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ABSTRACT

Streamflow forecasting plays an important role in ensuring the reliable supply of  electricity in countries heavily reliant on hydropower. 
This paper proposes a novel framework that integrates various hydrological models, climate models, and observational data to develop 
a comprehensive forecasting system. Three families of  models were employed: seasonal forecasting climate models integrated with 
hydrological rainfall-runoff  models; stochastic or machine learning models utilizing endogenous variables, and stochastic or machine 
learning models that consider exogenous variables. The hyper-multimodel framework could successfully increase the overall performance 
of  the scenarios generated through the use of  the individual models. The quality of  the final scenarios generated was directly connected 
to the performance of  the individual models. Therefore, the proposed framework has potential to improve hydrological forecast for 
the Brazilian electricity sector with the use of  more refined and calibrated individual models.

Keywords: Hydrological modeling; Machine learning; Periodic autoregressive models; Flow scenario generation.

RESUMO

A previsão de vazão desempenha um papel importante para garantir o fornecimento confiável de eletricidade em países altamente 
dependentes da energia hidrelétrica. Este artigo propõe uma abordagem inovadora que integra vários modelos hidrológicos, modelos 
climáticos e dados observacionais para desenvolver um sistema abrangente de previsão. Três famílias de modelos foram empregadas: 
modelos climáticos de previsão sazonal integrados com modelos hidrológicos chuva-vazão; modelos estocásticos ou de aprendizado de 
máquina que utilizam variáveis endógenas e modelos estocásticos ou de aprendizado de máquina que consideram variáveis exógenas. A 
abordagem do hiper-multimodelo conseguiu aumentar com sucesso o desempenho geral dos cenários gerados com uso dos modelos 
individuais. A qualidade dos cenários finais gerados estava diretamente relacionada ao desempenho dos modelos individuais. Portanto, 
a estrutura proposta tem o potencial de melhorar a previsão hidrológica para o setor de eletricidade brasileiro com o uso de modelos 
individuais mais refinados e calibrados.

Palavras-chave: Modelagem hidrológica; Aprendizado de máquina; Modelos autoregressivos periódicos; Geração de cenários de vazão.
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INTRODUCTION
Hydrological forecasting, particularly medium and long-

term streamflow forecasting, is vital for effective water resource 
management. Forecasts over varying time scales provide critical 
insights into flood control, power generation, water supply, and 
drought mitigation (Kim et al., 2001; Jiang et al., 2018; Wang et al., 
2019). To enhance the accuracy of  these forecasts, researchers 
have explored various forecasting models and factors.

In recent years, a range of  strategies have been developed 
to improve the accuracy of  streamflow predictions, incorporating 
physical-based methodologies, mathematical statistical analyses, 
and artificial intelligence techniques (Zhang et al., 2018). However, 
these methods often fall short in predicting hydrological extreme 
events, due to propagating uncertainties, associated with hydrology 
and land processes (Chevuturi et al., 2023).

Hydrological models, which can be dynamical, empirical, 
or data-driven, largely rely on detailed local data, such as soil 
characteristics and geological features. In regions where this data 
is sparse, these models face uncertainties because they have to 
depend on broader global datasets that may not accurately represent 
the local conditions. However, research suggests that, in certain 
situations, averaging the outputs of  several models can reasonably 
approximate a locally calibrated model (Chevuturi et al., 2023).

Research indicates that multi-model hydrological forecasting 
is a viable approach for reliable predictions in various regions, 
according to numerous studies (e.g., Velazquez et al., 2011; Wanders 
& Wood, 2016). Combining forecasts from multiple models, a 
strategy that has proven effective regionally (e.g., Ajami  et  al., 
2006), can potentially offer comprehensive global hydrological 
predictions. Several multi-model blending techniques exist, each 
striving to enhance forecast accuracy by capitalizing on the strengths 
of  some models while ignoring the weaknesses of  others (e.g., 
Shamseldin et al., 1997; Roy et al., 2020).

A fundamental approach involves averaging all model outputs, 
sometimes incorporating model simulation standardization to negate 
forecast biases (Georgakakos et al., 2004; Ajami et al., 2006). This 
method, however, does not maximize the potential benefits derived 
from the high-performing models selectively. To overcome this, 
weighted averaging methods can be employed, wherein weights 
are assigned to different models based on a variety of  estimation 
techniques, such as multiple linear regression (Wanders & Wood, 
2016) and machine learning methods (Zaherpour et al., 2019), 
among others. These techniques essentially reward proficient 
models while penalizing less effective ones (Arsenault et al., 2015).

In countries heavily reliant on hydropower, like Brazil, 
hydrological forecasting plays an important role in ensuring the 
reliable supply of  electricity and meeting the ever-growing electricity 
demands. However, the sustainable operation and management 
of  these hydropower facilities depend on accurate streamflow 
forecasting, which, in turn, is influenced by the complex interactions 
of  climate and hydrological processes.

This paper addresses the critical need to enhance 
streamflow forecasting for the Brazilian electricity sector, aiming 
to provide improved tools and insights for decision-makers and 
stakeholders involved in energy production and management. The 
proposed strategy is grounded in a hyper-multimodel forecasting 
framework, which harnesses the power of  cutting-edge modeling 

techniques and climate data to bolster the accuracy and reliability 
of  streamflow predictions.

Brazil’s geographical vastness and climatic diversity pose 
a significant challenge when it comes to forecasting streamflow 
patterns. The country spans multiple climate regions, from the 
Amazon rainforest to the semi-arid Northeast, each with its unique 
hydrological characteristics and sensitivities to climate variability and 
change. Furthermore, the irregular occurrence of  extreme climate 
events, such as droughts and heavy rainfall, further complicates 
the use of  a unique modeling strategy for streamflow forecasts.

In response to these challenges, the Brazilian electrical 
sector has been working, in collaboration with academic institutions 
and research centers, to improve the accuracy of  models used for 
the prediction and generation of  streamflow scenarios. It was 
established as an activity conducted within the Technical Committee 
of  PMO/PLD (CT PMO/PLD), by the Hydrological Scenario 
Representation Working Group (GT-CH), coordinated by the 
National Operator of  Electrical System (ONS) and the Chamber 
of  Electric Energy Commercialization (CCEE). This activity aimed 
to investigate advanced streamflow scenario generation models 
for horizons of  up to one year.

Therefore, this paper, as part of  this initiative, proposes 
a novel approach that integrates various hydrological models, 
climate models, and observational data to develop a comprehensive 
forecasting system. Through this research, we aim to contribute to 
improving streamflow forecasting in complex regions such as Brazil.

METHODOLOGY
The proposal is to employ a hyper-multimodel that facilitates 

the combination of  the strengths of  different paradigms of  river 
flow modeling. This strategy is built on three families of  models, 
aiming to create synthetic flow scenarios. The three families of  
models are: seasonal forecasting climate models that are integrated 
with hydrological rainfall-runoff  models; stochastic or machine 
learning models utilizing endogenous variables, which employ 
flow data to forecast future flows; and stochastic or machine 
learning models that consider exogenous variables, leveraging 
both flow data and climate indices for forecasting flows. This 
approach strives to harmonize various modeling strategies to 
enhance the reliability and precision of  the predicted flow outputs. 
The subsequent sections offer a brief  overview of  the different 
approaches adopted for streamflow forecasting, the data applied, 
the details of  the model families utilized in this study, and the 
hyper-multi-model methodology.

Overview

Rainfall-runoff  modeling approaches used in forecasting 
streamflow generally fall into two categories: physical or process-
based models, and empirical or statistical models. Physical or 
process-based models strive to incorporate the relevant physical 
laws that control watershed responses and the generation of  
streamflow, leveraging a substantial amount of  observed data. 
Although these models are generally reliable and can offer credible 
results, they also entail a great deal of  uncertainty, stemming from 
variable input data and complex numerical techniques. On the 
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other hand, empirical or statistical models aim to replicate the 
relationships between inputs, such as precipitation, and outputs, 
such as streamflow, without delving into an understanding of  
the internal processes involved. Despite being relatively simpler 
to develop and capable of  providing reliable forecasts when 
grounded in robust data, these models face their own set of  
challenges, including identifying vital input variables and navigating 
parameterization issues.

In scenarios where only univariate time series data are 
accessible, it is necessary to rely on historical data to forecast 
streamflow. The scientific interest in utilizing historical data to generate 
statistical predictions for univariate time series, or “forecasting”, 
has been a long-standing topic in the field of  hydrology (Yevjevich, 
1987). The complexity of  these time series, coupled with our 
limited understanding of  the exact governing equations required 
in deterministic models, led to a shift towards the development 
and application of  methods rooted in probability and statistics for 
modelling and prediction of  these time series. Stochastic methods 
came into prominence as they aim at probabilistic prediction or 
estimation of  data, emphasizing statistical characteristics of  the data 
like mean, standard deviation, and variance, while also accounting 
for uncertainty in these predictions. A significant evolution in 
stochastic methods occurred in the 1970s, largely influenced by 
Box & Jenkins (1970). Models like the autoregressive (AR), moving 
average (MA), autoregressive moving average (ARMA), Markov 
chain, and point process models have seen extensive use in many 
fields, including hydrology. In order to integrate periodic patterns 
such as seasonality in rainfall and streamflow into models, several 
periodic versions of  models have been proposed, as detailed 
extensively in works by Brockwell & Davis (1991), and Salas et al. 
(1980). Notably, periodic variants of  AR (PAR), ARMA (PARMM), 
and GAR (PGAR) models have gained significant attention. 
These models have seen broad use in hydrological applications, 
as elaborated by Loucks et al. (1981).

Contrasting traditional models, the realm of  nonlinear 
models, specifically Machine Learning (ML) algorithms, often 
referred to as “black-box models”, introduces a different 
perspective in statistical modelling. They embody what is known 
as the algorithmic modelling culture (Breiman, 2001). While the 
traditional, or data modelling culture, hinges on the assumption 
that the data generation process is underpinned by an analytically 
formulated stochastic model, the algorithmic modelling culture 
operates on a fundamentally different principle. It presumes the 
underlying process to be complex and potentially unknown, not 
necessarily requiring an analytically defined model. The primary 
concern here is that the algorithmic model must be able to deliver 
high forecast accuracy, rather than necessarily understanding or 

accurately representing the future behavior of  a process. In this 
context, the principles of  understanding, modelling, and predicting 
a process’s behavior, which are crucial in the data modelling culture, 
become less important. This approach emphasizes the algorithm’s 
ability to accurately predict outcomes, regardless of  the complexity 
or understandability of  the process itself.

Data

This case study used the natural monthly streamflow series 
from 146 hydropower plants (HPPs) that were provided by ONS 
for the period of  1931 to 2021. The natural monthly streamflow 
series were transformed to incremental series.

Seasonal forecasting climate models that are 
integrated with hydrological rainfall-runoff  models

The dynamic seasonal streamflow forecast approach where 
climate and hydrological process are coupled by the forcing of  
hydrological models with numerical predictions from Atmospheric 
General Circulation Models (GCMs) (Block et al., 2009; Kwon et al., 
2012; Ávila et al., 2023; Greuell & Hutjes, 2023) differs from the 
statistical approaches and offers the benefit of  integrating climate 
prediction and its efficacy improves with advancements in our 
comprehension of  climate processes and the development of  
atmospheric modeling (Block et al., 2009).

In this work, the seasonal rainfall forecasts from the 
GCMs that compose the North American Multi-Model Ensemble 
(NMME) were considered and are detailed in Table 1. The forecasts 
are publicly available on a global scale in the NMME project 
webpage, represented on a grid with a resolution of  1° latitude 
by 1° longitude. The lead times of  these forecasts range from 0.5 
to 11.5 months, providing valuable information for medium to 
long-term climate predictions.

The NMME seasonal rainfall forecasts were biased 
corrected by a gamma quantile mapping for each month and then 
were interpolated into catchment scale by the Thiesen polygon 
Method. After this statistical treatment, the rainfall forecasts are 
used to force the Soil Moisture Accounting Procedure (SMAP) 
hydrological model to generate streamflow forecasts.

The SMAP model was previously calibrated for each 
catchment with observed streamflow and rainfall data by using the 
DREAM (DiffeRential Evolution Adaptive Metropolis) algorithm 
(Vrugt et al., 2009) to minimize the Root Mean Squared Error 
(RMSE). The hydrological model showed good skill in most of  
the basins for both the calibration and validation sets.

Table 1. Summary of  the active NMME models.
Model Institution Hindcast Period Lead time (months) Members

CanCM4i-IC3 CMC [Jan 1980, Nov 2021] 0.5-11.5 10
GEM5-NEMO CMC [Jan 1980, Nov 2021] 0.5-11.5 10
GFDL-SPEAR GFDL [Jan 1991, Nov 2021] 0.5-11.5 30

NASA-GEOSS2S NASA [Feb 1981, Sep 2017] 0.5-9.5 4
COLA-RSMAS-CCSM4 NCAR [Jan 1991, Nov 2021] 0.5-11.5 10

NCEP-CFSv2 NCEP [Jan 1982, Sep 2011] 0.5-9.5 24
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Stochastic or machine learning models utilizing 
endogenous variables

Generally, hydrological series with a duration shorter than 
a year, like monthly series, primarily exhibit periodic behavior in 
their probabilistic properties, including mean, variance, skewness, 
and autocorrelation structure. Thus, the stochastic models, 
namely the periodic auto-regressive model (PAR), the periodic 
auto-regressive model with an annual component (PAR-A), and 
the wavelet autoregressive model (WARM) were applied in this 
paper. The PAR(p) stochastic model, as referenced by Salas et al. 
(1980) can be written as:

1 1
1

1
m m

m
m

t p m pm mt m t m
tpm m m p

ZZ Z µµ µφ φ a
σ σ σ

− −− −

− −
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Let tZ  (where 1,2,t = … represent the seasonal time series with a 
period s. In this context, s is equals to 12 since we are working 
with a monthly time series. N denotes the number of  years and 
t  is a function of  the year T  (where 1, ,T N= … ) and the season m 
( 1, ,m s= … ). The term mp  represents the order of  the model, and 

m

m
pφ  is the auto-regressive coefficient of  order mp . Furthermore, mµ  

is the mean of  the period m, mσ  is the standard deviation of  the 
period m, and ta  is the time that is uncorrelated with zero mean 
and variance ( )2 m

aσ .
The initial step in fitting a PAR(p) model entails determining 

the optimal order, mp , for the auto-regressive operators associated 
with each period. The order of  the model were selected using a 
stepwise regression. To accomplish this, we employed stepwise 
regression as a method to select the order of  the model. Stepwise 
regression is a systematic method for adding or removing terms 
from a multilinear model based on their statistical significance in 
explaining the dependent variable. Once the relevant months were 
identified through this process, their corresponding coefficients 
were derived using linear regression.

The PAR(p)-A methodology (Treistman et al., 2020) proposes 
the inclusion of  a new term in the periodic autoregressive model 
PAR(p), referring to the average of  the last inflows until completing 
one year ( 1tA ). The Periodic Autoregressive Model with Annual 
Component, here denoted as PAR-A(p), and can be written as:

, , ,, , 1, 1,
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Where mψ  is the annual component coefficient, A
mµ  and A

mσ  are the 
mean and standard deviation of  the considered year, respectively.

The WARM employs an autoregressive model in conjunction 
with wavelet decomposition to simulate time series. Through 
wavelet transform, a time series ty  is decomposed by convolving 
the series with “daughter wavelets”, derived from translating the 
foundational “mother wavelet” over a time step τ  and at a scale s
. The component of  the time series signal is identified through a 
significance test of  90-95%, using white noise as the null hypothesis. 
The significant component recognized between periods 1j  and 

2j  is extracted from the original time series using the wavelet 
reconstruction function. The reconstruction of  the original time 
series over a range of  periods from 1j  and 2j  can be achieved as:

( )
( )2

1
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'

1/20 0
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 
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Where Cδ= is the reconstruction factor; jδ  and tδ  are the scale 
and time factors, respectively; ( ) 1/4

0 0ψ π −=  is the factor that 
removes the energy scale for the chosen mother wavelet function; 

( )n jR W a 
   represents the real part of  the wavelet transform; ja  is 

the scale parameter; and 1j  and 2j  are the lower and upper periods, 
respectively, encompassing the desired range of  scales. Further 
details about the wavelet transform method can be found in the 
works of  Torrence & Compo (1998) and Kwon  et  al. (2007). 
For each reconstructed component an autoregressive model was 
adjusted to simulate the time series. Then, the simulated series 
were added. Note that this is a very simple additive model with no 
interactions across the noise or the reconstructed signals.

Additionally, machine learning models including Ridge 
regression and Multilayer Perceptron applied historical data to 
enhance streamflow forecasting. Ridge regression (Hastie et al., 
2001), often known as Tikhonov, is a machine learning technique 
frequently employed for regression analysis within supervised learning 
scenarios. This method aims to reduce the effective number of  
parameters, primarily to prevent overfitting. Overfitting arises when 
a model becomes too attuned to the training data, compromising 
its performance on unfamiliar, unseen data. Ridge regression is 
often utilized in regression analysis to address challenges related 
to multicollinearity. Building upon the foundation of  ordinary 
least squares (OLS) regression, it augments the loss function with 
a penalizing element. The mathematical representation of  Ridge 
regression is as provided below:

2
²minimize Y X β λ β= − + ∨ ∨
	 (4)

Where Y  represents the target variable, while 𝑋 signifies the 
predictor variables. The coefficients are represented by β , and 
the regularization parameter, denoted by λ , determines the 
extent of  shrinkage applied to the coefficients. The Euclidean 
norm is indicated by ||𝛽||. Ridge regression aims to minimize 
the squared differences between the predicted and actual values 
( )Y X− , while simultaneously imposing a penalty on the magnitude 
of  the coefficients ( )²β∨ ∨  (Kumar et al., 2023).

The Multilayer Perceptron (MLP) is a type of  artificial 
neural network comprising several layers of  interconnected nodes, 
commonly referred to as neurons. This feed-forward neural network 
structure ensures data progresses from the input layer, through 
the hidden layers, and finally culminates at the output layer. At its 
core, each neuron within the MLP carries out a weighted sum of  
its input values, subjects that sum to an activation function, and 
then forwards the resulting output to subsequent layer neurons 
(Gardner & Dorling, 1998; Kumar et al., 2023). Situated between 
the input and output layers, the hidden layer processes data by 
forwarding it through its neurons. Unlike the input and output layers, 
the hidden layer’s processes aren’t directly accessible. The output 
of  a given neuron ‘j’ in the hidden layer can be mathematically 
represented as:

1

n
j ij i ji

y f w x b
=

 
= +  

 ∑ 	 (5)
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Where ijw  and jb  are the weights and biases associated with the 
neurons of  the hidden layer. ( ).f  denotes a non-linear activation 
function, specifically the hyperbolic tangent sigmoid transfer 
function (tansig). The use of  the hyperbolic tangent sigmoid 
transfer function, or ‘tansig’, as the activation function adds a 
non-linear twist to the proceedings. This ensures that the network 
can capture and represent intricate relationships in the data, which 
a linear function might miss.

Stochastic or machine learning models that consider 
exogenous variables

Furthermore, prominent climate indices have been utilized 
as input variables in distinct stochastic and machine learning 
models, notably PARX and Ridge-X. Detailed descriptions of  
the applied climate indices can be found in Table 2.

Hyper-multimodel

Figure  1 outlines our methodology for creating hyper-
multimodel scenarios using results from three family models. We 
start by fitting each individual model for the period of  2001 to 
2010, setting aside the period from 2011 to 2021 for evaluation. 
In multimodel modeling, relying on a single performance metric, 
such as RMSE or Nash-Sutcliffe, may not yield optimum results 
for all family models. Therefore, we allow for a non-uniform 
fitting scheme, enabling model experts to choose a performance 
metric that best suits the conceptual assumptions and specific 
attributes of  the models.

The second step involves generating scenarios for the 
various models. To create scenarios derived from both endogenous 
and exogenous stochastic models, along with machine learning 
models, we applied a multivariate normal distribution to the 
residuals. This approach was chosen to ensure spatial correlation. 
Regarding rainfall-runoff  scenarios, we assumed that spatial 
correlation was inherently preserved by the spatial characteristics 
of  the forecasted precipitation. It is important to highlight that the 
number of  scenarios in the rainfall-runoff  method is constrained 
by the number of  members in the precipitation forecasting model.

The third step consists in evaluating the performance 
of  the individual models scenarios and removing those with 
low performance. The likelihood ratio of  the forecasted 
scenarios of  each model across all HPPs was evaluated for 
one-month lead time and models whose median likelihood 
value was below zero were removed from subsequent steps 
of  the hyper-multi-model process. It was adopted a discrete 
calculation of  the likelihood:

1. 	 At each location, the naturalized flow series were categorized 
into five classes based on 20, 40, 60, and 80 percentiles 
(e.g., very dry, dry, normal, rainy and very rainy) for every 
month of  the year.

2. 	 For each month with a forecast, we calculated the likelihood 
of  each flow class occurring, according to all utilized 
models.

3. 	 During each monthly evaluation, we checked how well 
the observed flows matched predictions from different 
models.
The fourth step consists in assigning weights to the remaining 

models to generate the hyper-multimodel. The individual weight 

Table 2. Climate indices used as input variables.
Name Description

Dipolo The difference between TSA (Tropical Southern Atlantic Index) and TNA (Tropical Northern Atlantic Index)
ENSO ENSO Precipitation Index. ENSO Indices Based on Patterns of  Satellite-Derived Precipitation
AMO, unsmoothed Atlantic Multidecadal Oscillation

Long Version. Enfield, D.B., A. M. Mestas-Nunez and P.J. Trimble, 2001: The Atlantic multidecadal oscillation and it’s 
relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, Vol. 28, 2077-2080.

TNI TNI (Trans-Niño Index). Indices of  El Niño Evolution
Calculated at PSL.

BEST Bivariate ENSO Timeseries
Calculated from combining a standardized SOI and a standardized Niño3.4 SST timeseries.

QBO Quasi-Biennial Oscillation
Calculated at PSL (from the zonal average of  the 30mb zonal wind at the equator as computed from the NCEP/NCAR 
Reanalysis).

PNA Pacific North American Index: From NOAA Climate Prediction Center (CPC)
SOI Southern Oscillation Index: From NOAA Climate Prediction Center (CPC)
TSA Tropical Southern Atlantic Index

Anomaly of  the average of  the monthly SST from Eq-20S and 10E-30W. HadISST and NOAA OI 1x1 datasets are used 
to create index. Climatology is 1971-2000.

NAO North Atlantic Oscillation: From NOAA Climate Prediction Center (CPC)
PDO Pacific Decadal Oscillation

PDO is the leading PC of  monthly SST anomalies in the North Pacific Ocean.
NINO12 Extreme Eastern Tropical Pacific SST (0-10S, 90W-80W): From CPC

CPC uses the NOAA ERSST V5 anomalies.
ENSO: El Niño-Southern Oscillation; PSL: Physical Sciences Laboratory; SOI: Southern Oscillation Index; SST: Sea Surface Temperature; NCEP/NCAR: National 
Centers for Environmental Prediction/National Center for Atmospheric Research; NOAA: National Oceanic and Atmospheric Administration; PC: Principal 
Component; ERSST: Extended Reconstructed Sea Surface Temperature.
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of  each model ( mw ) is obtained by maximizing the likelihood 
through the following equation:

,1 1

T z
m m ti m

L w P
= =

   =     ∏ ∑ 	 (6)

Where Z is the number of  models, T is the quantity of  periods 
considered during the evaluation, and ,m tP  is the probability of  
the observed class in the model m for the period of  simulation 
t. Since the forecasts range from one to twelve months of  lead 
time, we maximized the mean value of  the likelihood across the 
twelve forecasting horizons for each HPP using the PSO (Particle 
Swarm Optimization) algorithm.

The final step* (in concordance to the results submitted 
to the GT-CH activity, for further details, refer to section 4) 
consists in the pooling of  mn members of  each model according 
to its weights ( 200mw × ), selected by the mn  equidistant quantiles 
in the probability distribution of  the members from each model.

The enhancement of  the hyper-multimodel scenarios 
in comparison to the individual models was assessed using the 
Normalized Continuous Ranked Probabilistic Score (NCRPS) 
metric in coherence to the evaluation framework proposed by 
Treistman et al. (2023). Four HPP were chosen for a more detailed 
analysis of  the results, they were selected due to its high energy 
production and local importance: Furnas, Itaipu, Sobradinho 
and Tucuruí.

RESULTS
Figures  2  and  3 present the boxplot of  the likelihood 

ratio of  the forecasted scenarios during the calibration period 
for the different models, with lead times ranging from one to 
twelve months. Notably, the dynamical models exhibited very 
low forecasting performance, with none meeting the established 
criteria for inclusion in the hyper-multimodel. However, the boxplot 
presented outliers with high likelihood values, suggesting that this 
forecasting approach may have a outstanding performance for at 
least one station.

Almost all stochastic and machine learning models met 
the criteria established to be included in the hyper-multimodel. 
However, the PARX and WPAR models presented low performance 
across all analyzed lead times. Additionally, both the endogenous 
and exogenous ridge regression models stood out for their high 
performance at a one-month lead time.

The low performance of  both WPAR and PARX may 
be related to the fitting mechanism used, which could not deal 
with the higher degree of  freedom imposed by the addition of  
external variables and the decomposition of  the time series. 
Furthermore, it is worth noting that calibrating all the models 
using incremental streamflow might have introduced potential 
distortions in the representation of  inherent natural periodic 
patterns, which are critical for achieving optimal performance 
with the WPAR model.

Figure 1. Hyper-multimodel methodology.



RBRH, Porto Alegre, v. 28, e45, 2023

Souza Filho et al.

7/14

Figure 2. Boxplot of  likelihood ratio of  the forecasted scenario for the SMAP model coupled with different NMME models with 
lead times of  one to twelve months.

Figure 3. Boxplot of  likelihood ratio of  the forecasted scenario for the stochastic and machine. The highlighted models were selected 
to be used in further steps of  the hyper-multimodel.



RBRH, Porto Alegre, v. 28, e45, 20238/14

Enhancing streamflow forecasting for the Brazilian electricity sector: a strategy based on a hyper-multimodel

Figure 4 illustrates the spatial correlation of  the generated 
scenarios from both the individual models and the hyper-multimodel. 
While all individual models successfully replicated the observed 
spatial correlation, the hyper-multimodel scenarios failed to do so.

Figure 5 displays the boxplot of  the autocorrelation of  
the observed values, along with the scenarios from the individual 
models and hyper-multimodel, for lead times ranging from one 
to twelve months for four HPP selected for this analysis. The 
autoregressive models closely followed the observed autocorrelation 
patterns. However, the scenarios from the other models, hyper-
multimodel included, could not reproduce this characteristic. 
These results were expected for the remaining individual models 
since the autocorrelation representation is not embedded in their 
conceptual formulation. The hyper-multimodel presented unusual 
autocorrelation results; section 4 discusses the operational reasons 

behind the observed problems in the spatial-temporal correlation 
of  the generated scenarios.

Figure 6 presents the boxplot of  the NCRPS percentage 
enhancement compared to the results of  individual models for 
the calibration period across all analyzed lead times. In general, 
the hyper-multimodel yielded superior results in the metric for all 
stations and individual models. The most significant improvement 
across all lead times was observed in comparison to the MLP 
endogenous results, where the median enhancement for the 
NCRPS was higher than 15% and the outliers were around 40%. 
The substantial improvement for the one-month lead time when 
compared to the PAR-A results was also notable. The smallest 
enhancement was observed when compared to the endogenous 
ridge model. This result was expected given that this model 
presented high likelihood ratio values in the previous analysis.

Figure 4. Spatial correlation of  the observed values (OBS) for the month of  January and the ensemble forecast for January of  2001 
of  the selected models: periodic auto-regressive model (PAR); periodic auto-regressive model with an annual component (PARA); 
multilayer perceptron (MLP); ridge regression with endogeneous variables (RIDGE) and exogeneous variables (RIDGE-X) and the 
hyper-multimodel.
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Figure 5. Boxplot of  the autocorrelation of  the observed values and for the ensemble forecasts of  2001 of  the selected models and 
hyper-multimodel for four key stations (Furnas, Itaipu, Sobradinho and Tucuruí) for the lead time ranging from one to twelve months.

Figure 6. Hyper-Multimodel Normalized Continuous Ranked Probabilistic Score (NCRPS) percentage enhancement in comparison 
to individual models for lead times from 1 to 12 months - Calibration Period (2001 to 2010).
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Figure  7 corroborates similar conclusions regarding 
the enhancement achieved through the implementation of  the 
hyper-multimodel scheme compared to the individual models. 
However, it is evident how the enhancement is not uniform across 
the different lead, with the hyper-multimodel delivering slightly 
inferior results than individual models during certain specific lead 
times. This observation is in concordance to the data presented in 
Figure 6, where it is noticeable that the metric was not improved 
for a small subset of  stations, especially for shorter lead times. 
These results can be explained by the maximization of  the mean 
likelihood value of  all lead times used.

Figures 8 and 9 show that the conclusions drawn from the 
calibration period hold true for the verification period. However, 
it is important to note an increase in the number of  HPP where 
the hyper-multimodel could not enhance the metric during this 
period. The results for Sobradinho (Figure  9) also highlight 
this aspect, showing that performance did not enhance for the 
endogenous and exogenous ridge models for lead times higher 
than two months.

DISCUSSIONS
This section provides further discussions regarding some 

methodological decisions made along the conceptualization of  

the hyper-multimodel, its possible impacts, and alternatives. To 
propose a new and relatively complex methodology involving 
several models is an ambitious endeavor, and implementing this 
new methodology within a time-limited such as the one involved 
in the GT-CH is an extremely challenging process. After the 
submission of  the results and evaluation by the GT-CH, it was 
noticed some operational/methodological issues that required 
some clarifications. However, an agreement was made among the 
involved institutions stipulating that no further results would be 
submitted if  they entailed significant changes to the initial results 
and methods, to maintain fair competition. Therefore, although we 
understood that further improvements are necessary, the results 
presented in this paper are the same as presented for the GT-CH.

A note about the results submitted to the GT-CH

The hyper-multimodel results presented problems in 
its spatial-temporal correlation due to operational divergences 
that were overlooked and that may also have affected the final 
performance. The first and major problem originated from a 
sorting step to calculate the likelihood of  the five used classes; 
this mechanism was also used to pool the resulting weighted 
members from different models. Consequently, the predicted 

Figure 7. Normalized Continuous Ranked Probabilistic Score (NCRPS) percentage enhancement of  the Hyper-Multimodel in 
comparison to individual models for lead times from 1 to 12 months for the 4 key stations - Calibration Period (2001 to 2010).
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Figure 8. Hyper-Multimodel Normalized Continuous Ranked Probabilistic Score (NCRPS) percentage enhancement in comparison 
to individual models for lead times from 1 to 12 months - Verification Period (2011 to 2021).

Figure 9. Normalized Continuous Ranked Probabilistic Score (NCRPS) percentage enhancement of  the Hyper-Multimodel in 
comparison to individual models for lead times from 1 to 12 months for the 4 key stations - Verification Period (2011 to 2021).
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members were mostly always from the same classes, leading to an 
artificial elevation of  the scenarios’ autocorrelation. The second 
problem was the use of  the scenarios from individual models to 
generate the hyper-multimodel scenarios directly, as outlined in 
section 2.6. The pooling mechanism used failed to guarantee spatial 
correlation, as it pools a different number of  scenarios from the 
selected models for each station. The appropriate procedure would 
involve fitting the weighted individual model (hyper-multimodel) 
and correlating the errors to preserve spatial coherence while 
avoiding combining the errors factors derived from different 
individual models (included for the scenario generation). This latter 
aspect may also have affected the hyper-multimodel performance, 
however, this affirmation requires testing and proofing.

Unfortunately, these divergences could not be identified 
during the assessment of  the overall median performance of  
the scenarios generated and its overall dispersion, but only when 
evaluating the scenarios individually. The resolution of  the stated 
problems required the re-run of  all individual models and the fitting 
and scenario generation of  the hyper-multimodel and could not 
be done within the time available in the GT-CH activity due to 
the large number of  models involved and the extensive processing 
time required. Moreover, undertaking these steps could introduce 
substantial alterations to the initially submitted result.

Further methodological discussions

The decision of  selecting models based on their median 
likelihood performance in all HPPs can result in the removal of  
models that perform exceptionally well in specific regions. To 
maximize the performance of  the hyper-multi-model, it might be 
more beneficial to undertake this step individually for each station.

The use of  multiple models to generate weighted or 
ensemble scenarios may present problems in the reproduction of  
the autocorrelation due to the resulting high degree of  freedom 
involved and the use of  families of  models that do not intend to 
reproduce this characteristic directly. This particularity could not 
be analyzed in this study due to the mentioned problems and is 
a scientific question that requires further studies.

The development of  a more operational version of  this 
proposed methodology still faces some scientific challenges, to 
ensure, for instance, the autocorrelation characteristic of  the 
scenarios. This characteristic is desirable to keep the coherency 
of  the scenarios, and it may not be met when using models that 
do not have this characteristic embedded in its conceptualization. 
Also, the compatibility of  different methodologies requires further 
steps and cautions. As shown by the WPAR results, the decision 
of  the data used to fit the model needs to fit the conceptualization 
of  the model.

CONCLUSIONS
In this research, we undertook the critical task of  enhancing 

streamflow forecasting within the Brazilian electricity sector with 
the objective to aid decision-makers and stakeholders involved in 
energy production and management. To achieve this, the paper 
proposed a complex hyper-multimodel forecasting approach, built 

upon multiple state-of-the-art modeling techniques and detailed 
climate data analysis, to predict streamflow.

Our analyses revealed discernible performance disparities 
among the diverse models applied, especially regarding dynamical 
models, which mostly fell short of  the criteria to be integrated 
into the hyper-multimodel. The results obtained showed that the 
proposed methodology could successfully increase the overall 
performance of  the scenarios generated through the use of  the 
individual models. However, it is essential to underscore the non-
uniform enhancement across different lead times; specific periods 
experienced decreased performance compared to individual models, 
a phenomenon significantly influenced by the optimization of  
mean likelihood value across all employed lead times.

The quality of  the final scenarios generated is directly 
connected to the performance of  the individual models. In this 
study, the individual models have a wide margin of  improvement, 
as they were mostly fitted automatically and not fully refined on 
an individual basis. This aspect was expected due to the challenge 
that the hyper-multimodel proposes to embrace, undertaking 
different model families, large number of  locations and forecast 
timeframe. Different steps in a short period were needed, such 
as organizing the data, run the different models, developing 
uniform methodologies to integrate these results, organizing, 
and evaluating the large number of  results generated to finally 
develop the hyper-multimodel. Therefore, there is potential to 
further enhance the performance of  the final scenarios with the 
use of  more refined and calibrated individual models, such as the 
ones that produced good scenarios in this activity, as shown by 
Treistman et al. (2023). Another aspect that may improve the final 
scenarios is the removal of  the models individually for each HPP, 
to allow the use of  models with high region-specific performance.

Despite the short time available, participating in an activity 
such as the GT-CH was engaging and boosted the technological 
development of  the hyper-multimodel. The integration with 
different research groups and the interaction with the ONS and 
CCEE personnel improved the discussions and results analysis. 
Furthermore, the hyper-multimodel framework showed potential 
to improve hydrological forecast for the Brazilian electricity sector, 
especially when using well calibrated individual models.
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