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ABSTRACT

Chimera states in spatiotemporal dynamical systems have been investigated in physical, chemical, and biological systems, while how the
system is steering toward different final destinies upon spatially localized perturbation is still unknown. Through a systematic numerical
analysis of the evolution of the spatiotemporal patterns of multi-chimera states, we uncover a critical behavior of the system in transient time
toward either chimera or synchronization as the final stable state. We measure the critical values and the transient time of chimeras with
different numbers of clusters. Then, based on an adequate verification, we fit and analyze the distribution of the transient time, which obeys
power-law variation process with the increase in perturbation strengths. Moreover, the comparison between different clusters exhibits an
interesting phenomenon, thus we find that the critical value of odd and even clusters will alternatively converge into a certain value from two
sides, respectively, implying that this critical behavior can be modeled and enabling the articulation of a phenomenological model.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0152858

Considering the generality of chimera, an issue of both theoreti-
cal and experimental interest is the generation of stable chimera
states through a transient time responding to perturbation. Here,
we uncover general critical behavior and transition from chimera
to synchronization that occurs in the transient processes of cou-
pled oscillators under perturbation. It was also found that the
critical value of odd- and even-cluster systems alternatively con-
verge into a certain value, implying that this critical behavior can
be modeled and enabling the articulation of a phenomenological
model. Our work provides a clear physical and dynamical picture
on how the criticality in the transient behavior of either chimera
or synchronization takes place.

I. INTRODUCTION

An chimera state is a spatiotemporal pattern, in which a
system of identical oscillators is split into coexisting regions of
coherent and incoherent oscillation. It was found by Kuramoto in
2002,1 and named by Abrams and Strogatz.2,3 In real-word sys-
tems, this phenomenon might play a role in the hemispherical

sleep of Marine mammals or birds,4,5 in neural spikes,6,7 in power
grids,8 in social systems,9 or possibly in ventricular fibrillations10

and epileptic seizures.11 Therefore, it is of high significance to
study chimera states. At first, a great deal of research was focused
on chimera states in regular networks of phase-coupled oscillators

Chaos 33, 073131 (2023); doi: 10.1063/5.0152858 33, 073131-1

© Author(s) 2023

 15 N
ovem

ber 2023 13:01:33

https://pubs.aip.org/aip/cha
https://doi.org/10.1063/5.0152858
https://doi.org/10.1063/5.0152858
https://pubs.aip.org/aip/cha/action/showCitFormats?type=show&doi=10.1063/5.0152858
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0152858&domain=pdf&date_stamp=2023-07-17
https://orcid.org/0009-0006-1713-244X
https://orcid.org/0009-0005-7004-9314
https://orcid.org/0009-0009-9027-5377
https://orcid.org/0000-0003-1788-3607
https://orcid.org/0000-0002-9551-202X
https://orcid.org/0000-0002-5926-4276
mailto:Suchunwang@xjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0152858


Chaos ARTICLE pubs.aip.org/aip/cha

with one-dimensional chain or ring topology,1,2,12 and networks
with limit populations.13,14 Subsequent research found that this
peculiar phenomenon can be found on two-dimensional planes,3,15

three-dimensional lattices,16 torus,17,18 and systems with a spheri-
cal topology.19 With the in-depth research, many issues like effects
of transient behaviors,20–22 time delay,23–25 phase lags,26 criteria for
state optimization,27 coupling functions,28–32 and the impacts of spe-
cific driven forces,33 random perturbation and complex topology of
coupling34–38 have been solved, e.g., the emergence of chimera states
in modular networks,39 the association between synchronization
dynamics and eigenvectors of coupling matrix,40 and the optimal
control strategies based on susceptible direction identification.41

Thus, the survival conditions of chimera states have been con-
tinuously expanded. Then, it was discovered that the emergence
of chimera states is not limited to the Kuramoto phase oscil-
lators, but can also be observed in the Landau–Stuart and the
Ginzburg–Landau systems,25,42–49 chaotic maps,50 quantum oscil-
lator systems,51,52 time-continuous Rössler,53,54 Lorenz,55 and neu-
ral networks such as Hodgkin–Huxley, FitzHugh–Nagumo, and
Integrate-and-Fire oscillators.56–59 Besides widely numerical and the-
oretical studies, experimental evidence of chimera states has been
presented in optical,60,61 chemical,62–64 mechanical,65 electronic,66,67

and electrochemical68 setups.
An interesting finding is that chimera states can be consid-

ered long living transients toward the in-phase synchronization. It
was experimentally confirmed that the lifetime of a chimera grows
exponentially with the system size.21 Since the size of the systems in
nature is limited, various spatial characteristics of chimera states can
be observed, such as Traveling chimera,69,70 Breathing chimera,71,72

Spiral wave chimera,73,74 and Imperfect traveling chimera.75 Next
to the classical chimera state, which exhibits one coherent phase-
locked and one incoherent region, there exists a new class of dynam-
ics that possesses multiple domains of incoherence. In this regard,
two clusters can be observed in coupled oscillator systems, using
symmetric Gaussian initial phase.26 Stable 4-cluster chimera states
are obtained by adding an external force to the coupling system
or introducing time-delay.24,76 Different phase lags α in the general
non-locally coupled system,30 for the special form of the nonlo-
cally coupling function G(x − x′),29,69 can also induced a variety of
phase clustering. Moreover, these multi-chimera states can arise in a
transition from classical chimera states, depending on the coupling
strength and range.28

Chimera states in spatiotemporal dynamical systems have been
investigated in physical, chemical, and biological systems, and have
been shown to be robust against random perturbations. The robust-
ness of chimera states have been discussed by studying the effects of
random removal of links between oscillators.35 Iryna Omelchenko’s
research demonstrated that chimera states exhibit strong robustness
in the presence of perturbations in coupling topologies. The prop-
erties of chimera states as the level of inhomogeneity increases were
also analyzed.77 Malchow demonstrated that chimera patterns per-
sist for inhomogeneous parameters.78 Recently, basin stability on
chimera states and how to quantify their stability after even large
perturbations have been investigated.79 Furthermore, it has been dis-
covered that chimera states exhibit a self-adaptive behavior in the
presence of spatially localized perturbations. The coherent centers
of the chimera spontaneously drift toward an optimal location as

far away from the perturbation as possible, aiming to minimize the
impact of the perturbation.80

Actually, most of the previous researches predominantly
focused on examining the properties, formation conditions, and pat-
terns of chimera states. In this paper, we focus on the process of how
does the system respond to perturbations before entering the new
stable state. We will discuss for different final regimes of the sys-
tem, how long does it take to enter a new stable state (chimera or
synchronization).

The rest of the paper is organized as follows: In Sec. II, we intro-
duce the model equations, the order parameter, and the perturbation
method that we use. In Sec. III, after a brief review of results and new
aspects on the chimera states, we do experiments on multi-cluster
chimeras and analyze the critical behavior of a coupled oscillator
system in transient time toward chimera and synchronization. In
particular, we explore how does the system respond to perturbations
before entering the new stable state on the basis of spatiotempo-
ral patterns, transient time, and analyze the critical perturbation
strength on the basis of the order parameter, plots of the transient
time, and bifurcation diagrams. Then, we fit the changing trend to
get further descriptions. In Sec. IV, we predict the unknown criti-
cal values of larger clusters and describe an interesting phenomenon
based on the comparison plots and a convergence phenomenon.
Finally, we summarize our study in Sec. V.

II. THE MODEL

In this article, we consider a one-dimensional network of non-
locally coupled, identical phase oscillators with periodic boundary
condition (a ring configuration). The system is mathematically
described as

dφ (xi)

dt
= ω −

2π

N

N
∑

j=1

G
(

xi − xj

)

sin
[

φ (xi) − φ
(

xj

)

+ α
]

, (1)

where φ(xi) is the phase of the ith oscillator at the spatial loca-
tion xi and N denotes the size of the oscillator system. The angular
velocity ω and phase lag α of the oscillators are constants in space.
Without loss of generality, we set ω = 0 and α = π/2 − 0.18, which
are slightly less than π/2. To induce multi-chimera states, we con-
sider the widely used kernel function, with an extra parameter
“n” for n-cluster chimera: G(xi − xj) = [1 + A cos n

(

xi − xj

)

]/2π ,
which is a non-negative even function that characterizes the non-
local coupling among the oscillators. In this function, A is set to
A = 0.995, which was chosen based on early references, to ensure
the occurrence of chimera states and prevent the kernel function
from becoming 0 for any (xi − xj) value. As the value of A decreases,
the existence domain of the 2-cluster chimera becomes smaller, and
when A < 0.8, this domain no longer exists.2,12,26 The initial condi-
tion is generated using the function f(x) = 6r · exp(−0.76x2), where
r is a random variable uniformly distributed in [−1/2, 1/2].

The complex order parameter Z(xi) defined for oscillator i can
be used to characterize the dynamics of the system,1

Z(xi) ≡ R (xi) ei2(xi) =
2π

N

N
∑

j=1

G
(

xi − xj

)

eiθ(xj). (2)

Chaos 33, 073131 (2023); doi: 10.1063/5.0152858 33, 073131-2

© Author(s) 2023

 15 N
ovem

ber 2023 13:01:33

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

The global order parameter R, which varies with time and
space, is a macroscopic quantity that can be interpreted as the collec-
tive rhythm produced by the whole population. The value of R repre-
sents the level of synchronization of the system, with 0 6 R(t) 6 1.
A higher value of R indicates that the oscillators in the system are
more synchronized, and R = 1 corresponds to a global synchro-
nization state (phase locking). While the lower values indicate more
disorder, and when R = 0, the oscillators run incoherently. Looking
closer at the phase dynamics, the observed behavior of 0 < R < 1
is the consequence of complex spatiotemporal patterns, in which in-
phase synchronous domains coexist with asynchronous ones. In this
case, the coherent centers are identified by calculating the local order
parameters R(xi). The oscillator with local maximum value of R(xi)

is considered the coherent centers, and in a n-cluster chimera, we
would find n coherent centers.

Since the oscillator network has periodic boundary conditions,
choosing different coherent centers will yield similar experimental
results. Therefore, in Secs. III A–III C, we randomly select one of
the coherent centers (mc) as a representative for subsequent per-
turbation experiments and analysis. To assess how perturbations
affect the chimera states, we apply a phase perturbation to four tar-
get oscillators (m1, m2, m3, m4) beside that coherent center mc that
m1 = mc − 1, m2 = mc, m3 = mc + 1, m4 = mc + 2, where m rep-
resents the index of the oscillators, ranging from 1 to N. The nature
of the perturbation is to force upon the oscillator a constant phase
difference 1φ with respect to the local mean phase φ̄local of its neigh-
bors, with an equal number of neighbors on the left and right sides.
Namely, φ (xm, t) = φ̄local(xm) + 1φ for those perturbation points.
The evolution and relaxation process of chimera states under phase
perturbations can be analyzed by observing spatiotemporal patterns,
phase plots, and snapshots, and by measuring the phase velocities,
the relaxation, and the transient time, etc.

III. RESULTS

In this paper, numerical simulations are conducted in a one-
dimensional network of N = 240 non-locally coupled identical
phase oscillators with periodic boundary condition. Through setting
n = 1, 2, 3, 4, 5 in the coupling function G(xi − xj), one can generate
chimera states consisting of n clusters. We apply phase perturbations
to four oscillators located at the center of the system, where the ini-
tial condition is set to be a coherent center of the chimera. Figure 1
shows the spatiotemporal patterns of 1, 2, 3, 4, 5-cluster chimera, in
response to perturbations at four target oscillators with increasing
strength 1φ.

A. Two different destinies of the system under

perturbation

According to the spatiotemporal pattern of oscillators, it can
be found that after a period of transient time, the system evolves
from the initial condition to a certain stable state. The final stable
state would either be chimera or synchronization, depending on the
strength of the perturbation 1φ (see Fig. 1).

For the case with small perturbation strength 1φ (as is shown
in the left-hand side panels in Fig. 1), the system will enter the
chimera state after a self-adaption transient process, in which the

global order parameter of the n-cluster chimera and the boundary
between incoherent and coherent regions gradually evolved to its
stability.

However, for the case with large enough perturbation strength
1φ (as is shown in the right-hand side panels in Fig. 1), the chimera
state will collapse and the in-phase synchronized oscillatory state
takes over. We conjecture that this phenomenon occurs for the rea-
son that the basin of chimera is typically relatively small, with respect
to that of the synchronization. Strong perturbations on oscillators
destabilize these multi-cluster chimera states, and thus promote
global synchronization.

B. The critical value of the perturbation strength

As mentioned above, stronger perturbations lead to a phase
transition from chimera to synchronization. But how to describe the
influence of perturbations 1φ is worth to be further studied.

First, the transient time (T) is defined as the duration from
the moment of perturbation to the occurrence of a stable chimera
or synchronization states. By observing the spatiotemporal pattern
and the variation of R, we have found that when the chimera state
is reached, R will fluctuate regularly around a certain value as a
breathing chimera with a stable rhythm. Therefore, the transient
time T of a chimeras is from the initial moment to the moment that
R starts to behave as a breathing chimera. However, if the global
order parameter R cannot exhibit regular fluctuations and instead
gradually converges to R = 1, it indicates that the system enters a
fully synchronized state instead of a chimera. Hence, from the initial
moment to R approaches 1 is the transient time before reaching the
fully synchronized state.

We sweep the perturbation strength from 0 to π with a step
size of 0.01π and apply the perturbation to the target oscillator in
the chimera state. Then, we observe the spatiotemporal patterns
of the system’s evolution at each perturbation strength. From the
spatiotemporal patterns, we can clearly see the state in which the
system maintains after a certain period of evolution. As the per-
turbation strength increases, the time for the system to recover the
chimera state gradually lengthens and extends to infinity, until it
exceeds a certain perturbation threshold 1φc. Beyond this thresh-
old, the system cannot recover the chimera state and transitions
to a fully synchronized state. This pertubation threshold can be
considered the critical value 1φc between these two possible final
states. When the perturbation strength is less than 1φc, the system
can resist the perturbation through self-adaptations; however, when
the perturbation strength is greater than 1φc, chimera collapses
and is replaced by synchronization, instead of making adaptive
adjustments.

For each cluster’s chimera, we calculated the critical values
of perturbation strength under ten different initials, denoted as
(1φcn1 , . . . , 1φcn10 , where n represents the cluster number, and 1–10
correspond to the ten initial groups). The critical value of that clus-
ter’s chimera is the average of these ten initial groups: 1φcn =

avg(1φcn1 , . . . , 1φcn10). Since the results were obtained from mul-
tiple experiments with ten sets of initial values, and the transient
time curves exhibit consistent trends for different initial values,
averaging all the trials provides a more accurate estimation of
the critical value for that specific cluster’s chimera. In addition,
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FIG. 1. Spatiotemporal patterns in response to each perturbation strength 1φ for system (1) are labeled above. The coherent and incoherent regions are represented
by the yellow and blue colors, respectively. The cluster numbers of (a–e) are n = 1–5. The system is of size N = 240, and each perturbation is applied to four oscillators
beside one of the coherent centers of that system. (a) For chimera with cluster number n = 1, the coherent center is mc = 127, and the target oscillators are m1 = 126,
m2 = 127,m3 = 128,m4 = 129. (b) For 2-cluster chimera, the coherent centers are mc1 = 52 and mc2 = 172. Then, mc1 = 52 was chosen randomly, and perturbations
are applied upon oscillators m1 = 51, m2 = 52, m3 = 53, and m4 = 54. (c) For 3-cluster chimera, the selected coherent center is mc1 = 24, and the targets are m1 = 23,
m2 = 24, m3 = 25, and m4 = 26. (d) For 4-cluster chimera, the selected coherent center is mc1 = 24, and the targets are m1 = 49, m2 = 50, m3 = 51, and m4 = 52. (e)
For 5-cluster chimera, the selected coherent center is mc2 = 40, and the targets are m1 = 39, m2 = 40, m3 = 41, and m4 = 42, respectively.

we have also conducted a comparative analysis of critical values,
procedures of phase transitions, and the transient time among
different cluster structures. These difference well describe anti-
interference capabilities and robustness of different chimera struc-
tures. We conjecture that the larger the perturbation critical value
1φc is, the stronger anti-interference ability of the structure would
have.

The critical values of 1, 2, 3, 4, 5-cluster chimera averaged
over ten different initial states are 1φc1 = 0.133π , 1φc2 = 0.586π ,
1φc3 = 0.355π , 1φc4 = 0.564π , and 1φc5 = 0.449π . Apparently,
the order of them is 1φc1 < 1φc3 < 1φc5 < 1φc4 < 1φc2, and one
can also imagine that 1φc(2n) = 1φc(2n−1) as n → ∞. Based on this
measurement, we conjecture that the anti-interference capability of
odd-numbered clusters is weaker than that of even-numbered clus-
ters. Specifically, the stability of 2-cluster chimera is much stronger
than others, while 1-cluster chimera is most unstable.

C. Criticality observed from transient time

The transient time (T) that denotes the duration for the sys-
tem to achieve a stable state of either chimera or synchronization
is plotted in Fig. 2 as a function of perturbation strength 1φ. The
variation trend of T on both sides of the critical value 1φc behaves
generally the same for the chimera with different numbers of clus-
ters. Figure 2 shows the results from the systems with ten different
initial states, and the qualitative tendency for the transient time T
is basically the same. To eliminating the influence of initials and
make the changing characteristic clearer, we subtract the critical val-
ues 1φcn from the X axis of the transient time curve and perform a
translation. In this way, curves were centralized, and X axis describes
the distance between the perturbation strength and the critical value

(X = 1φ − 1φc) as shown in Fig. 3, and X = 0 corresponds to the
critical point.
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FIG. 2. The transient time under perturbations. The solid lines describe transient times toward chimera, while the dotted lines describe those toward synchronization. The
parameter n represents the cluster number of chimera states: (a) transient time of the 1-cluster chimera in response to perturbations, (b) transient time of the 2-cluster
chimera, (c) transient time of the 3-cluster chimera, (d) transient time of the 4-cluster chimera, and (e) transient time of the 5-cluster chimera. Each figure has ten pairs of
lines, representing the averaged measurement from different initial groups.

Specifically speaking, when the perturbation strength
approaches the critical value on the left, the transient time toward
chimera increases rapidly according to a power law. However, when
the perturbation strength is larger than the critical value and keeps
increasing, the transient time of synchronization decays rapidly in
the form of another power-law distribution. Moreover, the tran-
sient time approaches infinity around the critical point. In order
to find the power-law distribution that the transient time toward

two states obeys, we average the original data and present it in a
log–log plot. We use least squares fitting to estimate the param-
eters in the power-law relationship on the logarithmic scale, i.e.,
log(T̄) = −αlog(X) + log(C) (see Fig. 4) or T̄ ∼ C(1φ − 1φc)

−α ,
and the fitting error R2 can be adopted to judge the goodness of
the fitting (shown in Tables I and II). One can see that the mag-
nitude of their exponents is in the same order of the critical value:
α1 < α3 < α5 < α4 < α2. Moreover, the order of T̄’s variation range
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FIG. 3. Averaged transient time, corresponding to the distance between perturbation strength and the critical value (X = 1φ − 1φc), which is zero-centered. The solid
lines describe the transient time toward chimera, while the dotted lines describe the transient time toward synchronization. The parameter n in figures represents the cluster
number of the chimera system: (a) transient time of the 1-cluster chimera in response to perturbations, (b) transient time of the 2-cluster chimera, (c) transient time of the
3-cluster chimera, (d) Transient time of the 4-cluster chimera, and (e) transient time of the 5-cluster chimera. Each figure has ten pairs of lines, representing the averaged
measurement from different initial groups.

is also the same: 1T̄1 < 1T̄3 < 1T̄5 < 1T̄4 < 1T̄2. It means that
the larger the critical value, the larger the variation range of the
transient time, and the higher the stability and robustness of the
system.

Meanwhile, the transient time before entering the synchroniza-
tion can also be well fitted by a power-law distribution, but more
interestingly, for each cluster case, when the perturbation strength

increases, the transient time decreases in a power law with similar
power exponents, which are all approximately equal to 0.27. How-
ever, values of the fitted intercepts have the same order as the critical
values, which is C1 < C3 < C5 < C4 < C2. This phenomenon well
indicates that if the system has stronger anti-disturbance ability, the
transient time toward synchronization will have a larger range and
the convergence value consequently. Based on this finding, we can
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FIG. 4. Transient time in logarithmic coordinates. (a) The transient time toward
chimera in logarithmic coordinates, where points are measured values and the
solid lines are fitted models. (b)The transient time toward synchronization in log-
arithmic coordinates, where points are measured values and the solid lines are
fitted models. The red dotted line is the predicted distribution in n-cluster chimera
(n → ∞).

TABLE I. Parameters and fitted distributions of the transient time toward chimera for

the n-cluster cases.

n Slope Fitted distribution R2

1 −0.175 y ==39.646x−0.175 0.994
3 −0.211 y ==33.852x−0.211 0.988
5 −0.212 y ==35.588x−0.212 0.925
4 −0.336 y ==22.488x−0.336 0.979
2 −0.373 y ==21.780x−0.373 0.977

TABLE II. Parameters and fitted distributions of transient time toward synchronization

for the n-cluster cases.

n Slope Fitted distribution R2

1 −0.268 y = 12.770x−0.268 0.963
3 −0.274 y = 18.825x−0.274 0.963
5 −0.272 y = 20.180x−0.272 0.928
4 −0.268 y = 22.189x−0.268 0.928
2 −0.270 y = 25.392x−0.270 0.974

predict the distribution of the transient time toward synchroniza-
tion for an n-cluster chimera with n → ∞, which is represented by
the red dashed line in Fig. 4(b).

IV. THEORETICAL ANALYSIS OF THE CRITICAL VALUE

A. Comparison and assumption

After centered the perturbation strength and averaged the tran-
sient time of ten initial groups, we can compare the critical value of
n-cluster chimera (n = 1, 2, 3, 4, 5) in the same coordinate system as
shown in Fig. 5.

According to the above results and figures, we found an
interesting phenomenon, that is, as the number of clusters
increases, the difference between critical values becomes smaller
and smaller, which reminds us of the Feigenbaum constant
[δ = limn→∞(an−1 − an−2)/(an − an−1) · · · ] in the period-doubling
bifurcation, which expresses the limit of the ratio of distances
between consecutive bifurcation diagram.81 Therefore, we suppose
that as the cluster number approaches infinity, the critical values
of odd and even clusters will converge into the same value from

FIG. 5. Comparison of the critical values and the changing trend of the transient
time toward chimera and synchronization. In this way, the order of critical values
is represented clearly: 1φc1 < 1φc3 < 1φc5 < 1φc4 < 1φc2. Moreover, the
red dotted line is a prediction of n-cluster chimera’s critical value with n → ∞,
denoted by 18, which is obtained based on the convergence phenomenon.
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two sides in two proportional sequences. A crude estimation of
the common ratio of critical values of odd clusters is q1, which
can be calculated by q1 = a2/a1 = (1φc5 − 1φc3)/(1φc3 − 1φc1).
Then, based on the summation formula of the proportional series:
S1 = a1(1 − qn

1)/(1 − q1), as n → +∞, we can predict the critical
value of the n-cluster chimera by 18 = 1φc1 + a1/(1 − q1). After
that, the common ratio of even clusters q2 can be obtained from
S2 = 1φc2 − 18 = b1/(1 − q2), that is, q2 = 1 − b1/(1φc2 − 18).

First, using critical values from our experiments, we have a1

= 1φc3 − 1φc1 = 0.222π , a2 = 1φc5 − 1φc3 = 0.094π , b1 = 1φc2

− 1φc4 = 0.022π , and q1 =
a2
a1

= 0.4234 consequently. Thus, the

predicted critical value of the n-cluster chimera with n → ∞ is

18 ≡ lim
i→∞

1φc(2i+1) = lim
i→∞

1φc(2i)

= 1φc1 + a1

1

1 − q1

= 0.518π .

S2 = 1φc2 − 18 = 0.068π and q2 = 1 − 0.022π/S2 = 0.6763 are
obtained. Moreover, based on the relationship S1 + S2 = a1/(1 − q1)

+ b1/(1 − q2) = (1φc2 − 1φc1), we can derive a relation equation
between q1 and q2, that is, 0.222/(1 − q1) + 0.022/(1 − q2) = 0.453.
As the assumption stated above, this convergence process is demon-
strated in Fig. 6.

B. Deviation analysis

From the assumption above, we can predict the critical value
of the n-cluster chimera, using 1φc1, 1φc2, 1φc3, 1φc4, 1φc5 that we
obtained in experiments. However, there exists a standard devia-
tion for each calculated critical values σc1 = 0.0327, σc2 = 0.0126,
σc3 = 0.0135, σc4 = 0.0117, σc5 = 0.0574. Therefore, the predicted
18 has a standard deviation σc either, which can be calculated
by using the error transfer formula of mathematical statistics. The
procedures are as follows:

We already know that 18 = 1φc1 + a1
1

1−q1
. Thus, based on

the error transfer formula, we have

σ 2
c = σ 2

c1 + σ 2
a1

1−q1

,

σ 2
a1

= σ 2
c1 + σ 2

c3; σ 2
a2

= σ 2
c5 + σ 2

c3,

σ 2
a1−a2

= σ 2
a1

+ σ 2
a2

,

σ 2
1−q1

= σ 2
a1−a2

a1

=

(

σa1−a2

a1 − a2

)2

+

(

σa1

a1

)2

,

σ 2
a1

1−q1

=

(

σa1

a1

)2

+

(

σ1−q1

1 − q1

)2

,

σ 2
c = σ 2

c1 +

[

1

a2
1

+
1

(1 − q1)
2

(

1

(a1 − a2)
2

+
1

a2
1

)]

(σ 2
c1 + σ 2

c3)

+
1

(1 − q1)
2(a1 − a2)

2
(σ 2

c5 + σ 2
c3) = 0.9718.

The standard deviation of n-cluster’s critical value with n → ∞, i.e.,
the standard deviation of 18 is σc = 0.9858.

FIG. 6. The convergence process. (a) The X axis is the number of clusters, while
the Y axis corresponds to the critical value. As the cluster number approaches
infinity, the critical value of odd and even clusters will converge into a certain value
from two sides in two proportional sequences. (b) is a schematic illustration of the
convergence process. 1φci is the critical value of the i-cluster chimera, ak is the
difference between the critical value of the (2k + 1) and (2k − 1)-cluster, and bj
is the difference between the critical value of the 2j and (2j + 2)-cluster(i, k, j =
1, 2, 3, · · ·). q1 and q2 are common ratios of proportional sequences of odd
and even clusters, respectively. The convergence direction is represented by red
arrows.

C. Extension

To confirm the universality of the critical behavior of the tran-
sient time and the transion of the final stable state from chimera
to sycronization, we conducted more simulation for the system of
larger sizes. It was observed that with an increasing 1φ, the tran-
sition behavior from a 1-cluster chimera or a 2-cluster chimera
to synchronization was also quantitatively identical in larger-sized
systems. Figure 7 illustrates the results of a system with N = 480.
Furthermore, on both sides of the critical point 1φc, which corre-
sponds to the transition from the initial state to either the chimera
state or the synchronized state, the transient behavior exhibits scal-
ing characteristics. When the network size becomes larger, we find
that an equivalent perturbation cannot be achieved by propor-
tionally increasing the number of perturbed oscillators. The study
of the number of perturbed oscillators is a topic that deserves
further investigation in the future. In this paper, we only dis-
cuss the impact of increasing perturbation strength on transient
behavior.

We have also attempted a scenario closer to the real Kuramoto
model, in which the self-frequencies ωi of each oscillator were not
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FIG. 7. Transient time for the systemwithN = 480. (a) Transition from chimera to
synchronization as1φ increases through the critical value marked by the dashed
line, for the system with the number of clusters to be 1 (blue curves) and 2 (green
curves), respectively. (b) The transient time toward chimera in logarithmic coordi-
nates, where points are measured values and the solid lines are the linear fittings.
The fitted slopes are −0.2685 (blue line) and −0.2134 (green line). (c) The tran-
sient time toward synchronization in logarithmic coordinates, where points are
measured values and the solid lines are the linear fittings. The fitted slopes are
−0.2570 (blue line) and −0.1990 (green line).

constant but randomly selected from a Gaussian distribution with
different standard deviations. The formation conditions for the
chimera state are quite stringent, as the chimera state can only be
formed when the ωi values are completely identical (homogeneous).
As the standard deviation σ of the Gaussian distribution N(0, σ 2)

used for sampling the ωi values increases, it indicates a higher degree
of heterogeneity, and the disorderliness of the system also gradu-
ally increases. From the spatiotemporal pattern in Fig. 8, we may
find that when the standard deviation of the Gaussian distribution
(representing the heterogeneity of ωi values) is non-zero, the system
cannot form a stable chimera state. Moreover, as σ becomes larger,
the system enters a disordered state. Therefore, due to the strict
conditions for the existence of chimera, the transient time behav-
ior of chimera and the transition from chimera to synchronization
observed in simulations of identical oscillator systems would be dif-
ficult to observe in real Kuramoto systems, where the oscillators
have non-identical ωi values.

V. CONCLUSION AND DISCUSSION

In summary, we have numerically solved the coupled
phase oscillator system of multi-chimera states (1, 2, 3, 4, 5-cluster
chimera) upon phase perturbations, in order to investigate the crit-
ical behavior of the coupled oscillator system in the transient time
toward chimera and synchronization.

First, we have introduced the definition of the transient time,
experimental procedures, and measurement methods that we use.
Next, based on our results, we have discussed how does the sys-
tem respond to perturbations before entering the stable state and
found that there is a critical value between chimera and synchro-
nization that the system will get into. Once the perturbation strength
is greater than the critical value, chimera will be taken over by syn-
chronization. After fitting the changing trend of the transient time
based on a log–log verification and the linear regression model, we
have found that with the increase in the disturbance strength, the
transient time obeys an increasing power-law distribution on the
left-hand side of the critical value, and a decreasing power-law dis-
tribution on the right-hand side. In addition, we have shown that the
parameters in the fitted model are associated with the critical value
of this chimera.

Particularly, based on the comparison plots and the interest-
ing phenomenon that the critical value of odd and even clusters will
converge into a certain value from two sides in two proportional
sequences, we have calculated the common ratio, made a prediction
for the critical value of n-cluster chimera, and performed a deviation
analysis finally. The mechanism for the transitions can be summa-
rized as follows: chimera, asynchronization, and synchronization
states have their own attraction basins, respectively, in the state
space. For the classical synchronization transition through increas-
ing coupling strength among oscillators,82 the increase in coupling
strength actually leads to the expansion of the attraction basin of
the synchronization state, which, in turn, produces transition from
asynchronization to synchronization. In our study, the transition
from chimera to synchronization is induced by applying phase driv-
ing upon a small set of oscillators and, in fact, the phase driving does
not change the attraction basins of chimera and synchronization,
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FIG. 8. Spatiotemporal patterns of systems with non-identical ωi and different sizes. (a) N = 240, (b) N = 480. The self-frequencies ωi of the oscillators are randomly
selected from Gaussian distributions N(0, σ 2) with different standard deviation σ . The x axis represents the oscillator index, and the y axis represents the evolution time
steps.

but directly pulls the state of the system from the attraction basin
of chimera to that of synchronization. Briefly speaking, the mecha-
nism of transitions can be classified into two types, one is due to the
change of the attraction basins, and the other is due to the change of
state crossing the boundary of two different basins. The transitions
in our work belong to the latter case.
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