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ABSTRACT

Synthetic streamflow scenario generation is particularly important in countries like Brazil, where hydroelectric power generation plays 
a key role and properly handling the uncertainty of  future streamflow is crucial. This paper showcases a collaborative effort within 
the Brazilian electrical sector to enhance streamflow scenario models, focusing on horizons up to one year. Five institutions proposed 
diverse methodologies, and their effectiveness was evaluated using a comparative framework. The results reveal the strengths and areas 
for improvement in each model. GHCen emerged as the top performer, excelling in both short-term and moving average analyses, 
while the PARX model demonstrated superior performance in specific regions. The PAR(p)-A, which is the official methodology in 
Brazil, was the second-best model in the moving average analysis. This research offers valuable insights for countries facing similar 
hydrothermal scheduling and scenario generation challenges.

Keywords: Comparative evaluation framework; Synthetic streamflow scenario generation; Multivariate multistage probabilistic 
forecast.

RESUMO

A geração de cenários sintéticos de vazões afluentes é particularmente importante em países como o Brasil, onde a geração de energia 
hidrelétrica desempenha um papel fundamental e é crucial lidar adequadamente com a incerteza da vazão futura. Este artigo apresenta 
um esforço colaborativo do setor elétrico brasileiro para aprimorar os modelos de geração de cenários de vazão, com foco em 
horizontes de até um ano. Cinco instituições propuseram metodologias diversas e a sua eficácia foi avaliada através de uma avaliação 
comparativa estruturada. Os resultados revelam os pontos fortes e as áreas de possíveis aprimoramentos em cada modelo. O modelo 
GHCen apresentou o melhor desempenho, destacando-se nas análises de curto prazo e de média móvel, enquanto o modelo PARX 
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INTRODUCTION

The increasing integration of  renewable sources into the 
electricity generation matrix brings significant challenges and 
opportunities to the electrical sector. One of  the main challenges 
is to enhance the models for generating synthetic scenarios, 
especially in the Brazilian context, where the generation of  synthetic 
streamflow scenarios plays a fundamental role in forecasting the 
availability of  water resources and supporting strategic decisions 
in the mid- and long-term energy planning process.

In this context, in collaboration with academic institutions 
and research centers, the Brazilian electrical sector has been working 
to improve the accuracy of  models used to predict and generate 
streamflow scenarios. A recent example of  this improvement 
effort was the establishment of  an activity conducted within the 
Technical Committee of  PMO/PLD (CT PMO/PLD), by the 
Hydrological Scenario Representation Working Group (GT-CH), 
coordinated by the National Operator of  Electrical System (ONS) 
and the Chamber of  Electric Energy Commercialization (CCEE). 
This activity aimed to investigate advanced streamflow scenario 
generation models for horizons of  up to one year.

This initiative aimed to meet the need for increasingly 
accurate projections, considering the dynamics of  climate 
changes and variations, and seasonal fluctuations. The initiative 
involved the participation of  five institutions that proposed and 
developed methodologies with different approaches, detailed in the 
articles presented in this special edition of  RBRH. To assess the 
effectiveness of  these models, a comparative evaluation framework 
was proposed, wherein various aspects were analyzed, including 
the ability to generate monthly streamflow scenarios consistent 
with the most critical scenarios observed in recent history for 
different time horizons (from 1 to 12 months ahead).

This work aims to present the proposed testing framework 
to evaluate the quality of  synthetic streamflow scenarios in 
comparison with the methodology currently used by the electrical 
sector, known as Periodic Autoregressive with Annual Component 
– PAR(p)-A (Treistman et al., 2020a; Comissão Permanente para 
Análise de Metodologias e Programas Computacionais do Setor 
Elétrico, 2021), applying the NCRPS metric (Hersbach, 2000; 
Cassagnole et al., 2021) that assesses the overall quality of  the 
generated distribution obtained by scenario generation models, 
rather than the traditional metrics that measure the accuracy of  a 
predictive model. In addition to assessing the predictive distribution 
at each time step, moving averages for 2 to 12 months ahead will 
also be evaluated to analyze the ability of  the models to represent 
the observed streamflow sequences.

This paper is structured into four sections. In section 
1, we presented the context for the development of  this work 
and its objectives. In Section 2, the five methodologies assessed 
by GT-CH and the current methodology used by the electrical 

sector are presented, including the case studies employed in the 
evaluation of  these proposals, and the details of  the metrics 
considered for the analysis. Section 3 presents the results obtained 
for each model, highlighting their strengths, and identifying areas 
for improvement. It is worth noting that all models were evaluated 
based on the same input datasets, ensuring a fair and consistent 
comparison. Finally, Section 4 presents the main conclusions from 
this evaluation, consolidating the results achieved by the GT-CH.

MATERIAL AND METHODS

Natural streamflow data

The historical dataset of  natural monthly streamflow series 
from 146 hydropower plants (HPPs) in Brazil considered in this 
study is provided by ONS. It covers all major Brazilian basins 
from 1931 to 2021, and it can be obtained on ONS’s website 
(Operador Nacional do Sistema Elétrico, 2023b).

Anthropogenic effects such as regulation and diversions, 
as well as reservoir evaporation, are removed from the observed 
streamflow record. In this work, all evaluations are done considering 
incremental natural streamflow, which is the difference between 
total natural streamflow from two subsequent HPPs.

Evaluated methodologies

A total of  six methodologies representing the state-of-
the-art scenario generation models, with different approaches, 
will be analyzed and compared with each other. The benchmark 
methodology is the PAR(p)-A, which is the model used in Brazilian 
energy operation planning (Maceira et al., 2018).

The second evaluated model is the Periodic Autoregressive 
with Exogenous Variable – PARX (Lima & Lall, 2010; Lappicy 
& Lima, 2023). This model uses large-scale climate indices, such 
as sea-surface temperature from specific Pacific and Atlantic 
oceans regions, and low zonal/southern winds, to improve 
monthly forecasts of  natural flows. The use of  climate variables 
in the regression equation of  the PAR model tries to improve 
the forecast and scenario generation of  streamflow, preserving 
the spatial correlation.

The third model is a hyper-multimodel (Souza Filho et al., 
2023), which combines three families of  models: conceptual 
rainfall-runoff  model coupled with climate models; stochastic 
and machine learning models with endogenous variables; and 
stochastic and machine learning models with both endogenous 

demonstrou desempenho superior em regiões específicas do Brasil. O PAR(p)-A, metodologia oficial no Brasil, foi o segundo melhor 
modelo na análise de médias móveis. Este artigo oferece informações valiosas para países que enfrentam desafios semelhantes de 
programação hidrotérmica e geração de cenários.

Palavras-chave: Procedimento para avaliação comparativa; Geração de cenários sintéticos de afluências; Previsão probabilística 
multivariada multiestágio.
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and exogenous variables. This approach combines the best of  
each model, weighing them by the maximum likelihood.

The fourth methodology consists of  a Markov-switching 
periodic autoregressive model with - MS-PAR(p) (Treistman et al., 
2020b; Pessanha et al., 2023), which is the combination of  the 
classic PAR model with the addition of  climate variables as a 
state model by a Markov chain. This evaluation uses the El Niño 
Southern Oscillation as the represented climate variable, which 
is one of  the most impacting climate variability in the Brazilian 
streamflow.

The fifth model is the LYNX-Series model, which is 
based on the Contemporaneous Autoregressive Moving Average 
- CARMA (Detzel et al., 2023). It represents a non-periodic and 
multivariate version of  the Box & Jenkins or ARIMA family 
of  stochastic models (Box et al., 2008). The contemporaneous 
portion of  the model, in turn, is responsible for considering the 
spatial correlation between different locations. The framework 
also employs a sampling procedure in which a subset of  synthetic 
scenarios is selected from the outputs of  the CARMA model 
based on the recent historical streamflow regimes.

The last evaluated model is the Hybrid Generator of  Synthetic 
Streamflow Scenarios - GHCen (Treistman et al., 2023) - which 
merges the conceptual rainfall-runoff  modeling of  the SMAP/
ONS model (Operador Nacional do Sistema Elétrico, 2017) with 
a stochastic methodology for the simulation of  synthetic daily 
precipitation scenarios. The stochastic methodology can reproduce 
the main characteristics of  the precipitation historical data, while 
the conceptual modeling guarantees the correct physical behavior 
of  the rainfall-runoff  relationship.

Table 1 summarizes all evaluated methodologies and their 
main characteristics.

Evaluation metrics

The generation of  synthetic scenarios of  monthly 
streamflow is a complex problem to be represented due to 
the inherent uncertainties of  this physical process, and the 
intricate interaction with the other variables that impact the 
hydrological cycle. It is not expected that a synthetic scenario 
generation model could make a perfect prediction many steps 
ahead, or that the observed cumulative inflows are always well 
distributed among the generated scenarios, especially during 

more critical periods of  the historical record. Nevertheless, 
continuous efforts should be made to enhance the scenario 
generation models to make them more closely resemble the 
observed hydrological reality.

The purpose of  this paper is to establish a framework 
for evaluating and comparing scenario generation models that 
are applied to monthly streamflows, which are one of  the 
most important uncertainties in the Brazilian energy sector. 
The Continuous Ranked Probabilistic Score – CRPS - (Hersbach, 
2000) in its normalized version (Cassagnole et al., 2021) is used as 
the main evaluation metric. The NCRPS (Equation 1) measures 
the difference between the cumulative distribution function of  the 
simulated scenarios and the observation distribution (a Heaviside 
function on the observation), which is more suited to analyze 
scenario generation models.
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where tq  is the synthetic scenario of  monthly inflow; to  is the 
observed flow; ( )tcum tP q  is the cumulative distribution function 
of  the synthetic scenarios generated for period t ;  oSD is the 
standard deviation of  the flow observed in the period; 

toI  is the 
Heaviside function.

For some point-specific analyses, MAPE (mean absolute 
percentage error) and NRMSE (normalized root mean square 
error) were also used. Both are described in Equations 2 and 3, 
respectively.
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where scenN  is the number of  generated synthetic scenarios; iscen
tq  

is the synthetic scenario of  the iscen  index in period t ; T  is the 
total number of  simulated cases.

Table 1. Summary of  evaluated methodologies and their main characteristics.
Model Type Linear? Climate variables? References

PAR(p)-A Statistical Yes No Treistman et al. (2020a)
PARX Statistical Yes Yes Lima & Lall (2010); 

Lappicy & Lima (2023)
Hyper-multimodel Hybrid (Statistical + 

Machine Learning + 
Conceptual)

No Yes Souza Filho et al. (2023)

CARMA Statistical Yes No Detzel et al. (2023)
MS-PAR(p) Statistical Yes Yes Treistman et al. (2020b); 

Pessanha et al. (2023)

GHCen Hybrid (Statistical + 
Conceptual) No Yes Treistman et al. (2023)
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Case study

The case study presented in this paper includes the following 
characteristics:

1. 132 simulations, one for each month from January 2011 
to December 2021.

2. The scenario generation horizon is one year ahead.
3. Monthly time steps that can be broken down into daily 

time steps and later grouped every month.
4. The simulation must be performed for all 146 HPPs in the 

National Interconnected System (NIS), and the scenarios 
must be spatially correlated.

5. Models must always be estimated with historical data 
available up to the year before the simulation. If  it uses an 
exogenous variable, only the observed/predicted values   
up to the simulation date should be used.
The location of  all considered HPPs is shown in the 

schematic diagram in Figure 1 (Operador Nacional do Sistema 
Elétrico, 2023a).

Comparative evaluation framework

To compare the scenario generation models an evaluation 
framework is proposed. The NCRPS is calculated for the predictive 

distribution of  monthly incremental streamflow from t+1 to 
t+12 for all HPPs. Additionally, the NCRPS was calculated for 
the moving average from 2 months to 12 months, providing an 
analysis of  the temporal evolution of  the observed streamflow 
about the sequences of  the synthetic scenarios. This analysis is 
crucial for energy planning models since the accumulation of  
resources over time heavily influences the results.

The NCRPS is a metric used to evaluate the predictive 
distribution, making it more suitable for assessing synthetic 
scenario generation. It has the unique characteristic of  penalizing 
any observation that falls outside of  the generated scenarios more 
severely. If  we use this predictive distribution, the energy operation 
models will construct an energy policy that may not consider the 
observed natural resources, leading to a waste of  resources.

To gain a better understanding of  the analysis, we will 
begin by presenting a summary table. This table will display the 
percentage of  HPPs, as defined in Equation 4, where the proposed 
model outperformed PAR(p)-A (with a lower NCRPS) for each 
horizon evaluated and for each of  the proposed methodologies.

Furthermore, we calculated the percentage contribution 
of  each HPP to the Natural Energy Inflow (NEI) of  the NIS 
according to Equation 5, based on inflows from 1931 to 2021. 
This allows for greater weight to be given to HPPs that have 
a greater contribution to the system. Ultimately, this leads to 
a percentage improvement being calculated for each proposed 
model in terms of  NEI.

Figure 1. Schematic diagram of  the HPPs in NIS.
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where improve
HPPN  is the number of  HPPs in which the proposed 

model was better than the current one, total
HPPN  is the total number 

of  HPPs considered in the case study; iHPP
LTMNEI  is the average NEI 

between 1931 and 2021 referring to HPP with iHPP  index; and 
NIS
LTMNEI  is the NEI long-term mean of  NIS for the same period.

The flowchart depicted in Figure 2 provides a concise overview 
of  the devised framework for assessing the proposed models.

RESULTS

The results found in the case study are presented below. 
It is noteworthy that the objective of  this first analysis is to provide 
an overview of  the overall performance of  each model. In the 
following sections, the presented results will be better explored 
individually.

First, Tables 2 and 3 bring, for each time step, the percentage 
of  improvement of  each proposed model about the current model, 
both in terms of  the percentage of  HPPs and in the percentage 
of  representativeness of  NEI. Tables 4 and 5 present the same 
evaluation, however, in moving average windows of  two to twelve 
months. In these evaluations, the NCRPS was used as an evaluation 
metric. Values   highlighted in red indicate the proposed model with 
the best performance among the five proposals.

Table 2. HPP’s improvement percentage in comparison to the PAR(p)-A model, for each time step, using NCRPS as the metric. The 
highest-performing proposed model among the five is highlighted in red.

Model t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12
CARMA 0.7% 6.8% 8.9% 6.2% 9.6% 10.3% 11.0% 11.0% 11.0% 13.0% 14.4% 10.3%
MS-PAR(p) 3.4% 3.4% 6.8% 8.2% 13.7% 13.7% 17.1% 12.3% 20.5% 22.6% 13.7% 23.3%
PARX 41.1% 41.1% 37.7% 34.2% 32.9% 34.9% 37.0% 28.8% 40.4% 41.1% 29.5% 30.8%
Hyper-multimodel 10.3% 15.1% 13.7% 13.7% 18.5% 17.8% 19.9% 16.4% 26.0% 26.0% 18.5% 24.7%
GHCen 74.7% 39.0% 42.5% 42.5% 48.6% 50.0% 51.4% 54.1% 52.7% 52.7% 52.7% 54.8%

Table 3. Improvement percentage for NEI in comparison to the PAR(p)-A model, for each time step, using NCRPS as the metric.
Model t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

CARMA 0.4% 4.1% 5.4% 2.0% 6.1% 16.2% 14.9% 18.4% 19.8% 19.5% 20.4% 17.0%
MS-PAR(p) 12.3% 6.9% 3.2% 6.5% 9.2% 6.7% 13.9% 9.4% 19.4% 19.8% 10.4% 27.1%
PARX 61.8% 46.4% 37.5% 35.7% 34.8% 33.6% 35.8% 30.6% 50.3% 52.7% 29.8% 31.9%
Hyper-multimodel 11.2% 7.4% 3.1% 12.3% 14.9% 16.5% 17.0% 16.3% 30.7% 29.2% 23.6% 28.5%
GHCen 79.8% 37.2% 42.3% 36.1% 43.0% 53.4% 53.7% 55.5% 55.4% 55.2% 54.9% 56.0%

Figure 2. Flowchart of  comparative evaluation framework.
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GHCen has, on average, the best performance both in 
the evaluation of  the individual predictive distributions at each 
time step, and in the evaluation of  moving averages. At t+1 for 
approximately 75% of  the HPPs (80% of  NEI) the GHCen model 
outperformed the current methodology. PARX has the second-
highest percentage of  improvement. Although the improvement 
about PAR(p)-A does not reach 50% of  the HPPs in all horizons, 
for t+1 the PARX leads to an improvement of  61.8% of  the 
NEI, indicating a better generation of  synthetic inflow scenarios 
in HPPs with large representativeness in terms of  NEI.

Figures 3 and 4 show the models with the lowest NCRPS 
in t+1 and the 12-month moving average, respectively, for 
each HPP of  the NIS. The GHCen model represents most 
HPPs better for t+1, except for Teles Pires, Madeira (better 
represented by the PARX model), and Paraíba do Sul, Doce, 
and some parts of  the incremental Paraná (better represented 
by the PAR(p)-A model). For the 12-month moving average, 
there is a more balanced representation between the different 
methodologies, with the current methodology and the GHCen 
being the most prevalent.

Table 4. Improvement percentage for HPP in comparison to the PAR(p)-A model, for moving average, using NCRPS as the metric.
Model MA 1 MA 2 MA 3 MA 4 MA 5 MA 6 MA 7 MA 8 MA 9 MA 10 MA 11 MA 12

CARMA 0.7% 1.4% 2.7% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.7% 2.7% 2.1%
MS-PAR(p) 3.4% 6.2% 9.6% 12.3% 13.7% 14.4% 15.8% 14.4% 16.4% 17.1% 18.5% 17.8%
PARX 41.1% 45.2% 40.4% 33.6% 30.1% 28.1% 26.0% 22.6% 25.3% 24.0% 23.3% 21.9%
Hyper-multimodel 10.3% 15.1% 17.8% 18.5% 21.2% 22.6% 24.0% 22.6% 24.0% 26.0% 26.0% 27.4%
GHCen 74.7% 51.4% 50.0% 52.7% 51.4% 50.7% 50.0% 50.0% 49.3% 51.4% 51.4% 50.7%

Table 5. Improvement percentage for NEI in comparison to the PAR(p)-A model, for moving average, using NCRPS as the metric.
Model MA 1 MA 2 MA 3 MA 4 MA 5 MA 6 MA 7 MA 8 MA 9 MA 10 MA 11 MA 12

CARMA 0.4% 2.1% 2.8% 2.4% 0.8% 0.8% 0.8% 0.8% 0.8% 3.9% 3.9% 3.8%
MS-PAR(p) 12.3% 12.7% 7.6% 11.6% 12.7% 11.9% 13.6% 8.1% 8.9% 9.4% 17.6% 17.6%
PARX 61.8% 51.1% 43.0% 33.4% 23.4% 20.5% 18.0% 16.2% 20.2% 19.6% 19.0% 18.9%
Hyper-multimodel 11.2% 18.3% 19.6% 17.0% 19.2% 20.8% 21.0% 20.6% 22.3% 22.7% 22.8% 24.1%
GHCen 79.8% 50.5% 53.0% 64.7% 56.2% 54.8% 49.6% 50.5% 50.6% 51.1% 51.8% 51.1%

Figure 3. Lowest NCRPS model, in t + 1, for each HPP of  NIS.
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CARMA results

From the results presented in Tables 2 to 5, it can be noted 
that the CARMA model has a lower performance than the current 
model and the other proposed models. In general, for the generation 
of  scenarios from t+6, the model starts to present better performance 
compared to the previous steps. The CARMA model presents errors 
close to the current model, mainly in the South region, with a slight 
advantage mainly in the Uruguay River basin. Figure 5 shows the 
NCRPS for the predictive distributions at t+9 for the CARMA 
model (red bars) and the PAR(p)-A (blue bars), where, in general, 
similar values   obtained by both models are observed.

However, in most of  the analyses, the CARMA model is 
outperformed by PAR(p)-A. In the evaluation of  moving averages, 
it is noted that the CARMA model has a lower performance for 
almost all HPPs. This indicates a low representativeness of  the 
observed streamflow sequences, which may have occurred due to 
a small hydrological memory. Figure 6 shows the Boxplots of  the 
predictive distributions in t+1 performed with the CARMA (red) 
and PAR(p)-A (blue) models, for the Furnas HPP over the period 
from 2014 to 2018, for a moving average of  12 months. It should 
be noted that PAR(p)-A generates predictive distributions that 
are the closest to the verified flows, represented by the black line.

MS-PAR(p) results

The results presented in Tables 2 to 5 indicate that the 
MS-PAR(p) model has, for most HPPs, a lower performance 

than the PAR(p)-A model when evaluated by the NCRPS, both 
in terms of  predictive distributions at each step time and in 
terms of  moving averages. In general, it is observed that the 
difference between the two models is greater in the short-term 
horizon, with a gradual improvement in the performance of  
the MS-PAR(p) model in longer time horizons of  scenario 
generation.

Using the RMSE as an evaluation metric, despite not being 
the most suitable for the evaluation of  predictive distributions, 
the MS-PAR(p) outperforms PAR(p)-A in a higher percentage of  
HPPs. Figure 7 shows the results of  this analysis for each time 
step (a) and each moving average (b). Given that the RMSE is a 
metric that prioritizes errors at higher flows, this result indicates 
that the model has a better ability to capture flood events, 
especially in regions most affected by ENSO. Figure 8 presents 
the NRMSE of  predictive distributions at t+1 in the northern 
region. It is possible to observe that for most HPPs the MS-
PAR(p) model has smaller errors in this region when compared 
to the PAR(p)-A.

The analysis of  the moving averages suggests that a 
better performance can also be observed in the North region. 
Although the southern region is notably a region that suffers 
from the influence of  ENSO, even when evaluated through 
the NRMSE, the MS-PAR(p) model has lower results than the 
PAR(p)-A. Figures 9 and 10 show the predictive distributions of  
the 6-month moving averages performed with the MS-PAR(p) 
(red) and PAR(p)-A (blue) models, for the HPPs Itá and Santo 
Antônio Jari, corroborating previous analyses.

Figure 4. Lowest NCRPS model, for a moving average of  twelve months, for each HPP of  NIS.
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Figure 5. NCRPS of  south region HPPs, for the predictive distributions at t + 9.

Figure 6. Boxplots of  predictive distributions of  twelve-month moving averages performed with CARMA (red) and PAR(p)-A (blue), 
for Furnas HPP.

Figure 7. Percentage of  improvement in HPP and NEI in terms of  predictive distributions at each time step (a) and for moving 
averages (b), using NRMSE as a metric.
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Figure 8. NRMSE of  north region HPPs, for the predictive distributions at t + 1.

Figure 9. Boxplots of  predictive distributions of  six-month moving average performed with the MS-PAR(p) (red) and PAR(p)-A 
(blue), for the Itá HPP.

Figure 10. Boxplots of  predictive distributions of  six-month moving average performed with the MS-PAR(p) (red) and PAR(p)-A 
(blue), for the Santo Antônio Jari HPP.
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Hyper-multimodel results

Analyzing the results presented in Tables 2 to 5, it is 
noted that the hyper-multimodel has a lower performance than 
the current model, for all evaluation horizons. The difference is 
generally greater in the short-term horizon, with a gradual increase 
in hyper-multimodel performance at each time step.

Based on the evaluations conducted, it was noticed that 
a considerable number of  simulations produced scenarios that 
were either zero or close to zero. Generating scenarios with such 
low values is not desirable for a synthetic scenario creation model, 
and it might have adversely affected the outcomes.

Given this characteristic, MAPE was also used as an 
evaluation metric to deepen the analysis of  the results a little 

more, even though this is not a metric indicated for the evaluation 
of  predictive distributions. Figure 11 shows the percentage of  
improvement in UHE and ENA in terms of  predictive distributions 
at each time step (a) and for moving averages (b), using MAPE 
as a metric. Two main points can be highlighted:

1. The hyper-multimodel shows an increasing performance at 
each time step, even being superior to the PAR(p) from t+6;

2. Despite having performed well for individual predictive 
distributions over the medium term, analysis of  moving 
averages continues to underperform across the horizon.
To explain this poor performance in generating affluence 

sequences that can reproduce the observations, an evaluation of  
the synthetic temporal autocorrelations generated by the hyper-
multimodel was carried out. Figure 12 presents for the Pimental 

Figure 11. Percentage of  improvement in HPP and NEI in terms of  predictive distributions at each time step (a) and for moving 
averages (b), using MAPE as a metric.

Figure 12. Boxplots of  the synthetic temporal autocorrelations of  hyper-multimodel (red), PAR(p)-A (blue), and for historical values 
(green), fixing the first month of  each of  the simulations, and varying the second vector of  t +2 until t+12, for Pimental HPP.
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HPP the boxplots of  the temporal autocorrelations for the hyper-
multimodel (red), for the PAR(p)-A (blue), and the historical 
values (green), setting the first month of  each of  the simulations 
and varying the second vector from t+2 to t+12. Therefore, 
each boxplot represents a set of  11 autocorrelations. Conditional 
scenario generation is not expected to reproduce historical values 
exactly. However, the temporal autocorrelations generated from 
the proposed model remain at very high values, regardless of  the 
month of  the simulation and the HPP considered. This behavior 
was observed in all HPPs.

Considering longer horizons, Figure 13 shows the 
simulations for the HPPs for t+6. It is noticeable that the predictive 
distributions of  the Hyper-multimodel model have medians close 
to the observations. This fact occurs mainly in other HPPs with 
well-defined seasonality and for the months of  the dry period 
when the distributions present a smaller dispersion. Even so, a 
large number of  zeroed scenarios can be observed in most HPPs, 
negatively impacting the NCRPS.

In the evaluation of  the moving averages, it is observed 
that, for some HPPs, there is a greater dispersion of  the scenarios 

generated by the proposed model. However, the increase in the 
dispersion of  the predictive distributions does not translate into 
a better performance of  the model, as verified by the applied 
evaluation metrics. This behavior is illustrated in Figure 14, where 
it is notable that the hyper-multimodel has a lower performance 
than the current one. Finally, as stated in Souza Filho et al. 
(2023), it is important to notice that the results submitted in the 
GT-CH activity had operational errors in the hyper-multimodel 
scenario generation. The errors especially affected its spatial and 
temporal correlation, and may also impacted the performance of  
the proposed methodology. Further information about the errors 
can be found in the referred paper.

PARX results

As pointed out in Table 2 to Table 5, the PARX has one 
of  the best performances among the evaluated models, mainly 
at t+1. Despite having an improvement in t+1 of  41% about 
the total number of  HPPs, when weighted in terms of  NEI the 

Figure 13. Boxplots of  predictive distributions in t+6 performed with the Hyper-multimodel (red) and PAR(p)-A (blue), for the 
Itumbiara HPP.

Figure 14. Boxplots of  predictive distributions of  six months moving average performed with the Hyper-multimodel (red) and 
PAR(p)-A (blue), for the Porto Primavera HPP.
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improvement reaches 61.8%. Therefore, the model manages to 
improve HPPs that contribute proportionally more to the NEI. 
In general, it is observed that the model performs better in the 
short term, which gradually decreases with each time step.

By including exogenous variables related to weather events 
such as ENSO, the proposed model performs better mainly in 
the north and south regions of  the country. Figure 15 presents 
the NCRPS of  the HPPs present in the north region for the 
predictive distributions in t+1, generated with the PARX model 
(red) and PAR(p)-A (blue). It is noticeable that most HPPs in 
these regions have lower NCRPS values with the PARX model 
in comparison to PAR(p)-A.

It is interesting to note that at t+1, where the best PARX 
performance occurs, there are periods in which the generated 
predictive distribution has a notably different pattern than that 
observed in PAR(p)-A, due to the greater influence of  climatic 
variables. To exemplify this characteristic of  the proposed model, 

Figures 16 and 17 show the predictive distributions in t+1 performed 
with PARX (red) and PAR(p)-A (blue), for the Pimental and Baixo 
Iguaçu HPPs, respectively, between 2014 and early 2016. It is 
observed that for UHE Pimental, the proposed model generated 
drier distributions in the years 2014 and 2015. As for Baixo Iguaçu 
HPP, the predictive distributions generated have scenarios with 
higher flows. These results were likely influenced by the presence 
of  the El Niño phenomenon that occurred during those years.

According to the analyses, the proposed model at each 
time step has a decrease in its performance in terms of  moving 
average, from 45% in the two-month moving average to 21% in the 
twelve-month moving average. This suggests that the model has 
difficulty replicating the streamflow sequences. To understand the 
reason for this behavior, the reproduction of  synthetic temporal 
autocorrelations generated by PARX was evaluated. Figure 18 shows 
for Furnas HPP the boxplots of  synthetic temporal autocorrelations 
generated with PARX (red), with PAR(p)-A (blue) and historical 

Figure 15. NCRPS of  north region HPPs, for the predictive distributions at t + 1.

Figure 16. Boxplots of  predictive distributions in t+1 performed with PARX (red) and PAR(p)-A (blue), Pimental HPP.
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temporal autocorrelations (green), fixing the first month of  each 
of  the simulations, and varying the second vector from t+2 to 
t+12. The temporal autocorrelations generated from the proposed 
model remain at values close to zero.

This indicates that there is no relationship between the 
predictive distributions at each time step, which explains the lower 
performance when analyzing the moving averages. A justification 
for this behavior may lie in the fact that the models are adjusted 
for each time step, taking into account only the observed values. 
In other words, the synthetic scenarios generated in t+1 do not 
enter the equation for the generation of  scenarios in t+2.

Figure 17. Boxplots of  predictive distributions in t+1 performed with PARX (red) and PAR(p)-A (blue), Baixo Iguaçu HPP.

GHCen results

The evaluation of  the GHCen model indicates that it 
performs better than the current model in most of  the evaluated 
horizons, according to Tables 2 and 5. For horizon t+1, it is 
observed that in almost 80% of  the NEI of  the NIS, there is an 
improvement in the current model. As for horizons t+2 to t+5, 
this superiority is reversed, with more than 50% improvement 
in longer horizons. When analyzing the predictive distributions 
generated in terms of  moving averages, the GHCen model 
maintains a superior performance in all evaluated horizons. This 

Figure 18. Boxplots of  the synthetic temporal autocorrelations of  the model proposed by the PARX (red), PAR(p)-A (blue), and for 
the historical values (green), fixing the first month of  each of  the simulations, and varying the second vector from t+2 to t+12, for 
Furnas HPP.
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indicates that the trajectories of  the synthetic scenarios generated 
by GHCen are closer to the observed flow sequences when 
compared to the current model.

In general, for horizon t+1, the proposed model presents 
superior results in most of  the HPPs. Figure 19 presents the 
NCRPS of  the HPPs present in the Rio Grande and Paranaíba 
basins for the predictive distributions in t+1 generated with the 
GHCen model (red) and PAR(p)-A (blue).

The exception occurs mainly in the North region, where 
the GHCen has its worst performance. In this region, the observed 
series of  daily precipitation has low quality when compared to 
the rest of  the SIN. This fact is mainly due to the low availability 
of  rainfall stations and the poor performance of  satellite rainfall 
estimates in this region. This issue ends up impacting both the 
calibration of  the SMAP/ONS model, the data assimilation 
process produced by the model, and the generation of  synthetic 
precipitation scenarios.

By using a conceptual rainfall-runoff  model (SMAP/
ONS), which provides estimates of  surface flow, base flow, and 
percentage of  soil moisture, together with a stochastic model that 
generates synthetic scenarios capable of  reproducing the main 
characteristics of  the historical series of  precipitation, GHCen 
manages to generate more adherent predictive distributions mainly 
in the short term. Additionally, as it is a daily model, it can identify 
whether flows are rising or falling, which is an additional advantage 
over models with monthly discretization.

To exemplify the performance in t+1, Figure 20 presents 
the boxplots of  the predictive distributions in t+1 carried out 
with the GHCen (red) and PAR(p)-A (blue), for the Furnas HPP. 
Notably, the GHCen model generates predictive distributions that 
are closer to the observations, and in some cases, with a lower 
variability than that generated by PAR(p)-A, mainly in recessions.

In addition to the quality of  the precipitation data, a second 
factor was identified that has a direct influence on the quality of  

Figure 19. NCRPS Grande and Paranaíba basin HPPs, for the predictive distributions at t + 1.

Figure 20. Boxplots of  predictive distributions in t+1 performed with GHCen (red) and PAR(p)-A (blue), Furnas HPP.
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the predictive distributions generated in t+1. For HPPs that are 
influenced by rainfall from many days ago, as in the case of  Belo 
Monte with kt=60 days (calibration parameter of  the SMAP/
ONS model), considering only the rainfall uncertainty seems not 
to be enough to generate adequate predictive distributions in this 
horizon. This influence of  precipitation many days ago usually 
occurs in basins with a large drainage area. For longer horizons, 
the conditioning effect of  data assimilation is lost, resulting in 
distributions with greater variability.

Figure 21 presents the Boxplots of  the predictive distributions 
generated with the GHCen (red) and PAR(p)-A (blue), for the 
Pimental HPPs in t+1. It is observable that the synthetic scenarios 
generated by GHCen have a much lower variability than the 
PAR(p)-A model. Additionally, the generated distributions fail to 
capture the observed values, especially during wet periods. These 
problems are not observed in longer horizons.

CONCLUSIONS

Streamflow is one of  the main uncertainties in hydrothermal 
scheduling problems. Therefore, countries with those characteristics 
have a significant need to improve the accuracy of  scenario 
generation models. Although there is plenty of  literature on 
ways to compare forecast models, the same cannot be stated for 
scenario generation models, which have different characteristics 
and purposes.

This paper proposes a framework to evaluate and compare 
scenario generation models, based mainly on the NCRPS metric. 
In addition to assessing the predictive distribution each time step, 
the NCRPS was calculated for moving averages, giving insights 
into which model can better represent the observed streamflow 
sequences. The framework is applied in a case study for the NIS, 
comparing six streamflow scenario generation models, with distinct 
approaches, that represent the state-of-the-art in this field.

From the analysis, it was observed that GHCen was the model 
with the best results for both the t+1 step and the moving average. 

PARX model was able to better represent HPPs from the north 
and south regions, mainly in the t+1 step, but the representation 
of  the streamflow sequences had a lower performance. Although 
the PAR(p)-A does not include any climate variable, it was, after 
the GHCen, the model with the best performance in the moving 
average analysis.
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