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• Pluvial floods are difficult to model, and
most models cannot be empirically tested.

• Models combine human, atmospheric, hy-
drological, surface and sub-surface pro-
cesses.

• VGI is often presumed to be unreliable,
which bars its wider use.

• VGI for in-situ evaluation of a generic-type
pluvial flood model is demonstrated.

• Utilising VGI can improve confidence in
flood models and highlight deficiencies.
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Pluvial floods are increasingly threatening urban environments worldwide due to human-induced climate change.
High-resolution, state-of-the-art pluvial floodmodels are urgently needed to inform climate change adaptation and di-
saster risk reductionmeasures but are generally not empirically tested because of the rarity of local high-intensity pre-
cipitation events and the lack of monitoring capabilities. Volunteered Geographic Information (VGI) collected by
professionals, non-professionals and citizens and made available on the internet can be used to monitor the dynamic
extent of a pluvial flood during and after an extreme rain event but is sometimes considered to be unreliable. In this
paper, we explore the general utility of VGI to evaluate the performance of pluvial flood models and gain new insights
to improve these models. As background for our research, we use the capital city of Budapest, which recently suffered
three heavy rainfall events in just five years (2015, 2017 and 2020). For each pluvial flood event, we collected photo-
graphic evidence from different onlinemedia sources and estimated the associatedwater depths at various locations in
the city from the image context. These were comparedwith the results of a 2D pluvialfloodmodel that has been shown
to provide comparable results to other state-of-the-art inundationmodels and is easily transferred to other urban areas
due to its reliance on open data sources. We introduce a general methodology for comparing VGI with model data by
probing different spatial resolutions. Our findings highlight untapped potential and fundamental challenges in using
VGI for model evaluation. It is proposed that VGI may become an essential tool and improve the confidence in
model-based risk assessments for climate change adaptation and disaster risk reduction.
1. Introduction

Climate change exacerbates weather and climate extremes in every re-
gion across the globe, including heavy precipitation events (IPCC, 2021,
Hoeppe, 2016). Pluvialflooding is generally caused by intense or prolonged
rainfall generating a run-off discharge and/or volume that exceeds the ca-
pacities of man-made and natural drainage systems (Rosenzweig et al.,
2018). Such events are often characterised by rapid onset (flash floods)
and small spatial and short temporal (sub-daily) scales. As a result, pluvial
floods are generally much harder to predict and localise than river or
coastal flooding. Although pluvial floods can occur in both urban and
rural areas, pluvial flooding is often associated with urban environments
where its impacts are typically the most pronounced (Guerreiro et al.,
2017; Rözer et al., 2016).

Pluvial floodmodels are designed to represent rainfall-runoff and inunda-
tion processes in settlement areas and serve as important tools for disaster risk
management and climate change adaptation. Pluvial flood models for urban
applications principally combine dynamic elements of the atmosphere (pre-
cipitation, temperature), hydrosphere (surface and sub-surface processes, to-
pography, pervious surfaces), anthroposphere (e.g. urban systems, structure
and infrastructure, including blue-green infrastructure, impervious surfaces)
and in some cases (in a low rate) even the biosphere (e.g. interception of rain-
fall by vegetation). Detailedmodels provide the distribution, extent and inten-
sity of inundation in water depth, duration, surface flow velocity and
dynamics during urban floods. With this information, pluvial flood models
are critical for understanding, assessing and reliably predicting pluvial flood
conditions and their impact with or without adaptation and may also provide
the basis for early warning and emergency response.

Pluvial flood models can generally be divided by type. Most commonly,
models use either rapid flood spreading algorithms (e.g. Samela et al.,
2020) or one-dimensional (1D) or two-dimensional (2D) representations
of surface inundation processes based on shallow water equations (Bulti
and Abebe, 2020). Topographic detail and distance between different fea-
tures determine the model resolution and output details (Fewtrell et al.,
2008). The interaction of surface water flooding with sewer systems may
range from simplified approaches, e.g. on volume accounting of sewer sys-
tems, to fully coupled two-dimensional dynamic sub-surface models (Guo
et al., 2021). Likewise, the effects of blue-green infrastructure may be ac-
counted for in different ways.

In-situ observations related to urban pluvial floods, for instance, water
level observations, are rarely available or - at best - very scarce
(Francipane et al., 2021, See 2019). This is partly due to the short duration
and local nature of intense rainfall and the inherently rare occurrence of ex-
treme events in practice. As a result, the number and quality of observations
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from real-life pluvial flood events that can be used to validate state-of-the-
art urban flood models are also generally limited. Indeed, at many loca-
tions, which are, in principle, highly exposed to pluvial floods, no previous
records exist at all.

Several direct methods for estimating the flood extent and depths from
observational evidence have recently been pursued. They include the use of
high-water marks left by the flood, imagery from, e.g. unmanned aerial ve-
hicles (UAVs) (Loli et al., 2022; Giordan et al., 2018) and estimates based
on remote sensing information like high-resolution Synthetic Aperture
Radar (SAR) images and lidar (Giustarini et al., 2013; Taubenböck et al.,
2011). While these techniques are likely to see increased use, currently,
such data are still scarce, associated with significant uncertainties (Li
et al., 2019) and often insufficient (Brill et al., 2021; Mignot et al., 2019).

Several authors have suggested that crowd sourced (e.g. citizen science)
and Volunteered Geographic Information (VGI) could be used to support
and improve disaster risk management (Poser and Dransch, 2010), facili-
tate rapid flood depth mapping (Fohringer et al., 2015), and support the
validation of inundation areas and models (Francipane et al., 2021;
McDougall and Temple-Watts, 2012; Rollason et al., 2018). Studies by
Assumpção et al. (2018) and See (2019) find that the amount of data col-
lected in different VGI case studies is not extensive but still seems to provide
an effective form of pluvial flood model validation at urban scales. For ex-
ample, in a study by Yu et al. (2016), localised flood incidents at the street
or house level were reported by locals and collated through a web-based
emergency incident reporting portal operated by the government and ac-
cessible to the general public. Kutija et al. (2014) used a web page inviting
the general public to upload their flood photographs, pin them on the map
and optionally write a comment. This information was further supple-
mented by questionnaires sent to all the residents in the affected areas by
Newcastle City Council, asking them to describe the observed flood in
and around their properties. Re et al. (2019) also used VGI data collected
by the affected community to validate a pluvial flood model, including a
compendium of information about various storms from 2014 and onwards
and a collection of photographs taken during flood events. Imagery posted
on the internet and socialmedia, e.g. press photographs and imagery posted
by citizens, also provides an extensive and relatively unexplored source of
information. Wiegmann et al. (2021) have reviewed the strengths and
weaknesses of using socialmedia data as a source of VGI information for de-
veloping and validating urban flood models. In addition to the general
weaknesses of VGI data in terms of precision (correctness and reliability,
e.g. geolocation, timing) and completeness (e.g. spatial sampling, features),
they suggest that an additional risk in using socialmedia as a source offlood
information is that it is not inherently reliable. Hence, Wiegmann et al.
(2021) suggest that using social media requires a trade-off between



M. Drews et al. Science of the Total Environment 894 (2023) 164962
precision and completeness since no optimal solution for its analysis is cur-
rently available.

This research paper explores the utility of VGI in general and from on-
line sources in particular to evaluate the performance of state-of-the-art plu-
vial flood models for risk assessment and risk management, for example in
the context of climate change adaptation. For such applications, homoge-
neous data is generally needed for consistency across larger urban areas,
or even regions; and model transferability is often also required
(Hattermann et al., 2018; Guerreiro et al., 2017). This may impose
constraints on model complexity and resolution, which may be further in-
fluenced by (limited) data availability. Hence, a fully coupled, two-
dimensional dynamic surface plus sub-surface model is typically too costly
to run at extremely high resolution for evenmoderately sized areas but may
be used at district level to assess the functionality of specific adaptation mea-
sures i.e., it is necessary to make a trade-off between resolution and model
complexity (Guo et al., 2021; Qi et al., 2021). Meanwhile, digital terrain/ele-
vationmodels at a resolution of 2mor below are by nomeans generally avail-
able everywhere. Often such products can only be obtained through
commercial vendors at significant cost or are only available with special per-
missions or for limited areas. In the current study, we explore the use of VGI
as means of evaluating pluvial flood models based on middle resolution ter-
rain/elevation models (5–30 m) as such models are freely available and are
used extensively both for both scientific and real-life applications including
in urban environments. Several authors have systematically investigated
the effect of terrain resolution on the quality of urban flood models
(e.g., Jiang et al., 2022; Muthusamy et al., 2021; Xu et al., 2021; Fewtrell
et al., 2011). In general, they show that high resolution terrain/elevation
models are better suited for resolving urban elements than coarser models,
which can introduce large uncertainties, key deficiencies, and lead to errone-
ous flood maps. The also clearly demonstrate the current importance of mid-
dle resolution models e.g., 30 m, considering the constraints outlined above.
Thewhole idea of the paper is to provide scientific insights into the usefulness
of VGI in this regard, the problems we face, and to address the fact that most
pluvial flood models are hardly ever validated at all (Guerreiro et al., 2017).

Using Budapest as our laboratory, we investigate the inherent chal-
lenges related to precision and completeness when comparing water levels
derived from VGI to modelled water levels. From 2015 to 2020, Budapest
suffered substantial pluvial flooding no less than three times, with the larg-
est flood on record taking place in 2015. For each of these events, VGI ma-
terial, including photographs and videos from various online sources, was
identified, processed and ultimately analysed against a well-regarded and
common type of pluvial flood model for predicting inundations in urban
areas, similar to the one used by Kaspersen et al. (2017) and in the Future
Danube Model multi-hazard and risk model suite (Hattermann et al.,
2018). This paper is organised as follows. Section 2 (Methods and mate-
rials) outlines the methods and data used, including the pre-processing of
VGI material from online sources, and introduces a new method for com-
paring flood depths derived from VGI with flood levels from pluvial flood
models. Section 3 (Results) presents our main findings, whereas Section 4
(Discussion and conclusions) discusses the lessons learned from the study
and how this can help pave theway for improved use of VGI data for pluvial
flood model validation generally.

2. Methods and materials

Fig. 1 outlines the overall methodology used in this research. For each of
the three recent flood events in Budapest, which took place on 17 August
2015, 23 May 2017 and 14 June 2020, pluvial flood model simulations
were carried out using a tailored 2D hydrodynamic flood model for Buda-
pest based on MIKE FLOOD software (Section 2.2). All of these simulations
were forced by idealised rainfall (Chicago Design Storm; Keifer and Chu,
1957) corresponding to the observed severity of the flood events
(Section 2.3). For one of the events (23 May 2017), observed rainfall series
from 48 local rain gauges were available and kindly provided by the Buda-
pest Sewage Works (Tibor Rácz, private communication). From the three
pluvial flood events, 150 images and videos were identified and retrieved
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from online sources. Of these, 67 imageswere processed for water depth es-
timation (Section 2.4). Finally, we compared these empirically determined
water depths to the modelled water depths (Section 2.5 and Results).

2.1. Data sources

Observed daily rainfall for Budapest was extracted from the ECA&D repos-
itory (Klein Tank et al., 2002). These data were supplemented by a dataset
comprised of heterogeneous sub-daily observations of precipitation derived
from rain gauges operated by the Budapest SewageWorks (TiborRácz, private
communication). The digital elevationmodel (DEM) used by the pluvial flood
model was the European Digital Elevation Model (EU-DEM), version 1.1 at
25 m horizontal resolution provided by the Copernicus Land Monitoring Ser-
vice and urban land cover from the CORINE Land Cover inventory. The urban
land cover of Budapest was further characterised using SENTINEL-2 remotely
sensed imagery with a resolution of 10 m, courtesy of the European Space
Agency (ESA), downloaded from the Copernicus Open Access Hub. Reference
values for the soil water infiltration (pervious areas) and different soil types
were derived from the US Department of Agriculture (USDA) (USDA, 2016).
Finally, photos and videos (i.e. VGI material) from the three pluvial flood
events were retrieved from various online platforms such as news outlets
and public image repositories based on internet searches.

2.2. Pluvial flood model

MIKE FLOOD (MIKE powered by DHI, n.d.) is a collection of state-of-
the-art flood modelling engines that are commonly used for research and
commercial applications globally. The embedded MIKE 21 module com-
putes two-dimensional overland flows in response to a heavy precipitation
event based on terrain data, e.g. the EU-DEM. The model setup is similar to
the one used in Kaspersen et al. (2017) and in the Future Danube multi-
hazard and risk modelling suite (Hattermann et al., 2018). Themain inputs
are the terrain description (for routing the surface water) and the time se-
ries of precipitation and infiltration rates (from pervious surfaces). For the
surface roughness we used the default MIKE 21 value corresponding to a
Manning number of 32 s/[m1/3].

Infiltration rates at grid cell level were calculated based on parameters
from USDA (2016) corresponding to the dominant soil texture(s) in Buda-
pest (mainly sand, loamy sand or sandy loam), combined with estimates
of the slope derived from the terrain data (e.g. for sand: 2.7 cm/h for slopes
at 0–4 %. For slopes above 16 % the infiltration rate is 0.7 cm/h. For more
information, see USDA, 2016). An explicit representation of subsurface
flows and the urban drainage system was not included. Instead, we used a
conceptual representation of the urban drainage system based on precipita-
tion intensities (Chow et al., 1988; Henonin et al., 2013). For each time
step, we reduced the precipitation input at the grid cell level relative to
the fraction of impervious surfaces over the entire modelling domain to
simulate the effect of an urban drainage system designed for coping with
an intense precipitation event with a return period of 2-years. The resulting
run-off from all impervious surfaces caused by the modified rainfall input
(if any) is subsequently routed between grid cells to account for further
losses, reflecting the surplus infiltration capacity of downstream grid cells
(pervious surfaces). The methodology has some obvious limitations. Since
we only modify the incoming precipitation input at the grid point level, it
means we stop accounting for the effect of the urban drainage system
when the rain stops. This could potentially lead to local overestimations
of the water depth after the rain, as surface water trapped in depressions
is not drained away in the model. We screened our results with the help
of local experts from the Budapest SewageWorks (Tibor Rácz, private com-
munication) and did not find any significant errors of this type, which can
be attributed to topography: the western side of Budapest (Buda) slopes to-
wards the Danube, whereas the eastern side (Pest) spreads out on a flat and
mostly featureless sand plain. Likewise, the methodology disregards
the exact location of, e.g. manholes and other detailed characteristics of
the existing urban drainage system. Here the corresponding errors of the
flood extent derived from the model can, in practice, often be assumed to



Fig. 1. Flowchart of the research methodology.
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be localised and for gradually more extreme precipitation events where the
pipe capacity is exceeded their significance decreases. In order to ensure an
accurate representation of the urban surface, impervious surface fractions
for each grid cell were inferred from remotely sensed imagery obtained
by SENTINEL-2 using the NDVI (Normalized-Difference-Vegetation-Index)
method described by Kaspersen et al. (2015). The mapping of pervious
and impervious surfaces in Budapest using the NDVI was confirmed by vi-
sual inspection and by comparison toCORINE Land Cover. Finally, wemod-
ified the DEM to account for the inability of surface water to drain naturally
into the Danube due to flood barriers but only through the urban drainage
system. Historically, this leads to flooded areas in Budapest alongside the
barriers during cloudburst events.

2.3. Experiments

From 2015 to 2020, Budapest has suffered various degrees of pluvial
flooding due to sudden heavy rainfall (cloudbursts) on three occasions.
Table 1 provides an overview of the three events, which here comprise
our laboratory.
Table 1
Overview of events. Daily rainfall data for Budapest was extracted from ECA&D
(Klein Tank et al., 2002). The estimated return periods corresponding to daily rain-
fall levels are inferred from an extreme value analysis of daily observations for Bu-
dapest from 1901 to 2020 using the R package “extRemes” by Gilleland and Katz
(2016). A generalised Pareto distributionwith a 30mm/day thresholdwas assumed
for a peak-over-threshold analysis (POT).

Event date Accumulated daily rainfall Estimated return period (daily)

17 August 2015 115.4 mm ∼500 years
23 May 2017 52 mm ∼7–8 years
14 June 2020 32.3 mm ∼1–2 years
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As indicated in Table 1, the 2015 event was record-breaking and stands
as themost intense rainfall event on record in Budapest (Fig. 2(a)). Compar-
atively, the cloudbursts in 2017 (Fig. 2(b)) and 2020 represent unusual sit-
uations occurring, on average, every 2–10 years. Note that the estimated
return periods are calculated from accumulated daily rainfall. Since cloud-
bursts generally occur within a few hours, the estimated return periods are
shown in Table 1 (based on daily accumulations) are therefore likely to
overestimate the actual frequency of such events. In all three cases, parts
of Budapest were flooded by stormwater.

The abovementioned extreme precipitation events were simulated (see
Section 2.2) using the Chicago Design Storm method (Keifer and Chu,
1957) in combination with intensity–duration–frequency (IDF) curves
(Balbastre-Soldevila et al., 2019; Rosbjerg and Madsen, 2019;
Koutsoyiannis et al., 1998) provided by the Hungarian Meteorological Ser-
vice and based on local measurements. A Chicago Design Storm is a syn-
thetic storm with a T-year precipitation intensity for all possible durations
of uniform rainfall events (Fig. 2(c)). Based on this assumption, we con-
structedfive-hour (300min) time series corresponding to temporally disag-
gregated (sub-daily) 2-year, 7.5-year, and 500-year events estimated from
the daily rainfall data.

2.4. Volunteered Geographic Information

VGI material (photos and videos) from the abovementioned pluvial
flood eventswere retrieved fromvarious online platforms such as news out-
lets and image repositories. While VGI material from, e.g. webcams could
have been used to estimate inundation duration and flow velocities, we
focus here on water depth estimation. No metadata such as geolocation or
timestamp was consistently available alongside the multimedia files.
Since the images we retrieved were mostly postprocessed and reduced in
size, time stampswere available for less than half thefiles and could usually
only be derived from contextual information. However, street names or



Fig. 2. Examples of rainfall intensities observed during the peak of the 2015 (a) and 2017 (b) cloudbursts, recorded by rain gauges operated by the Budapest SewageWorks
(Tibor Rácz, private communication). (a) depicts data from the “RAKP” station, while (b) shows data from the “ZSEM” (lighter blue) and “ZSIG” (darker blue) stations. For
comparison (c) shows an idealised ChicagoDesign Storm corresponding to an aggregated 107mmof rain over 5 h. As indicated by the “*” a fewminutes of rainfall intensities
> 150 mm/h is not shown.
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names of prominent nearby locations could be extracted from the articles
and captions of several photos and videos. Furthermore, street names,
shop names or landmarks visible in the VGI material could be identified.
This information was used to localise the data in a Geographic Information
System (GIS). The scenes were then visually compared to Google Street
View imagery to verify the exact location of their recording, as shown in
the example in Fig. 3. Here, a salient house entrance on the right side of
the road and blue signs from a music instrument store are used to verify
the photo's location.

Thewater level above terrainwasmanually estimated by comparing the
water table visible in the recordings to objects of known size in the photo or
video, e.g. a car, curbside, trash can, house entrance, etc. Fig. 4 illustrates
the method used for maximum water depth estimation by visual compari-
son to reference objects and presents some of the challenges of this process.
Estimating the water depth at the bike wheel in the foreground results in a
25 cm difference in water depth when compared to an estimation at the car
wheel. Visual estimation of water levels will inevitably introduce inaccura-
cies depending on the quality of the photo, the perspective and the avail-
ability of reference objects in the scene. Likewise, local topographic
differences like depressions of the terrain under the water table can intro-
duce uncertainties into the estimation. Ideally, it is always recommended
to carry out a detailed analysis of the baseline terrain morphology at the
highest possible resolution, preferably down to <1 m, to account explicitly
for these uncertainties. Conversely, the representation of the terrain
Fig. 3. Example of the geo-localisation for pluvial flood event photos (left) by visual comp
(19.025648; 47.509995) [2017].

5

morphology offered by the EU-DEM is too coarse to be used for correcting
VGI estimates directly, and the associated uncertainties must be addressed
in a different way (see Section 2.5).

As mentioned above, accurate timestamps for the recordings were not
available. Fig. 2 illustrates the temporal evolution of the 2015 and 2017
rainfall events, which in both cases peaked between 16:30 and 18:30.
Most of the images used for water depth estimation on 17 August 2015
can be placed in the later stages or just after the peak of the rainfall. This
is evident from the heavy rainfall and rain gear visible in the photos and
in some instances by the waning daylight (sunset this time of year is at
8 pm in Budapest). On 23 May 2017, images can particularly be placed
around 17:30, when the rainfall intensity peaked. The 2020 rainfall event
reached Budapest around 13:00 and lasted until 15:30 (data not shown)
and the VGImaterial covers roughly the same period.While there is reason-
able agreement between the timing of the images and the observed maxi-
mum rainfall intensities, this does not guarantee that our VGI materials
are obtained at the peak of the water depth. Since this is dependent both
on the terrain, the rainfall distribution, and other factors, it is likely that
the water depth could have peaked a little later; this seems to be the case
in 2015. Conversely, one could argue that observers would be particularly
enticed to make recordings (photos and videos) close to the time when
the flood is at its highest. Either way, it is clear that in some cases, a tempo-
ral bias might lead to an underestimation of the water levels compared to
modelledwater levels that inherently represent themaximum depth during
arisonwith Google Street View imagery (right). Fény u 15, Budapest 1024, Hungary



Fig. 4. Estimation ofwater depth using reference objects with an example of the challenge of local topographic heterogeneity. Estimating thewater depth at the bikewheel in
the foreground results in approx. 25 cm difference in water depth when compared to an estimation at the car wheel. Perhaps the biker is in a lower part of the road?
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events (Section 2.5). The entire process of comparing photos, verifying lo-
cations and estimating water levels took approximately 48 h in total of
manual labour (or about 16 h of manual labour per event).

Estimated water depths from a total of 67 photos and videos were suc-
cessfully located in Budapest across the three flood events (Table 2). The
majority of the VGI material has been geo-located in the northern part of
the city centre on the Buda and the Pest side of the river Danube (Fig. 5).
83 photos and videos were unsuitable for water level estimation because
ofmissing localisation, reference objects in the scene or unclear local topog-
raphy.

2.5. Comparing modelled and observed water depths

For validation of the pluvial floodmodel, water depth information at 67
VGI data locations was available. A comparison between the modelled and
observed maximum water depths (reconstructed from the VGI material)
was performed for each of the three flood events, with varying data points
for each event (Table 2). In both instances (model and VGI estimates) the
maximum value for the water depth is uncertain. In the case of modelled
values, the maximum is roughly defined by the (narrow) peak of the
Table 2
Total number of analysed VGI data sets and those used for water depth estimation.

Event date Total no. of images/videos Used for water depth estimation

17 August 2015 52 28
23 May 2017 42 17
14 June 2020 56 22

6

assumed precipitation distribution (Chicago Design Storm, Section 2.3),
and based on the aggregated rainfall observed during the events in 2015,
2017 and 2020. The model does not replicate the actual observed distribu-
tions one-to-one but is designed to generate a maximum water depth
(Fig. 2). There is an additional contribution to the uncertainty from, e.g.
the representation of the drainage system. This reflects one of the funda-
mental challenges faced by pluvial flood modellers. Since intense rainfall
events are relative rare and unalike, while extensive local rain gauge net-
works are scarce, detailed spatio-temporal information is generally not
available, and cannot be used to reliably characterise rainfall events. In-
stead, synthetic rainfall distributions are used. In the case of VGI values,
they are assumed to approx. represent the maximum water depth, but
since time information was mostly inaccessible this can only be asserted
to some degree (Section 2.4). Combined, we need to account for the fact
that there could be a mismatch between modelled and observed water
depths.

Rasters of the modelled maximum water depths were for that purpose
overlaid with the corresponding VGI point data. Around every VGI point,
four circular buffers with radii of 25, 50, 100 and 150 m were drawn (see
Fig. 6). Within these buffers, the best matching water depth values for
each VGI point were extracted and compared against the VGI-based water
depth estimation (Fig. 8). We adopted this approach to account explicitly
for the fact that any flood model's effective resolution is generally lower
than its nominal resolution when factoring in uncertainties related to, e.g.
the input data, modelled scenarios and the model itself. In practice, this ap-
proach also accounts for the abovementioned mismatch between the flood
depth represented by a specific photo and themodelledflood depth, caused
by varying locations, variations in time between photo and peak extent and



Fig. 5.Map of VGI locations in Budapest with district borders.
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the reading of flood depth from the photo. More often than not, these diver-
gences are not taken into account when comparingfloodmaps to in-situ ob-
servations at grid cell or near-grid cell levels and can lead to erroneous
conclusions aboutmodel performance. In this study, the nominalmodel res-
olution is defined by the DEM (25 m horizontal resolution), as is often the
case. For each event and buffer size, the number of VGI points with
modelledmaximumwater depthwas counted, and correlations were calcu-
lated between the VGI and the modelled water depth values (Table 3).

A detailed comparison between modelled and VGI reconstructed water
levels immediately revealed a few locations where our pluvial flood model
simulations fail to reproduce the observed flooding. For example, during
the 2015 event, the photographic material indicated a water depth of
approx. 90 cm under a bridge in the city centre, resulting in submerged
cars. A similar result near the same bridge is found for the 2020 event. How-
ever, since the local depression under the bridge is not represented in the
(relatively coarse) DEM used by our pluvial flood model, this is not cap-
tured in the flood simulations. The issue of over- and underpasses not
7

being properly represented in pluvial flood models is well known and
may have serious implications for the ability of such simulations to realisti-
cally depict the flow of the water during a flood, even outside the immedi-
ate vicinity of such features. One way to alleviate such errors is to use very
high-resolution and/or hydrologically corrected DEMs. In this study, nei-
ther of these options were available. A special DEM at 5 km resolution
was built for us by the Department of Geodesy, Budapest, since an existing
surface model was unavailable including hydrological corrections. A de-
tailed analysis of the generated DEM unfortunately revealed severe errors,
which barred its use. We did not pursue commercially available alterna-
tives, since this would have made it very difficult to compare our results
with those found in other studies. Finally, video footage from the 2017
flood event indicates considerable local differences in water levels within
a small area that is not resolved even at the nominal model resolution.
While we extracted the maximum observed water depth indicated on the
footage (approx. 35 cm), this illustrates some of the uncertainties associated
with the VGI reconstructed water levels.



Fig. 6. Example of buffers around VGI locations for modelled and inferred water depth comparison.
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3. Results

The highest number of VGI data points that were available for compar-
isonwith our modelled data is found for the pluvial flood event in 2015 (28
data points; Table 2), followed by the 2020 event (22 data points) and the
2017 event (17 data points). For the 2017 event, where in-situ data from a
large number of rain gauges was available (similar data was unavailable for
the other two events), Fig. 7 depicts the spatial relationship between the
simulated flooding (orange colours) and the distribution of the observed
precipitation intensities. The blue shading indicates a reconstruction of
the precipitation pattern (by interpolation) corresponding to the accumu-
lated precipitation recorded by a network of rain gauges (black circles,
the size and scaling correspond to the accumulated precipitation intensi-
ties). A cluster of VGI data locations (green circles) is located at the centre
of the flood event. During all three events, photos and videos were predom-
inantly available from the most affected areas, i.e. north of the Budapest
city centre. For the two smaller events in 2017 and 2020, the locations of
VGI data points are somewhat equally distributed on both sides of the Dan-
ube, whereas for the 2015 event, observations are located mainly on the
eastern (Pest), mostly flat part of Budapest.
Table 3
Correlation coefficient of best-matching values from themodelledwater depths and
VGI estimates for different buffer radii.

Buffer radius [m] 2015 2017 2020

25 0.15 0.11 0.29
50 0.42 0.29 0.23
100 0.98 0.77 0.61
150 0.99 0.83 0.74
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Fig. 8 summarises the results of comparing the maximum water depths
derived from the pluvial flood model and VGI, respectively, assuming dif-
ferent buffer sizes (see Section 2.5). The radii of the buffers (from 25 m to
150 m) are shown with different colours and symbols, whereas the
coloured lines indicate the best linear fit to the data. Correspondingly,
Table 3 presents the results of a linear correlation analysis using different
buffer sizes. Overall, the best agreement and most significant correla-
tions (>0.6) are obtained with the larger buffer sizes (100 m and
150 m). Meanwhile, the most mismatches, as in the case of flooding
below a bridge which was not adequately captured by the model/DEM
(the 90 cmwater depth point in Fig. 8, left) and the weakest correlations
(0.1–0.4), are found for the smallest buffer sizes (25 m and 50m), where
model and observations are compared at grid cell or near-grid cell level.
In general, the results found for the 100/150 m and 25/50 m buffers are
quite similar. This suggests that the “effective” horizontal resolution of
the pluvial flood model, taking all the associated uncertainties men-
tioned above into account, is likely to be around 100 m as opposed to
the “nominal” resolution provided by the underlying DEM (25 m). Anal-
ogous results (effective < nominal resolution) would have been found
using a higher resolution DEM able to resolve the urban elements
(1–2 m), as the concept of an effective resolution combines different
sources of uncertainties, although it is likely that the effective resolution
would be improved.

There is also a better agreement between the pluvial model and obser-
vations for the more significant pluvial flood events (2015/2017). This is
arguably expected given the properties of the pluvial flood model used in
this study and is likely to bemodel-dependent (Section 2.2). Hence, the rel-
ative effects of adopting a simple and conceptual urban drainage system
model rather than a heterogeneous, well-calibrated and fully coupled
two-dimensional dynamic sewer model are generally most significant for



Fig. 7. Distribution of observed precipitation over Budapest (numbers, scaled circles and blue shaded areas) and modelled pluvial flood extent (orange colours) during the
2017 event. Green circles indicate the location of the VGI data points.
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smaller rain events. Whereas for very extreme events like in 2015, the sur-
face water routing generally plays a relatively more important role. Simi-
larly, the vertical precision of the DEM is relatively more important in the
case of low water depths where, e.g., errors in the DEM are also more
clearly felt.
Fig. 8.Comparison ofmodelledmaximumwater depth valueswithwater depths estimat
the three events, and the bestmatching value from themodelled data is extracted (see Sec
the three flood events.
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4. Discussion and conclusions

In this study, we demonstrate the use of VGI as means of in-situ evalua-
tion of a pluvial flood model. While advances have been made in terms of
using, e.g. UAVs, direct local measurements of water flows and water
ed fromVGImaterial. Four buffer sizes around the VGI location are drawn for each of
tion 2.5). The lines indicate a linear fit to the data. Colours and shapes correspond to
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depths recorded during pluvial flood events are still very scarce. This scar-
city is due to the rareness of such extreme flood events and their localised
occurrence, evenwithin a city, and the typical embedding in a dedicated ex-
periment or opportunity instead of in systematic records. As a result, it is in-
herently challenging to assert the skill of pluvial floodmodels used for local
disaster risk management and climate adaptation against actual observa-
tions. Visual evidence in the form of VGI like pictures and video footage
from newspapers, social media, etc. could principally help alleviate these
challenges – as a complement to or in the absence of other data sources -
to improve confidence in pluvialfloodmodels and are inmany places avail-
able for recent flood events, as exemplified for the city of Budapest, which
has seen three instances of severe pluvial flooding since 2015. However,
VGI datamay be associatedwith significant uncertainties for their precision
and completeness.

In the current investigation, the localisation of the VGI data points was
manually determined through visual comparison with Google Street View
imagery. Out of 150 VGI photographs and videos collected during the
three different pluvial flood events in Budapest, only about one-third (67)
could be reasonably localised and used for water depth estimation. The
main reason for not including all available VGI data points was missing or
uncertain information regarding the quality, geolocation of the images or
lack of nearby reference objects for water depth estimation. Regarding
the latter, the potential availability of reliable and unambiguous reference
objects adds an additional layer of uncertainty. Estimates of the water
depth based on, e.g. the assumed size of a specific type of wheel or the
height of a person's knee, are inherently associated with uncertainty, and
results may be further skewed by the perspective used in photographic ev-
idence unless corrected. Machine learning approaches for image segmenta-
tion and water level estimation as described in Moy de Vitry (2019) could
alleviate issues of uncertainty introduced by human estimations. Further is-
sues may also arise from the (lack of) time stamping of the VGI data points
and whether an estimated VGI water depth represents the global maximum
at a specific location, which is the quantity often retrieved from pluvial
flood model simulations and represented in flood maps. That said, in
many cases, the uncertainties associatedwith visual water depth estimation
are likely to be comparable with or even exceeded by the (effective) verti-
cal, horizontal and temporal resolution of even high-resolution pluvial
flood simulations.

As shown above (Fig. 5), VGI data points represent a “data collection of
opportunity”. Nevertheless, as demonstrated by the three rainfall events in
Budapest, the locations of these observations are arguably not entirely ran-
dom. In fact, since VGI material is more likely than not to be centred on
public and central locations,which represent high exposure or inherent vul-
nerability, one might argue that given enough samples, such data promises
fair coverage of the most relevant sites. This coverage issue is, to some ex-
tent, illustrated in Fig. 7, where most of the VGI data points collected
from the 2017 event are located within a limited area extending on both
sides of the Danube. A single point also covers the two additional high-
impact areas, where the second- and third-highest precipitation sums of
60 mm and 59 mm were observed. Conversely, no images were found
nearby the fourth-highest precipitation sum observed in the north-
western part of the city, where flooding should have occurred according
to the pluvial flood model simulations. This part of the city is elevated, so
it is possible that rain falling on the slopes has drained into the central
area next to the Danube, where flooding was then caused. The point is
that we do not have any insights on this from the VGI data we collected;
and that improved sources of VGI data, a larger sample or supplementary
information would be needed to resolve this. One could for example use
webcams in cities to estimate flow paths, velocity and duration. Likewise,
Leitão and Peña-Haro (2022), Hao et al. (2022) and Moy de Vitry (2019)
propose machine learning approaches to estimate flow velocity and water
depth based on VGI and surveillance videos during pluvial flood events
for adding additional information for model validation.

Fig. 8 compares the VGI observations to our model simulations. The fig-
ure shows that the modelled maximum water depths seem to agree well
with the observations for buffer sizes of at least 100 m (see Section 2.5).
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We here introduce a simple methodology for comparing modelled
(gridded) and observed (point) spatial data that is generally applicable be-
yond the current study. Comparing gridded model data to station data rep-
resenting complex dynamical processes at very detailed scales is
notoriously tricky due to model and observation uncertainties and biases
(e.g. whether the available VGI and model estimates accurately represent
the maximum water depth) and especially so for extreme convective
precipitation (e.g. Larsen et al., 2016; Rasmussen et al., 2012). As a result,
simulated flood patterns may be displaced or skewed compared to observa-
tions, and thus comparing an observation only to the nearest model grid
point may result in the wrong conclusion. Considering a cloud (buffer)
of grid cells surrounding our VGI data points with radii ranging from
25 m – or essentially a single grid cell – to 150 m allows us not only to
account for this spatial uncertainty but also, in some sense to quantify
the confidence level of the pluvial flood model evaluation. Moreover,
we factor in not only the model uncertainty but also the abovemen-
tioned uncertainties related to the VGI data, which may be difficult to
quantify in their own right. For this aim, we estimate an effective
model resolution, which will nearly always be coarser than the nominal
model grid cell resolution, even for highly resolved surface models.
Since economic damage cost assessments often rely heavily on
flood mapping to determine the exposure of socio-economic assets
(Kaspersen and Halsnæs, 2017; Merz et al., 2013; Merz et al., 2010),
this suggests that flood maps should generally be resampled to avoid
propagating potential biases down the line.

Finally, the comparison with VGI data underlines the difficulties in
modelling small-scale topographic features in an urban setting, such as rep-
resenting water depths in underpasses and under bridges. These under-
ground features are usually not adequately represented in the moderately
resolved DEMs typically used for risk assessment and management, despite
their critical importance for flood modelling (Lindsay and Dhun, 2015),
and require DEM editing (Houston et al., 2011). As highlighted above,
VGI data were instrumental in revealing several limitations in the pluvial
flood model, which failed to reproduce the two most significant water
depth estimates for the 2015 and 2020 events since the associated under-
pass is not included in the DEM. This is perhaps the most significant utility
of VGI as means of evaluating pluvial flood models. While the exclusion of
these points does not significantly change the results of our current analysis
(Fig. 8, Table 3), there is no doubt that this sort of information is beneficial
for local authorities and will aid in improving pluvial flood models, e.g. by
informing morphological terrain analyses and furthering the development
of improved and more reliable DEMs and pluvial flood models in general.

While VGI data hold significant potential asmeans of evaluating and im-
proving pluvial flood models, the process of locating relevant visual mate-
rial from online platforms (some of which are protected by intellectual
property rights or GDPR) is very time-consuming and will greatly benefit
from further advances in computer vision and automatic flood detection
from photographs. Hence, Barz et al. (2021) recently proposed an auto-
matic filtering approach based on machine learning techniques to help
find Twitter images thatwould be relevant for one of the following informa-
tion objectives: assessing the flooded area(s), the inundation depth(s), and
the degree of water pollution. Instead of relying purely on textual informa-
tion, the filter directly analyses the image contents. Likewise, in our study,
comparing photos, verifying locations and estimating water levels took ap-
proximately 48 h in total of manual labour (or about 16 h per event),
whereas Zamir and Shah (2010) have proposed a more automated ap-
proach.

In conclusion, our findings have highlighted an untapped potential but
also important challenges in using VGI to evaluate pluvial flood models.
Following recent developments in data mining techniques based on artifi-
cial intelligence and machine learning, there is no doubt that the availabil-
ity of VGI data from media and social media platforms, through crowd
sourcing etc., will grow exponentially. As exemplified in this paper, this
will offer new and unique opportunities and help improve the confidence
inmodel-based risk assessments for climate change adaptation and disaster
risk reduction.
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