yet deforestation was constrained
by the poor condition of Amazonia’s dirt highways.
These constraints have recently been removed since
the recent expansion and paving of BR-163 and BR-
319 (figure 2(a)). The paving of BR-163 between
the Mato Grosso—Pard border and the Miritituba

Port between 2019 and 2021 and the ongoing pav-
ing of BR-319 linking Porto Velho to Manaus have
facilitated access to these regions leading to further
deforestation due to land occupation for agricul-
ture expansion (Andrade et al 2021, Ferrante et al
2021). Regions closer to Santarém showed higher
deforestation over WEG (figure 2(g)), confirming the
negative impact of BR-163 under weak governance
(Soares-Filho et al 2004, Saad et al 2010). However, a
higher-resolution model could provide more detailed
information on road-level deforestation.
Deforestation impacted climates in both RCP
scenarios through changes in circulation, rainy sea-
son onset, and rainfall (figures 3, 5, and S4, respect-
ively). These results are consistent with several studies




10P Publishing

Environ. Res. Lett. 18 (2023) 044041

L F S Commar et al

T U T
a i Sep RCP2.6 @ Sep RCP8.5
300 - PR =+ <<+ +<«----]11m/s
= 400 - of o o] e e R B Y e —
= 500 o Hor e e ] e A P
£ 200 4 4 < il A S s =il als
g 700 + 4o s - .
8 gsp 4 - Bl o o . o T e o e
83t 7 ] sbes LR BT T ] L TR
1000 T T LN I B N R T T T T T T T T
p Oct RCP2.6 f Oct RCP8.5 j Oct RCP2.6 n Oct RCP8.5
300 4 i T e B P I L T S I S TR T
= 200 feeme e e Siils 4
£ 500 4 . e o wes pslaey s b
§‘ 600 4 - -« - e I SN NN L BRI T TR T 2 -+ - - - s
S 700 - — E - —— . B . - . ———————— e
g 4 B = RPN = (IR - O 8 P L PO
i [l i Pt e E < e eCn st
1000 T T T T T T T T T T 1 T T T T T T T T T
g Nov RCP8.5 K o Nov RCP8.5
g 1. N B b G
£ T | PR
T . E . Goa s s e Rk B e
[
g e ey 4 A
T T T T T T T T T T T T T T
d h | p
£> 02 0.1
S8 Sep. 0.0 [] 0.00 oo
%E 1 Oct. 0.0 |_|[_|
gE 00 -05 ! -0.25
g >
S'g =0.1 + —0.50 -
8E -0.2 -1.0
o —u - — _
& T — T T T T T—T L — -0.2 T T T T 072 T T T
64°W 60°W 56°wW 52°W 64°W 60°wW 56°W 52°wW 58°W 54°wW 50°wW 58°W 54°W 50°W

Figure 3. Synoptic-scale circulation and its impacts on precipitation. Zonal winds and vertical velocity anomalies calculated as
WEG-SEG over the cross-sections P-Q ((a)—(c), (e)—(g)) and T-U ((i)—(k), (m)—(0)) for September and October (the rainy
season onset months) and for November (when the rainy season is already established); red and blue arrows indicate significant
differences at & = 0.05 and 0.10, respectively. Total precipitation changes calculated as WEG-SEG over cross-section P—Q for
RCP2.6 and RCP8.5 (d) and (h) and cross-section T-U for RCP2.6 and RCP8.5 (1) and (p) that are significant at o = 0.10; values

of precipitation not shown are not significant at « = 0.10.

that relate deforestation and global warming to rain-
fall reduction and rainy season delay (Lawrence and
Vandecar 2015, Khanna et al 2017, Wright et al 2017,
Costa et al 2019, Leite-Filho et al 2020, Baudena et al
2021, Leite-Filho et al 2021). However, in this study,
we simulated a spatially long (~1200-1500 km) and
persistent (2 months) circulation pattern.

The effects on the delayed rainy season onset
were more spatially extensive in RCP8.5 (figure 5(b)),
affecting most of Mato Grosso and producing a sig-
nificant reduction in October precipitation (figure
S4(d)) (>60% reduction, o = 0.05). Mato Grosso’s
agriculture has already been demonstrated to be
extremely sensitive to deforestation and climate
change (Costa et al 2019). Other authors have noted
rainfall reductions in RCP8.5 combined with defor-
estation (Pires et al 2016, Sampaio et al 2021). In
RCP2.6, significant (o = 0.05) effects of deforesta-
tion were most extensive at the rainy season onset
(figure 5(a)) but smaller than in RCP8.5. However,
the impacts on total precipitation were mostly non-
significant, with significant changes limited to smaller
regions (figure S4).

Even the original RCP scenarios, which con-
sidered limited deforestation scenarios, caused a
delayed rainy season onset and precipitation reduc-
tions for agriculture and land-use dynamics in the
region (Fu et al 2013, Pires et al 2016, Costa et al
2019, Brumatti et al 2020). In addition, deforestation

itself has been shown to reduce precipitation and
delay the rainy season onset (Lawrence and Vandecar
2015, Khanna et al 2017, Leite-Filho et al 2020,
Leite-Filho et al 2021). Previous studies have attemp-
ted to add the climate effects of global warming
and realistic deforestation linearly (Pires et al 2016,
Brumatti et al 2020), showing that both forcings
cause effects in the same direction, but without con-
sidering the feedback between them and with the
rest of the climate system. Here we have demon-
strated that the two effects (increased CO, and real-
istic land use), combined with their feedbacks, may
promote a vaster and more persistent impact on rainy
season onset (figure 5) and precipitation reductions
due to the long-lasting subsidence anomaly described
here.

Along with climate change, deforestation and
forest degradation will impact the Amazon’s hydro-
climate, ecosystem services, and ecosystem vulnerab-
ility. While forest preservation is an ally to ecosystem
services (Strand et al 2018, Flach et al 2021, Rattis et al
2021), a shorter rainy season enhances ecosystem vul-
nerability (Gatti et al 2021) and has consequences for
agriculture and hydropower generation, as discussed
below.

The realistic deforestation scenarios explored
here incorporate the likely consequences of the
paved road infrastructure that has recently been
constructed in the Amazon; this infrastructure is
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facilitating agricultural expansion and increasing
forest fragmentation (Rochedo et al 2018, Strand
et al 2018, Andrade et al 2021). This deforestation
course—together with rising temperature, increas-
ing vapor pressure deficit, and increasing fires—can
destabilize or even collapse the rainforest ecosystem
(Brando et al 2020, Gatti et al 2021, Oliveira et al
2022, Xu et al 2022). With a shorter rainy season and
a vulnerable ecosystem, the risk to biodiversity pre-
servation increases dramatically (Strand et al 2018,
Boulton et al 2022), thus turning forest conservation
into a greater challenge (Brando ef al 2020, Gatti et al
2021).

Because of the climate feedbacks, agricultural
expansion over Amazonia may produce results
opposite from what is expected, that is, leading to
lower productivity and instigating several negative
economic consequences associated with agricultural

activities (Costa et al 2019, Brumatti et al 2020, Spera
et al 2020, Leite-Filho et al 2021, Rattis et al 2021).
Previous studies that did not consider the persist-
ent effects we have found concluded that deforesta-
tion could cost SA agriculture US$1 billion annually
through the mid-century (Leite-Filho et al 2021). Our
results suggest that the impacts on agriculture may be
even more severe. Mato Grosso is the most affected
region, with the longest delay in the rainy season
onset (figure S5) due to the deforestation-induced
circulation. Equivalent results from other studies for
the rainy season in Mato Grosso have shown negative
impacts for double cropping (Costa et al 2019, Zhang
et al 2021), damaging the state’s economy and pro-
ductivity (Strand ef al 2018, Spera et al 2020). Defor-
estation alone could decrease yield by 20% (Spera
et al 2020). Combining the effects of deforestation
and rising greenhouse gases, but without considering
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the positive feedback between them, yield decreases
may lead to US$2.8 billion in annual losses by 2050
(Brumatti et al 2020). Thus, when considering a per-
sistent circulation that strongly influences the early
rainy season, the losses may be stronger, as calculated
below.

Moreover, the Tapajés and the Xingu, Amazon
River’s southern tributaries that drain Mato Grosso,
have many hydropower plants in operation, with
many others under construction (Couto et al 2021,
Wasti ef al 2022). Most of these plants use the run-
of-the-river concept (i.e. they incorporate little to
no water storage) to reduce dam flooding impacts
(Stickler et al 2013, Arias et al 2020, Costa 2020,
Couto et al 2021). Unfortunately, a run-of-the-river
design is largely susceptible to river discharge season-
ality (Arias et al 2020), i.e. to changes in the duration
of the dry season. A longer dry season and reduced
precipitation could undermine billions of dollars of
hydropower infrastructure (Stickler et al 2013, Arias
et al 2020, Costa 2020).

Our results suggest a delay in the onset and
a reduction in the length of the rainy season in
Amazonia’s Tapajés and Xingu basins (figures 5 and
S6), where most of the hydropower expansion is
planned to happen (Couto et al 2021). This rainy
season behavior could diminish hydropower genera-
tion during the transitional and dry seasons, enhan-
cing energy insecurity. Future hydropower gener-
ation, autonomy, and planning will depend much
more on the presence of trees (Costa 2020, Wasti et al
2022), especially in dystopic scenarios with dry sea-
sons of longer duration.

Using similar deforestation pathways, Strand et al
(2018) calculated losses in climate-related ecosys-
tem services that reach US$1.84 ha~! yr~! and
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US$9 ha~! yr~! for hydropower generation and agri-
culture, respectively. Using these relationships, the
WEG scenario (1700 Mha deforested) would translate
to losses of US$3.1 billion yr ! for hydropower gen-
eration and US$15 billion yr~! for agriculture. How-
ever, these computations do not consider the persist-
ent circulation discovered in this work, which may
enhance the duration of the dry season year after year.
Considering the changes in the atmospheric circula-
tion described here, SA could face substantial losses
in the agribusiness and hydropower sectors.

Since the atmosphere-biosphere feedback con-
tributes to most of our results, after the loss of the
rainforest, effects of this feedback would be difficult
to reverse. It would require over a million square kilo-
meters of reforestation to undo them (Baudena et al
2021, Tuinenburg et al 2022), reversing the traject-
ory of the last 50 years” events and the predictions
for the next three decades. Additional atmosphere—
biosphere feedbacks not considered in this study
could lead to savannization, seasonalization, or even
dieback of parts of Amazonia’s forests (Lovejoy and
Nobre 2018, Boulton et al 2022), with possibly irre-
versible consequences.
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