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ABSTRACT

In this paper, we show the possibility of creating and identifying the features of an artificial neural network (ANN), which consists of math-
ematical models of biological neurons. The FitzHugh–Nagumo (FHN) system is used as a paradigmatic model demonstrating basic neuron
activities. First, in order to reveal how biological neurons can be embedded within an ANN, we train the ANN with nonlinear neurons to
solve a basic image recognition problem with an MNIST database; next, we describe how FHN systems can be introduced into this trained
ANN. After all, we show that an ANN with FHN systems inside can be successfully trained with improved accuracy comparing with first
trained ANN and then with inserted FHN systems. This approach opens up great opportunities in terms of the direction of analog neural
networks, in which artificial neurons can be replaced by more appropriate biological ones.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0152703

Over the recent years, artificial neural networks (ANNs) have
found applications in solving many problems from pattern recog-
nition to predicting climate phenomena. From a computational
perspective, ANN modeling is a very resource-intensive task.
Despite the existence of high-power computing clusters with the
ability to parallel computations, neural network modeling on dig-
ital equipment is a bottleneck in network scaling and the speed
of collecting and processing information. This makes more and
more researchers in the field of neural networks engaged in creat-
ing hardware ANN implementations. In such a concept, neurons
and the connections between them represent a real device that
can learn and solve problems. There has been an exponential
growth in the number of works concerning hardware ANNs based
on lasers, memristors, spin-transfer oscillators, etc. The funda-
mental possibility of making such devices “compatible” with the
nervous system of animals and humans is of particular inter-
est. In modern developed countries, the observed increase in
the life expectancy inevitably correlates with an increase in the
number of cases of neurodegenerative diseases, as well as cogni-
tive and motor problems that accompany the so-called healthy

aging. Today, we already see experimental implementation of
hardware systems that solve the problems of partially restoring
vision, restoring the functions of lost limbs, and even restor-
ing the sensitivity and capabilities of paralyzed limbs. In this
paper, we propose a completely new concept, which suggests
building the neurons of a network utilizing biological princi-
ples, but not physical ones. Biological neuron models, such as
the FitzHugh–Nagumo model, are used as the components of the
ANN. Here, we show how the topology of an already trained ANN
can be used to implement FitzHugh–Nagumo models into it, as
well as how the resulting neural network can be trained.

I. INTRODUCTION

There are two different approaches to implementing neural
networks and two different definitions of neural networks. From
a nonlinear dynamics’ perspective, a neural network is of inter-
est for describing biological phenomena and features of interaction
between neurons within a neural circuit in response to an internal or
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external impact. The temporal dynamics of biological neurons and
the connections between them are extremely complex; therefore,
there are a large number of studies describing conceptual models
of different levels of complexity.1–4

On the other hand, there are artificial neural networks (ANNs).
Despite having a similar name, these networks are totally different
from biological neural networks in their purpose and design. ANNs
are a prospective and widely spread tool for solving many computa-
tional tasks in a variety of scientific and engineering areas branching
from climate research and medicine to sociology and economy.5,6

An ANN consists of artificial neurons whose role is to generate an
output signal based on a linear or nonlinear transformation of the
input signal. Training an artificial neural network lies in fitting and
altering the connection matrices between its neurons. In the learn-
ing process, the connection matrices are built in such a way that
the network outputs the result required from it. The idea of imple-
menting such neural networks came from biology.7 Already in the
1940s, scientists were inspired by the idea of how a neural circuit
is arranged and tried to implement its simplified model in order to
solve non-trivial problems that do not obtain a strictly formulated
solution algorithm.8

Having been first developed in the 1940s and 1950s, ANNs
have undergone numerous substantial enhancements. Alternatively,
simple threshold neurons of the first generation, which produced
binary-valued outputs, evolved into systems, which use smooth
activation functions, thus making it possible for the output to be
real-valued. The most novel kind of an ANN is based on spiking
neurons9,10 and has received the name of a spiking neural network
(SNN).

In contrast to neural networks of the previous generations, an
SNN considers temporal characteristics of the information on the
input. In this regard, an SNN architecture makes a step closer to a
plausible model of a biological neural network, although still being
highly simplified.11 Within such a network, information transmis-
sion between artificial neurons resembles that of biological neurons.
The neuron models in SNNs communicate by sequences of spikes.
Typically, these spiking models are very simplified, and they have
nothing in common with traditional models of biological neu-
rons in nonlinear dynamics, such as a FitzHugh–Nagumo system,
a Hodgkin–Huxley model, a leaky-integrate-and-fire neuron, the
Izhikevich model, etc.

Similar to traditional ANNs, SNNs are arranged in layers, and
a signal propagates from an input to the output layer traversing
one or more hidden layers. However, in hidden layers, SNNs use
spiking neurons, which are described by a phenomenological model
representing a spike generation process. In a biological neuron,
the activity of pre-synaptic neurons affects the membrane potential
of post-synaptic neurons, which results in a generation of a spike
when the membrane potential crosses a threshold.9,11 This complex
process has been described with the use of many mathematical mod-
els, with the Hodgkin–Huxley model being the first and the most
famous one.12 In order to find a balance between computational
expenses and biological reality, several other models have been pro-
posed, e.g., the leaky-integrate-and-fire model13 or the Izhikevich
model.14

Based on the available knowledge from neuroscience, several
methods of information encoding have been developed, e.g., rate

coding or latency coding. For rate coding, the rate (or the frequency)
of spikes is used for information interpretation, while latency coding
uses the timing of spikes. Both of these methods are special cases of
a fully temporal code, where a timing correlates with a certain event,
for instance, a spike of a reference neuron.

Having artificial neural networks and their tasks become more
and more sophisticated, we may soon verge on some kind of a
crisis;15,16 i.e., the tasks become so complex that the capacities of
modern computers will soon not be enough to meet the growing
needs. Here, the bleeding-edge direction of hardware neural net-
works comes to the rescue.17 According to this approach, neural
networks are not created with a computer but are a real device that
can learn and solve tasks. The neurons themselves and the connec-
tions between them exist at the physical level; i.e., the model is not
simulated on a computer but is implemented in hardware according
to its physical principles.

The main purpose of this work is to show the possibility of
creating and identifying the features of a trained neural network,
which consists of mathematical models of biological neurons. In
this research, the FitzHugh–Nagumo system (FHN)18,19 is used as
an example. The FHN system is a well-known conceptual model of
a biological neuron that demonstrates spike dynamics under certain
conditions. It is often used to model basic neural activity.

This task helps us bring artificial neural networks closer to
biological ones and reveal how biological neurons can be embed-
ded within an artificial neural network; that is, we can combine the
topology (the connection) from an ANN with the features of dynam-
ics and interactions from a biological system. Thus, it enables us to
approximate SNNs to biological ones. This will allow not only to
obtain a working prototype of the ANN, but also to form a range of
tasks in which the features of the temporal dynamics of the biologi-
cal neurons themselves will be used. In the future, it is planned not
only to develop an ANN with models of biological neurons, but also
to study a range of neurophysiological problems in which the appli-
cation of the principles obtained will allow modeling and structural
processing of biomedical data. This direction is fundamentally new
and relevant.

The work consists of several stages. First, there is a simple neu-
ral network with artificial linear and nonlinear neurons. It is trained
to solve a basic image recognition problem with handwritten digits
of the MNIST database (Sec. II). Then, a certain number of FHN sys-
tems is introduced into the existing neural network, and the task is
to identify the conditions under which the network will still function
(Sec. III). The next step is to make the task more difficult. From the
beginning of this stage, we use a network in which the FHN systems
are implemented and attempt to train the neural network (Sec. IV).

II. MNIST DATABASE AND NETWORK TOPOLOGY

At the first step, a simple deep neural network with one hidden
layer is being trained. The neural network is schematically shown in
Fig. 1.

Since a task of recognizing hand-written MNIST digits is being
solved, an input signal of the ANN is an image of 28 × 28 pixels.
Usually, such an image is transformed into a vector X of size 1 × 784
and is fed to the input layer of the ANN. This makes the first layer
consisting of 784 simple linear neurons with the activation function
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FIG. 1. Schematic illustration of a neural network under study. The artificial neu-
rons with a linear activation function are colored in yellow, while the neurons with
a nonlinear activation function, which will later be replaced by FHN systems, are
marked in red.

f(x) = x. These neurons do not transform the signal, but merely pass
it to the next layer. In order to do this, the vector X is multiplied by a
corresponding matrix Win of size 784 × 100. Thus, the input image
is transformed into an input signal and is passed to the 100 neurons
of the hidden layer. Within this layer, the neurons have a sigmoid
activation function: f(x) = 1/(1 + e−x). However, the choice of the
function does not affect the subsequent results, and the use of a
hyperbolic tangent function would lead to a similar outcome. Next,
the signal from the 100 hidden neurons is fed to the output layer
using the connection matrix Wout. The output layer consists of ten
neurons, which also use a linear activation function f(x) = x.

The response of the neural network is the index number of the
output neuron producing the maximum output signal. This opera-
tion is also called softmax(). Specifically, if an image with number 2
is fed to the input of the ANN, as in Fig. 1, then the ANN response
“2” will correspond to the situation when the neuron numbered
i = 2 (where i ∈ [0; 9]) has the maximum output.

The MNIST database20 was used to train the ANN. The
database includes a training set (60 000 images of numbers 0–9)
and a test set (10 000 images). To train the neural network, we used
the Keras21 library. This is a freely distributed API. The accuracy of
the trained ANN on the training set was 99.5%, while the accuracy
of training on the test set was 97.7%. The result of training is the
connection matrices Win and Wout.

III. IMPLEMENTING THE FHN SYSTEMS INTO THE

TRAINED ANN

In order to implement FHN systems in place of 100 artificial
neurons in the hidden layer, one needs to understand the dynamics
of the FHN system itself and how it should be fed with the input sig-
nal. After the input signal X is multiplied by the connection matrix
Win, a vector of 100 values is obtained. These values are fed to the

input of 100 neurons. Now, FHN systems play the role of the hid-
den layer neurons, and each of them is described by the following
equations:18,19

εẋ = x −
x3

3
− y,

ẏ = x + a + I(t),

(1)

where x is an activator variable, while y is an inhibitor variable. This
is a widely used form of the FHN system, where the parameter ε is
responsible for the time scale, I(t) is the input signal, and a is the
control parameter. The system can demonstrate spiking dynamics
in an oscillatory regime (|a| < 1) and the lack of oscillations with a
stable equilibrium state in an excitable mode (|a| > 1). More gen-
eral information about the considered system and the impact of
parameter a is given in Appendix A.

If the input signal does not change in time but introduces
an additional constant component I(t) = I = const into the second
equation, the sum a + I allows one to influence the position of the
vertical nullcline of the system (see Fig. 6, green dashed line). Thus,
due to the input signal I, the system can establish either an oscilla-
tory or excitable mode. For a = 0, the values |I| < 1 will correspond
to the oscillatory mode, and |I| > 1 will establish the excitable one.

Since the neural network was initially trained in such a way that
the hidden layer neurons have a “sigmoid” type activation function,
they accept an input signal of the range (−∞; +∞) and return an
output signal of (0; 1). In this case, the product of the input image
vector X and the connection matrix Win may contain such large
numbers that they will not commensurate with the scale of the vari-
ables (x, y) of the FHN system. In order for the product X · Win to
be further used as an input signal of the FHN system, we propose to
introduce the following normalization:

I = γ · tanh(X · Win). (2)

Then, no matter how large the values of the matrix Win are, after
applying the hyperbolic tangent, the range of values is transformed
into the interval (−1; 1). The γ multiplier allows you to set the range
of the values more precisely.

The output signal of the system is defined as follows:

Y = softmax(Ex · Wout). (3)

It is also computed with the use of the softmax() function as ear-
lier, but now, it is a function of the product of the Wout matrix and
the variable vector xi of the 100 FHN systems. This makes the ANN
response to be the index number of the output layer neuron, which
has the maximum output signal.

Figure 2 shows temporal dependencies of the neural network
response for three different input images containing the numbers 0,
3, and 5. Strictly speaking, Fig. 2 does not show an immediate output
of the neural network. There is a transient time of 1000 dimension-
less units Ttrans = 1000, which is discarded in order not to consider
the regime establishment process. Now, there is a problem of the
result interpretation. Since FHN systems are spike systems and may
show an oscillatory mode, the ANN response may also oscillate, and
at some moments, “wrong” neurons can be activated. In order to
interpret the response of the ANN correctly, we choose the answer
that takes the most time of the entire control record of the ANN out-
put signal T = 100; for example, in the Fig. 2, the longest response
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FIG. 2. Temporal evolution of the output of ANN with implemented FHN systems
after transient time T trans = 1000 for three different kinds of input image: digit “0”
(top panel), “3” (middle), and “5” (bottom).

time is “0” for the top record, “3” for the middle one, and “5” for the
bottom one.

Identical results were obtained for other digits. Table I shows
the accuracy calculated for the digits 0–9 from the training and
testing sets for the parameter γ = −0.5. We find that the average
accuracy on the training set was 73.4% and the average accuracy on
the test set was 73.3%. All accuracies hereinafter will be calculated
after excluding the transient process during the time Ttrans.

Average accuracies were also calculated for other values of γ .
Figure 3 shows the dependence of the average accuracy on γ for the
test set. As can be seen from the picture, the lowest accuracy can be
obtained if γ > 0 and if γ is close to zero. Also, for −1 < γ < 0,
the accuracy increases with the decrease of γ and saturates when
γ < −1. In Eq. (2), the multiplier with hyperbolic tangent can only
take values between −1 and 1. Therefore, the parameter γ controls
both the scale of the parameter I and the mode of the FHN system.
|γ | < 1 leads to the pure oscillatory regime when |γ | > 1 can lead
to both excitable and oscillatory regimes depending on the value of
(X · Win). The possibility of both regimes is accompanied with the
largest accuracy for γ < 1. At the same time, a completely logical
question arises why for the symmetrical case with γ > 0, the oppo-
site effect occurs, and the recognition accuracy tends to 0. This is
caused by the form of the output connection matrix Wout in (3).
The already trained network was trained according to the sigmoid
activation function in the hidden layer, and this imposes certain con-
ditions on connection matrices. Therefore, by changing all the signs
of the values inside the matrix Wout to the opposite, it is possible to

TABLE I. Accuracies of ANN with implemented FHN systems applied to training (Tr.)

and testing (Test.) datasets of each digit type. There are three ANNs with γ =−0.5,

γ =−1, and γ = 0.5.

γ = −0.5 γ =−1 γ = 0.5

Digit Tr. Test. Tr. Test. Tr. Test.

0 99.0 98.6 88.9 99.2 6.7 6.4
1 1.4 1.5 16.3 16.4 0.0 0
2 83.3 82.6 91.8 90.3 5.6 5.6
3 84.6 85.1 92.7 91.9 3.2 3.7
4 90.4 88.0 98.0 94.3 1.0 0.6
5 29.6 31.9 52.0 54.9 0.3 1.1
6 96.9 96.2 99.9 98.0 8.6 9.4
7 56.5 57.5 80.4 78.6 0.9 0.8
8 99.8 99.5 100.0 99.0 6.5 6.0
9 92.3 91.9 98.9 96.6 1.36 1.98
Average 73.4 73.3 83.0 82.9 3.4 3.6

achieve an inverse relationship between accuracy and γ , and then
the maximum accuracy will be obtained for positive γ values.

IV. ANN TRAINING

In order to speed up the processes of training and testing, not
all the images from the training and test sets were used: 10,000 exam-
ples from the training set and 1000 examples of the test set with an
equal amount of examples of the same digit were used.

The parameters of the FHN systems remained the same. Since
ANN training is associated with a large number of runs of input
images and connection matrices, in order to speed up this process,
the settling time was reduced to Ttrans = 200, but the control time
T = 100 remained the same. This did not affect the accuracy when
repeating the previously described steps.

FIG. 3. Average testing accuracy of ANN with implemented FHN systems
depending on the parameter γ .
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FIG. 4. Schematic illustration of a trainable ANN with FHN systems. The artificial
neurons with a linear activation function are colored in yellow, while the neurons
with a nonlinear activation function aremarked in red. The violet color corresponds
to FHN systems.

There were some difficulties in the process of training the ANN.
A large number of network topologies and several nonlinear activa-
tion functions were considered, and the number of layers was also
being changed. In the end, we came to the conclusion that the opti-
mal network topology looks like the one presented in Fig. 4. 784
pixels are fed to the ANN input; therefore, the input layer still con-
sists of 784 neurons. In Sec. III, it was shown that before applying a
signal to the FHN input, it must first be renormalized using a hyper-
bolic tangent; therefore, we added this processing step to the first
layer in the new ANN. As a result, the number of neurons in the
first layer remains the same, but their activation function becomes a
hyperbolic tangent. The second layer consists of 100 FHN systems.
The input layer is connected to the second layer by a W1 matrix
784 × 100.

The third layer was necessary to simplify the processes of learn-
ing and calculating derivatives. It contains 100 artificial neurons
with a “sigmoid” activation function. Layers 2 and 3 are intercon-
nected using the identity connection matrix W2 = E, which is fixed
and does not change during the learning process; i.e., neurons of
layers 2 and 3 are connected one-to-one throughout the training.

The output layer contains ten linear neurons with the function
softmax(). The output layer is connected with the previous one with
the connection matrix W3.

The interpretation of the output signal of the so-constructed
ANN was the same as in Sec. III. An ANN’s response over time
T = 100 was the index number of the neuron, which produced the
largest output signal for the longest time.

The training was carried out using the backpropagation
method of logistic regression. Here, the following trick is applied.
During the forward propagation, the FHN systems were used as
layer 2 neurons, and during backpropagation, they were replaced
by conventional artificial neurons with a “sigmoid” type activation

FIG. 5. Training process of ANN with FHN systems inside illustrated by cost func-
tion (a) and accuracies (b) on training and testing datasets depending on the
training epoch.

function f(x) = 1/(1 + e−x) for the correct calculation of the deriva-
tive. In Fig. 4, these neurons are represented in blue. In Fig. 5, the
cost function (a) and accuracy on the training and test sets depend-
ing on the training epoch (b) illustrate the training process. The cost
function was calculated according to

J =
1

Ntr

Ntr
∑

i=1

[

−ytr
i yres

i − (1 − ytr
i )(1 − yres

i )
]

, (4)

where ytr is the set of Ntr correct answers and yres is the set of
corresponding ANN’s responses.

The corresponding accuracies on the training and test sets by
digits are given in Table II for both the truncated sets (for which
Fig. 5 was built) and the full MNIST sets (for which we have already
applied the trained network). The above results were obtained for
the value γ = −0.5. The average accuracy of the resulting network
is about 80%. In comparison of this value with the accuracy of the
trained ANN with FHN systems embedded in it, this γ value cor-
responds to an accuracy of about 73%. Thus, after training with the
proposed technique, it was possible to increase the accuracy of the
neural network.

The distribution of the accuracy for different digits is of partic-
ular interest (see Table II and Fig. 7 in Appendix B). The resulting
ANN does not work well with the number 8. If it is not included, the
overall accuracy is about 90%.
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TABLE II. Accuracies of trained ANN with FHN systems applied to training (Tr.) and

testing (Test.) datasets of each digit type. Parameter γ is set to −0.5.

Tr. set Test. set Tr. set Test. set
Digit (10 000) (1000) (60 000) (10 000)

0 97.1 96.5 95.9 95.6
1 97.5 97.6 96.6 97.8
2 89.2 87.1 86.4 86.6
3 87.1 85.1 84.2 86.8
4 91.9 86.4 88.6 89.1
5 85.9 86.2 81.0 81.7
6 95.2 86.2 92.2 91.1
7 94.4 86.9 92.2 90.5
8 0.1 0 0.1 0.1
9 83.7 80.9 79.5 79.9
Average 82.2 79.3 79.7 79.9

V. CONCLUSION

We have managed to find well-working ways to introduce
FitzHugh–Nagumo systems into artificial neural networks. This
enables us to combine the neural network topology with the pecu-
liarities of the FitzHugh–Nagumo spike dynamics. We have also
been able to find conditions under which the resulting neural
network demonstrates good accuracy about 90%.

The signal from the first layer is multiplied by the correspond-
ing connection matrix, and then, it is sent to each of the 100 FHN
systems in an ANN’s hidden layer according to Eq. (2). The multi-
plier γ allows one to control the amplitude of the FHN input signal
more precisely. We show here that only negative γ values lead to
appropriate accuracy.

In addition, we proposed a method for training the ANN with
introduced FHN systems, as schematically shown in Fig. 5. The
resulting neural network increases the accuracy by ≈12% when
compared to initially trained ANN, into which the FHN systems
were subsequently inserted.
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APPENDIX A: THE FITZHUGH–NAGUMO SYSTEM

The considered FHN system is given by the system of Eq.
(1). Depending on the value of a, the system demonstrates the
Andronov–Hopf bifurcation: for |a| > 1, a stable equilibrium state
of the “focus” type is observed (excitable mode); if |a| < 1, the mode
is called oscillatory, and the system exhibits periodic spike dynamics.

A description of the system (1) from the perspective of current
and voltage is also common. Then, the variable x is a voltage-like
membrane potential with cubic nonlinearity that allows regenera-
tive self-excitation via a positive feedback. The variable y is called the
recovery variable with linear dynamics that provides a slower nega-
tive feedback. The parameter I corresponds to a stimulus current. A
positive current corresponds to a current directed from the outside
of the cell membrane to the inside.

Figure 6 shows the phase plane of the system (1). Also, the
corresponding activator ẋ = 0 and inhibitor ẏ = 0 nullclines are
depicted. The activator nullcine corresponds to the y = x − x3/3
line (Fig. 6, the orange line), while the inhibitor nullcline corre-
sponds to the x = −a line when there is no input signal (Fig. 6,
the green line). For a = 1, the nullclines intersect at x0 = −1,
y0 = −2/3. This point is a stable equilibrium state for a > 1.

FIG. 6. Phase portrait of the FHN system (1) with corresponding ẋ = 0 (orange)
and ẏ = 0 nullclines (green).
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APPENDIX B: TESTING ACCURACY OF THE TRAINED

ANN ACCORDING TO THE DIGIT TYPE

FIG. 7. Accuracy of ANN applied to training (60 000 examples, orange) and
testing (10 000 examples, green) MNIST datasets grouped by the digit type.
Corresponding data can be found in two right columns in Table II.
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