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ABSTRACT

In a new memristive generalized FitzHugh–Nagumo bursting model, adaptive resonance (AR), in which the neuron system’s response to a
varied stimulus can be improved by the ideal intensity of adaptation currents, is examined. We discovered that, in the absence of electro-
magnetic induction, there is signal detection at the greatest resonance peak of AR using the harmonic balance approach. For electromagnetic
induction’s minor impacts, this peak of the AR is optimized, whereas for its larger effects, it disappears. We demonstrate dependency on adap-
tion strength as a bifurcation parameter, the presence of period-doubling, and chaotic motion regulated and even annihilated by the increase
in electromagnetic induction using bifurcation diagrams and Lyapunov exponents at specific resonance frequencies. The suggested system
shows the propagation of localized excitations as chaotic or periodic modulated wave packets that resemble breathing structures. By using a
quantitative recurrence-based analysis, it is possible to examine these plausible dynamics in the structures of the recurrence plot beyond the
time series and phase portraits. Analytical and numerical analyses are qualitatively consistent.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0166691

In general, the non-permissive (silence or subthreshold) and per-
missive (nerve pulse) states are typical regimes characterizing
neuron dynamics. A generalized FitzHugh–Nagumo neural sys-
tem with tristable activity instead of the computationally inten-
sive, high-dimensional Hodgkin-Huxley type model has been
recently built and suggested to explain three states of neurons
depending on the state of ionic conductance (initial conditions).
Electrical signals of spiking, periodic and chaotic bursting, and
breather dynamics have been well reproduced by biological neu-
rons containing adaption currents, and the effects of electromag-
netic induction (EMI) on those dynamics have been well studied.
The hidden information of those dynamics is usually revealed
using the method of recurrence analysis. Signal detection by
stochastic resonance (SR) and even vibration resonance (VR) is
the important result well found in neural systems. Based on that
simple tristable neural system coupled to internal effects such as

adaption currents and EMI, we respond in this paper to signal
detection appearing by adaptive resonance (AR) through adap-
tion strength, breathing structures, and the control of adaptive
resonance and chaos by electromagnetic induction effects.

I. INTRODUCTION

Stochastic resonance (SR) is an interesting and well-known
phenomenon that has attracted considerable attention.1–4 This phe-
nomenon, interpreted as noise-enhanced signal detection, explains
how the signal-to-noise ratio of the output signal is maximized at
an optimum intensity of noise added simultaneously with a weak
periodic signal in many systems. In neural systems, SR is marked
by the fact that neurons can use stochastic environmental influ-
ences to process the input signals.4 On the other hand, resonance
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dynamics due to a biharmonical external force with two different
frequencies where one is smaller than the other has also received
much interest.5–7 In fact, signal detection in a single neuron and
network could also be improved by an optimal amplitude of the
high-frequency signal. The later is known in many systems as the
vibration resonance (VR) phenomenon.

The recurrence plot (RP) is a visual tool that shows the recur-
rence patterns in a dynamical system. It has been introduced by
Eckmann et al.8,9 with the aim of having another representation of
the dynamics of systems instead of time series and phase portraits.
A recurrence is defined as the return of the trajectory of a system to
an earlier state. It consists of the graphical representation of a binary
symmetric square matrix that encodes the times when two states are
in close proximity or simply neighbors in phase space. A large and
diverse amount of hidden information on the dynamics of a sys-
tem can be extracted and statistically quantified using a quantitative
description called recurrence quantification analysis (RQA). It has
been successfully applied to many fields, including neuroscience.10–13

Electromagnetic induction (EMI) was modelized and its effects
broadly studied on neuron dynamics.5,14–18 To name a few effects of
EMI, it has been found that EMI decreases the bursting firing in the
Hindmarsh–Rose (HR) neuron,19 switches the firing dynamics of the
Moris–Lecar (ML) neuron from spontaneous or bursting firing into
silent mode,20 suppresses the propagation and breakup of the tar-
get wave,21 switches the neuron from active to non-active states in a
birythmic conductance-based neuronal model,14 and optimizes and
decreases the peak of VR in the Hodgkin–Huxley (HH) model.5 On
the other hand, adaption currents have been found to make bio-
logical neurons by creating intrinsic periodic and chaotic bursting
adapting neurons under a constant external current.22 It has shown
the same phenomenon of periodic and chaotic bursting, including
the switching of the neural activities from non-active to active states,
in a birythmic conductance-based neuronal model.23

The new generalized Fitzhugh–Nagumo model is a simple
conductance-based model having tristability,24 absent in simple
models like HR,25 Fitzhugh–Nagumo FHN,26 and in birythmic
conductance-based neuronal23 models, and it offers room for ana-
lytical analysis difficult to treat in conductance-based models like
HH27 and ML28 models. Although the signal detection by SR and
VR is well studied in neural systems, an intrinsic detection by adap-
tive resonance (AR) due to the optimal strength of adaption currents
and the appearance of modulated waves-like breathers has to be
investigated. Moreover, although EMI effects are well studied on
reduced models such as HR, FHN, and Izhikevich neuron models,
their effects on AR are yet to be investigated in the new generalized
Fitzhugh–Nagumo model.

With this motivation, we propose in this work an extension
of a new generalized FHN model coupled to the internal effects
of adaptation and electromagnetic induction. Using analytical and
numerical analyses of the two-dimensional model without consider-
ing those internal effects, we determine the parameter regions where
monostable and multistable dynamics are observed. We also ana-
lyze the interaction between external sinusoidal stimulus, adaptation
currents, and EMI, leading to asymptotic dynamics and recurrence-
based analysis. As the results of these studies show, signal detection
by adaptive resonance (AR), period-doubling, and chaos controlled
and optimized by electromagnetic strength are found. Furthermore,

the structures of the recurrence plot of modulated wave packets-like
breathers-type excitations due to the presence of period-doubling
and chaos are also shown.

The work is structured as follows: In Sec. II, we present the
new two-dimensional neuronal model as an extension of the FHN
model motivated by Taylor approximation of the ML model. We
then present the four-dimensional model, taking into account adap-
tation and electromagnetic induction. In Sec. III, we explore the
two-dimensional deterministic model. A deterministic bifurcation
diagram in one dimension is obtained using Lindsted’s perturbation
method29 and numerical bifurcation. Then, we explore the effects
of adaptation and electromagnetic induction using the harmonic
balance method30 and the asymptotic dynamic using bifurcations
and the Lyapunov exponent. In Sec. IV, we present typical neu-
ron breathing patterns under the varying strength of adaptation
and their corresponding recurrence features obtained by the RP
analysis.9 In Sec. V, we summarize our work.

II. A MEMRISTIVE GENERALIZED FITZHUGH–NAGUMO

BURSTING MODEL

The recent and new generalized FHN neuronal model moti-
vated by the original FHN model26 and the biophysical ML model28

and proposed by some of the authors24 (the details are given in
Appendix A) is an extended system expressed in the following form:

dv

dt
= α0v + α1v

3 − α2v
5 + α3v

7 − α4v
9 + y + Iext,

dy

dt
= ε

(

1 − cv − 5v2 − y
)

,

(1)

where higher-order terms are additionally included as α0v + α1v
3

− α2v
5 + α3v

7 − α4v
9 containing only odd terms to keep odd sym-

metry of the function as in the original FHN model.26 The system (1)
consists of a nonlinear membrane potential v equation coupled with
a recovery variable y of slow ionic currents quadratic equation. The
parameters α0, α1, α2, α3, and α4, which are defined as the maximum
conductance coefficients of ion channels, constitute the nonlinear
function characterizing the transmembrane current changes due to
the exchange between the intracellular and extracellular medium
of the nerve membrane. The essential characteristics of the system
dynamics depend strongly on the choice of these parameters. The
conductance coefficients of ion channels α1, α2, α3, and α4 were
set as α1 = 2.7778, α2 = 2.3333, α3 = 0.7619, and α4 = 0.0847;24

ε and c represent, respectively, small and control parameters in the
equation for the recovery variable y.

Mostly in the neuron, slow processes are realized by a gating
variable of adaptive currents.22,23 Moreover, fluctuations in mem-
brane potential or the transport of ions across the neuronal mem-
brane induce a change in the electromagnetic field.31 Therefore, the
coupling between a magnetic field and the membrane potential of
the neuron is modeled through a memristor.14,15,32 Based on the neu-
ron model expressed in Eq. (1), we introduce slow processes such
as an adaptation variable and a variable for the magnetic flow in
the forms as used in Refs. 15 and 14. A new memristive general-
ized Fitzhugh–Nagumo bursting neuron model, which will be used
in this analysis and designed to describe simultaneous effects of
electromagnetic induction and adaption currents on the neuronal
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activities, is expressed by the following system:

dv

dt
= α0v + α1v

3 − α2v
5 + α3v

7 − α4v
9 + w − αz − kρ(φ)v + Iext,

dy

dt
= ε

(

1 − cv − 5v2 − y
)

,

dz

dt
= r(sv − z), (2)

dφ

dt
= k1v − k2φ,

dq(φ)

dt
= ρ(φ) = a + 3bφ2.

The third variable, z, describes the adaptation currents; α is the
strength feedback; r and s are other positive parameters. The fourth
variable, φ, describes the magnetic flux across the membrane. The
memory conductance of a magnetic flux-controlled memristor31

ρ(φ)materializes the coupling between the magnetic flux and mem-
brane potential of the neuron. The term ρ(φ) often takes the form of
a positive function ρ(φ) = a + 3bφ2 where a and b are positive con-
stants. According to Faraday’s law of electromagnetic induction and
description of the memristor, kρ(φ)v imposes an induction current
on neuron.31 The membrane potential-induced change in magnet
flux and leakage of the magnet flux stand, respectively, for k1v and
k2φ . The parameter k stands for the strength of the feedback cur-
rent on the membrane potential. The parameters for the memory
function and the coefficients that rule the magnetic flux dynamics
are given by a = 0.1, b = 0.06, and k1 = 0.1, k2 = 0.5, respectively.33

The other parameters have the same meaning and value as the upper
ones.

III. DYNAMICS OF THE DETERMINISTIC NEURON

MODEL

A. Neural rythms in a generalized Fitzhugh–Nagumo

model

An approximation of the amplitudes and frequencies of oscil-
latory states is obtained first by reducing our two-dimensional
coupled system (1) without considering internal effects (α = k = 0)
to a second-order scalar equation and second by eliminating the
y variable and setting t = �0τ . The following equation like the
dimensionless model in the Lienard form34 is expressed as follows:

v̈ − µ
(

−γ0 + γ1v
2 − γ2v

4 + γ3v
6 − γ4v

8
)

v̇ + v

= εµ2

(

−1 − 5v2 +
1

3
γ1v

3 −
1

5
γ2v

5 +
1

7
γ3v

7 −
1

9
γ4v

9

)

+ Eext,

(3)

where

µ =
1

�0

, γ1 = 3α1, γ2 = 5α2, γ3 = 7α3, γ4 = 9α4,

�0 =
√

ε(c − α0), γ0 = ε − α0, Eext =
ε

�2
0

I

(

t

�0

)

,

and the dot denotes the derivative with respect to τ .

Equation (3) has been found and well solved by some of the
authors in Ref. 24, using Lindsted’s perturbation method,29 and the
solution is approximated as follows:

v
(

τ ′
)

= A cosωτ ′ + µ
(

θ2 sinωτ ′ + θ3 sin 3ωτ ′ + θ4 sin 5ωτ ′

+ θ5 sin 7ωτ ′ + θ6 sin 9ωτ ′
)

+ O (µ2) , (4)

where the maximum of the membrane potential amplitude A satis-
fies the following equation:

γ0 −
1

4
γ1A

2 +
1

8
γ2A

4 −
5

64
γ3A

6 +
7

128
γ4A

8 = 0, (5)

and the frequency ω is given by

ω = 1 + µ2

(

211

262144
γ 2

4 A16 −
285

131072
γ3γ4A

14

+

(

93

65536
γ 2

3 +
69

20480
γ2γ4

)

A12

−

(

69

16384
γ2γ3 +

281

40960
γ1γ4

)

A10

+

(

79

2560
γ0γ4 +

67

8192
γ1γ4 +

3

1024
γ 2

2

)

A8

−

(

73

2048
γ0γ3 +

1

96
γ1γ2 +

5

128
γ3

)

A6

+

(

1

24
γ0γ2 +

1

128
γ 2

1 +
1

16
γ2

)

A4

−

(

3

64
γ0γ1 +

1

8
γ1

)

A2

)

+ O(µ3). (6)

The steps of the method and unknown parameters of Eq. (4) are
given in Appendix B.

The membrane potential amplitude A for different values of
the paramter α0 (Fig. 1) is obtained by the computation of the
analytical equation (5) (dark solid line) and the system [Eq. (1)]
(red dotted line), through the Newton–Raphson schemes and the
fourth-order Runge–Kutta algorithm, respectively. It exhibits the
bifurcation curve of the maximum membrane potential vs the
conductance parameter α0 as the bifurcation parameter. However,
the higher nonlinear amplitude equation (5) can, depending on
the parameters α0, α1, α2, α3, α4, give four different real positive
roots explaining the different levels of the membrane potential of
neurons for the same parameter values. These various levels of
excitability explain the sensitivity of the neuron to initial condi-
tions (states of ionic conductance) and are important to define
its dynamical properties. The model in Eq. (1) exhibits four types
of particular regions of existence and coexistence states depend-
ing on the range values of the conductance parameter α0, and
each defining a type of excitability of the neuron, see Table I.
The unstable states represent thresholds separating coexisting sta-
ble states of the system. Monostability, bistability, tristability, and
other behaviors are some characteristics found by this study in the
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FIG. 1. Analytical (dark solid line) and numerical (red dotted line) bifurcation
diagram in the (amplitude, α0) plane, obtained through Eq. (5). The parameters
used are as follows: α1 = 2.7778, α2 = 2.3333, α3 = 0.7619, α4 = 0.0847,
c = 100.0, ε = 0.01, k = 0.0, α = 0.0, and I = 0.0.

neural dynamics like in some biophysical models35,36 and are rel-
evant for understanding initiation and information processing in
neurons.

B. Signal detection by adaptive resonance and

control of chaos

Let us consider the model used to study the dynamic of our
neuronal system represented by Eq. (2), taking into account the cou-
pling between simultaneous adaption currents, magnetic field, and
membrane potential with, respectively, the strength feedback α and
k taken at the non-zero case. Thus, our focus is mainly on the simul-
taneous effects of the negative feedback strength k and the strength
α on the autonomous neuronal dynamic study above in the absence
of adaptive currents and EMI. To make this possible, we reduce the
system described in Eq. (2) by eleminating the y variable, and we
obtain the following system:



















































v̈ − µ
(

−γ0 + γ1v
2 − γ2v

4 + γ3v
6 − γ4v

8 − k(a + 3bφ2)
)

v̇

+ v = −µ
(

αż + 6kbφφ̇v
)

+ εµ2

(

1 − 5v2 +
1

3
γ1v

3 −
1

5
γ2v

6

+
1

7
γ3v

7 −
1

9
γ4v

9 − αz − k(a + 3bφ2)v

)

+ Iext,

ż = R(sv − z), (7)

φ̇ = q1v − q2φ,

where

µ =
1

�0

, γ1 = 3α1, γ2 = 5α2, γ3 = 7α3, γ4 = 9α4,

�0 =
√

ε(c − α0), γ0 = ε − α0, R = µr,

q1 = µk1, q2 = µk2, I(t) =
1

ω2
I

(

t

ωeff

)

= Iext.

Considering an external stimulus with a sinusoidal term
Iext = E cos�t induces a change in the amplitude of the forced
membrane potential states. The harmonic balance method30 can be
employed to determine this amplitude. By considering the frequency
of the fundamental component of the solutions as the same as the
stimulus, the evolution of the membrane potential v is given as
follows:

v(t) = A1 cos�t + A2 sin�t = Ac cos(�t − ψ). (8)

By substituting Eq. (8) into Eq. (7), we obtain a particular solution
of the variables φ and z as follows:

φ(t) = (η1A1 −�η2A2) cos�t + (η1A2 +�η2A1) sin�t, (9)

z(t) = (01A1 −�02A2) cos�t + (01A2 +�02A1) sin�t, (10)

where

η1 =
q1q2

q2
2 +�2

, η2 =
1

q2

η1,

01 =
R2s

R2 +�2
, 02 =

1

R
01.

Inserting Eqs. (8)–(10) into Eq. (7) and equating the coefficient of
cosine and sine terms separately, the amplitude of the oscillatory
states satisfies the following algebraic equation:

F1A
18
c + F2A

16
c + F3A

14
c + F4A

12
c + F5A

10
c + F6A

8
c + F7A

6
c

+ F8A
4
c + F9A

2
c , (11)

where

A2
c = A2

1 + A2
2,

tanψ = µ�

(

γ0 −
1

4
γ1A

2
c +

1

8
γ2A

4
c −

5

64
γ3A

6
c +

7

128
γ4A

8
c + Q

)

(1 −�2 + P)
,
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TABLE I. Table summarizing the stability, the dynamical behavior of different parameter regions, and the corresponding neuron types.24

Values of α0 Stability Behavior Neuron type

[−1.200,−1.029[ Monostable Quescient state Integrator with the excitability of class I
[−1.029,−1.016[ Bistable Quescient state subthreshold oscillation Resonator with the excitability of class II

[−1.016,−0.968] Tristable
Quescient state subthreshold oscillation

large-amplitude oscillation Resonator with the excitability of class II
]−0.968,0.009] Bistable Quescient state large-amplitude oscillation Resonator with the excitability of class II

FIG. 2. Comparison between analytical (dark line) and numerical (dark dots) frequency-response curves for k = α = 0.0 (a). Analytical (lines) and numerical (dots)
frequency-response curves for different values of α (b) and k (d). Analytical (lines) and numerical (dots) curves of amplitude vs α for different values of� (c), k = 0.0.�n and
�a are, respectively, the numerical and analytical frequency; αn and αa are, respectively, the numerical and analytical adaption strength; while kn and ka are, respectively, the
numerical and analytical EMI strength k. The parameters used are as follows:I = 1.0, k1 = 0.1, k2 = 0.5, a = 0.1, b = 0.06, r = 0.01, s = 4.0, α0 = −1.1, α1 = 2.7778,
α2 = 2.3333, α3 = 0.7619, α4 = 0.0847, c = 100.0, and ε = 0.01.
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Q = ka +
9

4
bkη2

1A
2
c +

3

4
bkη2

2�
2A2

c +
3

2
bkη1η2�A2

c + α01

− εµ

(

02 +
3

2
bkη1η2A

2
c

)

,

P = 3µbkη1η2�
2A2

c + αµ02�
2 − εµ2

(

1

4
γ1A

2
c −

1

8
γ2A

4
c

+
5

64
γ3A

6
c −

7

128
γ4A

8
c − ka −

9

4
kbη2

1A
2
c −

3

4
kbη2

2�
2A2

c − α01

)

,

and the paramaters containing Eq. (11) are given in Appendix C.
The resonant property of the neuron described by the

theoretical (dark solid line) and numerical (dark solid line)
frequency-response curves, without the coupling effects of adaption
and EMI, is exhibited in Fig. 2(a). The numerically computed Ac

FIG. 3. Frequency-response curves for values of α (a). Curves of amplitude vs α for values of � (b). Time series (c) and corresponding phase portraits for values of α
(d) and for I = 0.3 and � = 1.75. The parameters used are as follows:k = 0.0, k1 = 0.1, k2 = 0.5, a = 0.1, b = 0.06, r = 0.01, s = 4.0, α0 = −1.1, α1 = 2.7778,
α2 = 2.3333, α3 = 0.7619, α4 = 0.0847, c = 100.0, and ε = 0.01.
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is in nearly agreement with the theoretical approximation. In the
absence of EMI, and for I = 1, α0 = −1.1, and αn = 0, 50, and 150,
the response amplitude Ac is found to be maximum at�n = 1, 1.75,
and 2.75, respectively [see Fig. 2(b)]. In Fig. 2(c) for ωn = 0.5 as αn

increases, Ac decreases, and resonance is not observed, the signal

is not detected. Therefore, for �n = 1, 1.75, and 2.75, resonance is
found at αn = 0, 50, and 150, respectively, and the signal is detected.
�n and �a are, respectively, the numerical and analytical frequen-
cies, while αn and αa are, respectively, the numerical and analytical
adaptation strengths. The above resonance phenomenon is termed

FIG. 4. Bifurcation diagrams (a) and (b) and variation in corresponding Lyapunov exponents (c) and (d) vs the coupling strength α for different values of the EMI strength
k. The parameters used are as follows: � = 1.75 (a) and (c); � = 2.75 (b) and (d); and I = 1.0, k1 = 0.1, k2 = 0.5, a = 0.1, b = 0.06, r = 0.01, s = 4.0, α0 = −1.1,
α1 = 2.7778, α2 = 2.3333, α3 = 0.7619, α4 = 0.0847, c = 100.0, and ε = 0.01.
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FIG. 5. Map in (v) and (y) plane of an existence of chaotic attractor (a), period-5 (b), period-3 (c), period-4 (d), period-7 (e), and period-1 (f) waves per breath for some values
of α. The parameters used are as follows: α = 0.5 (a), α = 2 (b), α = 8.5 (c), α = 96.6 (d), α = 104.3 (e), α = 50 (f),� = 1.75, I = 1.0, k = 0.0, k1 = 0.1, k2 = 0.5,
a = 0.1, b = 0.06, r = 0.01, s = 4.0, α0 = −1.1, α1 = 2.7778, α2 = 2.3333, α3 = 0.7619, α4 = 0.0847, c = 100.0, and ε = 0.01.

FIG. 6. Map in (v) and (y) plane of an existence of chaotic attractor (a), period-10 waves per breath (b), and period-1 wave (c)–(f) for some values of α and k. The parameters
used are as follows: α = 4, k = 1 (a); α = 104.7, k = 1.5 (b); α = 50: k = 1 (c), k = 5 (d), k = 10 (e), k = 20 (f); and� = 1.75, I = 1.0, k1 = 0.1, k2 = 0.5, a = 0.1,
b = 0.06, r = 0.01, s = 4.0, α0 = −1.1, α1 = 2.7778, α2 = 2.3333, α3 = 0.7619, α4 = 0.0847, c = 100.0, and ε = 0.01.
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as adaptive resonance (AR), as it is due to the presence of adaption
currents. This phenomenon is like vibrational resonance, but here
the resonance is not due to the presence of a high-frequency external
periodic force as shown in Ref. 5–7, although the adaptation cur-
rents behave like it. Thus, signal detection in neuronal systems could
be self-improved by adaption currents instead of noise (stochas-
tic resonance).1–4 Furthermore, the frequency response and the
dynamics of the system are also impacted by feedback k [Fig. 2(d)].

In fact, when k is small, the occurrence of AR in single neurons is
found requiring less energy even if the resonant peak of the response
reduces, ensuring optimal detection performance. This fact shows
that the AR in this neuron with EMI is a less energy-consuming
process than that without EMI. For large values of k, the reso-
nance peak is definitively damped. kn and ka being, respectively,
the numerical and analytical EMI strengths k. The latter reveal the
charateristics necessary to trigger a nerve pulse (excitation) from

FIG. 7. Time series of different states for different values of adaption strength α without EMI. Chaotic breathing (a), period-5 (b), period-3 (c), period-7 (d), period-4 (e), and
period-1 (f) wave per breath for some values of α. The parameters used are as follows: α = 0.5 (a), α = 2 (b), α = 8.5 (c), α = 104.3 (d), α = 96.6 (e), α = 50 (f), and
I = 1.0,� = 1.75, k = 0.0, k1 = 0.1, k2 = 0.5, α = 0.1, β = 0.06, r = 0.01, s = 4.0, α0 = −1.1, α1 = 2.7778, α2 = 2.3333, α3 = 0.7619, α4 = 0.0847, c = 100.0,
and ε = 0.01.
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the rest by detection through adaption currents, the optimization
of energy to provide AR by a small EMI, and the recovery state by a
strong EMI (inhibition) in the nerve cell.

The detection phenomenon of a small external current is
shown and explained in Fig. 3. In fact, for I = 0.3, α0 = −1.1, and
without adaption and EMI effects, the neuron system is in a rest-
ing state for any initial condition [see Figs. 3(a) and 3(b) red dots].
Therefore, for the same small external current with an adaption, the
system can fire at a certain value of adaption strength α = 50.0 [see
Figs. 3(a) and 3(b) black dots]. The detection appears at the same
value of adaption strength for I = 0.3 [α = 50.0, see Fig. 3(b) black
dots] and for I = 1.0 [α = 50.0, see Fig. 2(c) green dots], so the
intensity of the external stimulus does not change the value of α at
which resonance occurs. Time series and corresponding phase por-
traits obtained for different values of adaption strength according
to Figs. 3(a) and 3(b) are exhibited in Figs. 3(c) and 3(d). The lat-
ter explains the help of self-detection in the neuron system by the
reaching of potential levels necessary to fire (generate a pulse). The
neuron’s capacity for self-adaption can increase its sensivity to even
minor outside effects.

The bifurcation diagrams [see Figs. 4(a) and 4(b)] and the
corresponding variation in the Lyapunov exponents [see Figs. 4(c)
and 4(d)] vs adaption strength α are represented to verify
qualitatively the behaviors of our neuronal system evoked by the
previous theoretical analysis. The asymptotic dynamics of our

system [Eq. (2)] are described in Fig. 4 when �n = 1.75 [see
Figs. 4(a) and 4(c)] and �n = 2.75 [see Figs. 4(b) and 4(d)], under
the effects of electromagnetic induction through some values of its
strength k. In addition to adaptive resonance behavior, we found
that adaptive variable creates period doubling and chaotic motion
phenomena symmetrically from the resonance peak [see Figs. 4(a)
and 4(b)]. In addition to the reduction or optimization of the reso-
nance peak, the period doubling and chaotic motion are controlled
and even destroyed when electromagnetic induction increases [see
Figs. 4(a) and 4(b)].

The phase portraits confirm the period doubling and chaotic
behaviors mentioned by the Lyapunov and bifurcation diagrams
for a resonance frequency of � = 1.75 and the zero electromag-
netic flux k = 0 (Fig. 5). For α = 0.5, the neuron exhibits a chaotic
response [see Fig. 5(a)], and the membrane potential responses are
aperiodic and irregular. The membrane potential is in the n-wave
periodic paquets in every stimulus period [see Figs. 5(b) and 5(f)].
In fact, we have packets behavior with n = 5, n = 3, n = 7, n = 4,
and n = 1 waves per packet, for α = 2 (b), α = 8.5 (c), α = 104.3
(d), α = 96.6 (e), and α = 50 (f), respectively. For non-zero and
small EMI, period doubling and chaotic motion can also be found
[see Figs. 6(a) and 6(b)]. For large values of EMI strength, the
system admits only a periodic motion, whose amplitude decreases
significantly as the strength k increases [see Figs. 6(c)–6(f)]. The
latter explains the regulation of the neuron activity leading to a

FIG. 8. RPs of the membrane potential voltage v for different values of the adaption strength α without EMI. Chaotic breathing (a), period-5 (b), period-3 (c), period-7 (d),
period-4 (e), and period-1 (f) wave per breath for some values of α. The parameters used are as follows: α = 0.5 (a), α = 2 (b), α = 8.5 (c), α = 104.3 (d), α = 96.6
(e), α = 50 (f), and � = 1.75, k = 0.0, I = 1.0, k1 = 0.1, k2 = 0.5, α = 0.1, β = 0.06, r = 0.01, s = 4.0, α0 = −1.1, α1 = 2.7778, α2 = 2.3333, α3 = 0.7619,
α4 = 0.0847, c = 100.0, and ε = 0.01. The recurrence threshold ε is selected to ensure a recurrence point density of 0.15.
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FIG. 9. Probability of recurrence after time τ (τ -reccurence rate) for the membrane potential voltage v for different values of the adaption strength α without EMI. chaotic
breathing (a), period-5 (b), period-3 (c), period-7 (d), period-4 (e), and period-1 (f) wave per breath for some values of α. The parameters used are as follows: α = .5(a),
α = 2(b), α = 8.5(c), α = 104.3(d), α = 96.6(e), α = 50(f) and � = 1.75, I = 1.0, k = 0.0, k1 = 0.1, k2 = 0.5, α = 0.1, β = 0.06, r = 0.01, s = 4.0, α0 = −1.1,
α1 = 2.7778, α2 = 2.3333, α3 = 0.7619, α4 = 0.0847, c = 100.0, and ε = 0.01. The number of waves per breath is visible as the rather thin side peaks of the main
peaks (in addition to the main peak).

quiescent potential constant value [see Fig. 6(f)] after an emission
of an optimal action potential.

IV. RECURRENCE QUANTIFICATION ANALYSIS

We next use the recurrence plots to investigate certain recur-
rence features of the neuron dynamics in its corresponding phase
space.8,9 It is a qualitative tool to detect even hidden features graph-
ically. We define the tool that measures recurrences of a trajectory
−→x (t) ∈ Rm (with m being the dimension of the system) of a dynam-
ical system. The dynamical similarity is measured in terms of some
metric distance di,j = ‖

−→xi −
−→xj ‖ defined in the phase space. Based

on the resulting distance matrix (di,j), we say that the trajectory has

returned at time t = j to the former point in phase space visited
at t = i, if the distance between the two associated state vectors is
smaller than or equal to a threshold ε. The corresponding recur-
rence matrix has entries 1 for pairs (i, j) of close distance and 0
elsewhere,

Ri,j(ε) = 2(ε − di,j), (12)

where 2 is the Heaviside function and i ∈ [1, N], with N being
the length of time series. The recurrence plot (RP) is the repre-
sentation of this binary matrix. The threshold ε is selected in a
way that ensures a certain recurrence point density;9,37 we use for
this analysis ε = 0.15. The RP of the times series represented in
Fig. 7 uncover how neurons can encode their electrical activities
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(Fig. 8). The dashed-dotted diagonal line in the RPs corresponds
to a wave, and for the alternating wave behavior, we have a set of
dashed lines followed by an extended black region (see Figs. 8). The
number of waves per breath is well distinguished by the number of
dashed lines. The block-like black region represents the silent state
between each group of stimulus, which is the refractory period of
the neuron (period for which the neuron cannot respond to a stim-
ulus). Figures 8(b)–8(f) exhibit the type coding of periodic breathing
[see Figs. 8(b)–8(e)] and spiking activities [see Fig. 8(f)], respec-
tively. The pattern on Fig. 8(a) has a random appearance showing
the encoding of a chaotic message by the neuron. Finally, the RPs
in Fig. 8 explain the ways that the neuron uses to encode its behav-
iors and that the coding looks very different depending on adaption
strength. To go beyond the visual impression of the RP, we calculate
several measures of complexity that quantify small-scale structures
in RPs, proposed in Ref. 9, 38 and known as the recurrence quan-
tification analysis (RQA) based on the recurrence point density and
the diagonal and vertical line structures of the RP. Our aim here is
to give an estimator of the probability that the system returns to its
previous state after time τ also called the τ -recurrence rate. The sim-
plest measure of the RQA is the recurrence rate (RR) defined by
1

M2

∑

Ri,j corresponding to the probability that a state will recur.9

An estimator of the probability τ -recurrence rate can be given by

RRτ (ε) =
1

M − τ

M−τ
∑

i=0

Ri,i+τ (ε), (13)

where τ is the set time and M is the total number of points in
the phase space. The distance between the peaks in an RRτ plot
corresponds to the period length between breaths and the inter-
wave intervals of wave trains. The specific probability distribu-
tions for recurrence after lag τ of the wave trains of 3 waves, 5
waves, 7 waves, 4 waves, and 1 wave reveal remarkable differences
[Figs. 9(b)–9(f)]. We observe a uniform probability distribution pro-
duced by these wave trains, revealing different periodicities and large
blocks between the breathing periods [see Figs. 9(b)–9(f)]. The RRτ
of chaotic breathing has a more complicated distribution of peaks
corresponding to an unpredictable occurrence of waves [Fig. 9(a)].

V. CONCLUSION

First, in this paper, we considered an extended memristive
Fitzhugh–Nagumo bursting model, taking into account adaptation
and electromagnetic induction (EMI) effects. The model contains
high order terms in the transmembrane function with coefficients
α1, α2, α3, α4, and α0 that play the role of maximum coefficients of
ion channel conductance. In the system without adaption and EMI,
monostability, bistability, and tristability were found by numeri-
cal and analytical calculations using the fourth-order Runge–Kutta
algorithm and Lindsted’s perturbation method, respectively.29 In the
tristability zone, the system exhibits three attractors: the first is a
steady state (resting state); the second is an oscillation with a smaller
amplitude (subthreshold state); and the third is an oscillation with
the largest amplitude (emission of the neuronal pulse). The corre-
sponding unstable states are thresholds separating stable states. Such

multistability behavior is relevant for understanding the initiation
and information processing in many neurons.

Second, we studied the simultaneous effects of adaption and
EMI on the neuronal dynamic of the monostable activity (rest-
ing state). Adaptive resonance and the control of the resonance
peak were found by numerical and analytical calculations using
the fourth-order Runge–Kutta algorithm and the harmonic balance
method30 due to the presence of internal effects of adaption and
EMI. Thus, adaption strength was found to enhance self-detection of
weak signals while EMI was found to optimize or inhibit the mem-
brane potential. Bifurcation diagrams and corresponding Lyapunov
exponents exhibited periodic and chaotic behaviors vs adaptation
strength, which were controlled and even destroyed for a weak
and a strong EMI, respectively. The phase portraits and time series
were drawn, showing periodic and chaotic breathing structures
and spiking. The triggering of an action potential (depolarization)
through adaptation and the recovery to the silent state (repoliza-
tion) through strong EMI are relevant for the understanding of
information processing and regulation after activities in neurons.

Finally, the representation of the dynamics of the neurons’
membrane voltages by recurrence plots9 provided a convenient
approach to compare even the hidden recurrence features of their
breathing patterns. These breathing patterns were highly varying
because they were found to be very sensitive to changes in the adap-
tion strength, explaining their relevance to adapt neurons under
external influences. The richness of different breathing pattern
structures can permit an enhancement to encode information, espe-
cially the chaotic pattern, whose random appearance and broad
spectrum could be used to enhance the privacy of an encoded
message in the communication.

An experimental illustration of the obtained results as an open
research question using an electronic circuit would be interesting.
It would be also important to extend the recurrence analysis using
available data of the present work.
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APPENDIX A: THE DETERMINISTIC MODEL (2)

The classical FHN model has the form

dv

dt
= f(v)− w + I,

dw

dt
= av − bw,

(A1)

where f(v) is a polynomial of the third degree and a and b are con-
stant parameters. The model allows a geometrical explanation of
neuronal excitability and mechanisms for spike generation.39 It can
explain the absence of all-or-none spikes, excitation block, spike
accommodation, and other effects.40

We propose the following extended system:

dv

dt
= α0v + α1v

3 − α2v
5 + α3v

7 − α4v
9 + αy + I,

dy

dt
= ε(β − cv − dv2 − ey),

(A2)

where higher-order terms are additionally included as f(v) = α0v
+ α1v

3 − α2v
5 + α3v

7 − α4v
9 as well as an additional term dv2 in the

equation for the recovery variable y. Only odd terms are kept in f(v)
to keep odd symmetry of the function as in the original FHN model.

The extension (A2) can also be motivated by the ML model,

dv

dt
= I(t)+

1

C

[

gCam∞(v)(vCa − v)+ gKw(vK − v)+ gL(vL − v)
]

,

(A3a)

dw

dt
=

w∞(v)− w

τw(v)
, (A3b)

with

m∞(v) =
1

2
+

1

2
tanh

(

v − v1

v2

)

, (A4a)

w∞(v) =
1

2
+

1

2
tanh

(

v − v3

v4

)

, (A4b)

τw(v) =
T0

cosh

(

v − v3

2v4

) . (A4c)

System (A3a)–(A3b) consists of the voltage-gated C2+
a current, the

delayed rectified K+ current, and the leak current, respectively. The
membrane potential of the neuron and the activation variable of
K+ ion channels are represented by variables v and w, respectively.
The maximum conductance functions of C2+

a , K+, and the leak
currents are described by parameters gCa, gK, and gL, respectively.

Furthermore, vCa, vK, and vL stand for the reversal potentials of
different ionic current functions while I(t) is the applied stimulus
current. C is the membrane capacitance, and it is considered unity.
T0 is the temperature scaling factor of the K+ channel opening,
while v1, v2, v3, and v4 represent the other scaling parameters of the
model.28

Equation (A2) can be treated as a truncated Taylor expansion of
(A3a)–(A3b) around the zero point. However, since some terms of
the expansion, such as even or mixed terms in the voltage equation,
are omitted, this is not a rigorous expansion but rather serves as an
analogy,

α0 = −
151v8

1

2688v9
2

gCavCa −
17v6

1

90v7
2

gCavCa +
v4

1

3v5
2

gCavCa −
v2

1

2v3
2

gCavCa

+
1

2v2

gCavCa −
151v9

1

24192v9
2

gCa −
17v7

1

630v7
2

gCa +
v5

1

15v5
2

gCa

−
v3

1

6v3
2

gCa +
v1

2v2

gCa −
1

2
gCa − gL,

α1 = −
151v7

1

672v9
2

gCa +
17v5

1

30v7
2

gCa +
2v3

1

3v5
2

gCa −
v1

2v3
2

gCa −
151v6

1

288v9
2

gCavCa

−
17v4

1

18v7
2

gCavCa −
151v16

288v9
2

gCavCa −
17v4

1

18v7
2

gCavCa

+
2v2

1

3v5
2

gCavCa −
1

6v3
2

gCavCa,

α2 = −
151v5

1

192v9
2

gCa −
17v3

1

18v7
2

gCa +
v1

3v5
2

gCa −
151v4

1

192v9
2

gCavCa

−
17v2

1

30v7
2

gCavCa +
1

15v7
2

gCavCa,

α3 = −
151v3

1

288v9
2

gCa −
17v1

90v7
2

gCa −
151v2

1

672v9
2

gCavCa −
17

630v7
2

gCavCa,

α4 = −
151v1

288v9
2

gCa −
151

24192v9
2

gCavCa,

β = −gkvk,

α =
v2

3

48v2
4

+
5v3

3

48v3
4

−
11v5

3

720v5
4

+
47v7

3

7560v7
4

+
17v9

3

15120v9
4

,

c =
1

6v4

−
v3

24v2
4

−
5v2

3

16v3
4

+
11v4

3

144v5
4

−
47v6

3

1080v7
4

−
17v8

3

1680v9
4

,

d =
1

48v2
4

+
5v3

16v3
4

−
11v3

3

72v5
4

+
329v5

3

2520v7
4

+
204v7

3

5040v9
4

,

e = −
v2

3

24v2
4

−
1

3
.

The above constants can be estimated if we refer to the param-
eters of the ML neuronal model defined in Ref. 28; for exam-
ple, with C = 1, gL = 0.5, VL = −0.5, gCa = 1.2, VCa = 1, gK = 2,
VK = −0.7, V1 = −0.01, V2 = 0.15, V3 = 0.1, V4 = 0.05, and
T0 = 3, we can say that these constants will be of the order: 0 < α0

≤ 2.85; 0 < α1 ≤ 236; 0 < α2 ≤ 989; 0 < α3 ≤ 1.76 × 104; 0 < α4
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≤ 3.1173 × 104; 0 < β ≤ 1.4; 0 < c ≤ −106.5; 0 < d ≤ 3.5129
× 103; 0 < e ≤ −0.5; and 0 ≤ α ≤ 2.95.

APPENDIX B: THE COEFFICIENTS OF EQUATION (4)

We apply the Lindsted’s perturbation method29 with the
Ansatz,

v(τ ) = v0(τ )+ µv1(τ )+ µ2v2(τ )+ · · · , (B1)

where vn(τ ) (n = 0, 1, 2, . . .) are 2π-periodic functions. Moreover,
τ = ωτ ′, where the frequencyω can be represented by the expansion

ω = ω0 + µω1 + µ2ω2 + · · · , (B2)

with ωn (n = 0, 1, 2, . . .) constants determined in Eq. (6).

By substituting Eqs. (B1) and (B2) in Eq. (3) and finding secular
terms for the different order of the parameterµ, a solution to Eq. (3)
can be approximated by Eq. (4), with

θ2 =
79

1280
γ4A

9 −
73

1024
γ3A

7 +
γ2

12
A5 −

3

32
A3,

θ3 = −
1

32

(

7

16
γ4A

9 −
9

16
γ2A

7 +
3

4
γ2A

5 − γ1A
3

)

,

θ4 = −
1

384

(

5

4
γ4A

9 −
5

4
γ3A

7 + γ2A
5

)

,

θ5 = −
1

3072

(

7

4
γ4A

9 − γ3A
7

)

, θ6 = −
1

20480
γ4A

9.

APPENDIX C: THE COEFFICIENTS OF EQUATION (11)

F1 =
49

16384
γ 2

4 +
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16384

ε2µ2γ 2
4

�2
,
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−
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4
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3

2
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)

γ3 +
1
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γ 2

2

+
7
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(
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)

γ4 +

7
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(

αµ02�
2 −�2 + 1 + εµ2(ak + alpha01

)

εµ2γ4

µ2�2

−
5

32

(

3µbkη1η2�
2 −

1

4
εµ2γ1 +

9

4
εµ2bkη2

1 +
3

4
εµ2bkη2

2

)

εµ2γ3 +
1
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ε2µ4γ 2

2

µ2�2
,

F6 = −
5
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(
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)

γ3 +
1

4
γ2

(

−
1

4
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9

4
bkη2

1 +
3

4
bk�2η2

2 +
3

2
bkη1η2(−εµ+�)

)

+

1

4

(

3µbkη1η2�
2 −

1

4
εµ2γ1 +

9

4
εµ2bkη2

1 +
3

4
εµ2bkη2

2

)

εµ2γ2

µ2�2

−
5

32

(

αµ02�
2 −�2 + 1 + εµ2(ak + α01)

)

εµ2γ3

µ2�2
,
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F7 =
1

4
γ2(−αεµ02 + ak + α01 + γ0)+

(

−
1

4
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9

4
bkη2

1 +
3

4
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2 +
3

2
bkη1η2(−εµ+�)

)2

+

(

3µbkη1η2�
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1

4
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9

4
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3

4
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2

)2
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1

4

(
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)

εµ2γ2
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,

F8 = 2

(
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) (

−
1

4
γ1 +

9

4
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1 +
3

4
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2 +
3

2
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)

+

2

(

αµ02�
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) (

3µbkη1η2�
2 −

1

4
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9

4
εµ2bkη2

1 +
3

4
εµ2bkη2

2

)

µ2�2
,

F9 =

(

− αεµ02 + ak + α01 + γ0

)2

+

(

αµ02�
2 −�2 + 1 + εµ2(ak + α01)

)2

µ2�2
.
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