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ABSTRACT

We study networks of coupled oscillators whose local dynamics are governed by the fractional-order versions of the paradigmatic van der
Pol and Rayleigh oscillators. We show that the networks exhibit diverse amplitude chimeras and oscillation death patterns. The occurrence
of amplitude chimeras in a network of van der Pol oscillators is observed for the first time. A form of amplitude chimera, namely, “damped
amplitude chimera” is observed and characterized, where the size of the incoherent region(s) increases continuously in the course of time,
and the oscillations of drifting units are damped continuously until they are quenched to steady state. It is found that as the order of the
fractional derivative decreases, the lifetime of classical amplitude chimeras increases, and there is a critical point at which there is a transition
to damped amplitude chimeras. Overall, a decrease in the order of fractional derivatives reduces the propensity to synchronization and
promotes oscillation death phenomena including solitary oscillation death and chimera death patterns that were unobserved in networks
of integer-order oscillators. This effect of the fractional derivatives is verified by the stability analysis based on the properties of the master
stability function of some collective dynamical states calculated from the block-diagonalized variational equations of the coupled systems.
The present study generalizes the results of our recently studied network of fractional-order Stuart–Landau oscillators.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0144713

Coupled oscillator models have been used as a paradigm for the
mathematical description of real-life processes that manifest as
macroscopic collective dynamics of many interacting objects. Due
to the coupling, the local dynamics might be reorganized in such
a way that the oscillations synchronize1–4 or diverse oscillatory
patterns emerge spontaneously in a coupled system. The chimera
pattern is a peculiar form of partial synchronization character-
ized by spatially separated domains of coherent and incoherent
behavior.5–8 Also due to the coupling, the local dynamics might
be stabilized to a unique steady state (a situation termed as
amplitude death9,10) or to different symmetry-breaking steady

states (oscillation death9,10). Chimera and oscillation death are
symmetry-breaking phenomena, as they appear in systems of
symmetrically coupled identical oscillators. In a recent work,11 we
found that fractional derivatives impact amplitude chimeras and
induce the occurrence of diverse other symmetry-breaking states
in a network of fractional-order Stuart–Landau oscillators. In the
present work, we generalize the results of this previous work by
considering two networks of fractional-order counterparts of two
other limit-cycle oscillators, namely, the van der Pol and Rayleigh
oscillators. Although amplitude chimeras were already observed
in networks of Rayleigh oscillators, it is only in the present work
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that their occurrence in a network of van der Pol oscillators is
highlighted for the first time.

I. INTRODUCTION

At all scales (cosmic, macroscopic, and microscopic), the
objects around us are in perpetual motion that very often demon-
strates a certain degree of repetition. So, our surroundings are full
of objects that produce rhythms, generally in the form of oscil-
lating processes. Usually these objects are not isolated from their
environment, but interact with their counterparts. A multitude of
phenomena in natural and man-made systems can be explained as
macroscopic collective dynamics of many interacting objects—the
simplest and most famous of these collective dynamics is syn-
chronization, which can be basically defined as the entrainment
of rhythms of interacting elements,1 or as the adjustment of the
time scales of oscillations due to interaction between the oscillatory
processes.2 Over the last few decades, the study of synchroniza-
tion phenomena has attracted a lot of attention in the international
scientific community in general, and in the nonlinear science com-
munity in particular,1–4 due to the fact that apart from pure academic
interest, the study of synchronization phenomena is relevant in
explaining rhythms in natural and technological dynamical systems.

Among the large variety of synchronization phenomena dis-
covered in the last decades, there is a peculiar form of partial
synchronization called the chimera state that has been the subject
of an intense activity in the field of coupled nonlinear systems.7,8

In a chimera state, the coupled system splits up spontaneously
in two subsystems with synchronous and asynchronous elements,
respectively. In a broad sense, in a chimera state, coherent and
incoherent behaviors coexist in the coupled system in spatially sep-
arated domains. Surprisingly, the chimera state arises in networks
of symmetrically coupled identical elements7 as a consequence of
spontaneous symmetry-breaking. Another symmetry-breaking phe-
nomenon that has also received a great deal of interest during the
last decades is oscillation death (OD). In an oscillation death state,
the coupling induces the quenching of oscillations and gives rise
to the birth of stable inhomogeneous steady states.9,10,12 It has been
found that chimera states and oscillation death appear usually in
the same coupled systems. For example, the two phenomena have
been observed in coupled systems of the Stuart–Landau model,12,13

van der Pol model,14,15 Rayleigh model,16 FitzHugh–Nagumo model
(without cross-coupling terms,17 and with cross-coupling terms18),
and Rosenzweig–MacArthur model.19 An important connection
between these two symmetry-breaking states is the chimera death
state,13 which generalizes the chimera state feature to oscillation
death states such that separated regions of spatially coherent and
incoherent steady states coexist in the coupled system. The OD
state is a collective state where the dynamics of the different oscil-
lators is stabilized at an inhomogeneous steady state, whereas the
chimera death state is a particular form of OD state where a group or
some groups of adjacent oscillators populating the same steady state
(coherent steady states) appear(s) spontaneously while the other
oscillators are distributed randomly over different steady states
(incoherent steady states).

For their dynamical analysis, the basic features of the afore-
mentioned systems are more often described by sets of first-order
differential equations. For example, let t be the time, and x the vector
of dynamical variables, then, the system is given by ẋ (t) = f (t, x (t)),
where the dot over the variables denotes the first-order derivative
with respect to time and f (·) is a vector function. Now, to accurately
account for experimental data when describing many real-life sys-
tems, the first-order derivatives with respect to time should be gen-
eralized by real-number-order derivatives also known as fractional-
order derivatives.20 Thus, the system should be described by the
following fractional-order differential equation: Da

t x (t) = f (t, x (t)),
where a is a vector whose dimension is the same as x; Dα

t is the
fractional derivative operator that, applied to a given dynamical vari-
able, denotes its derivative of order α with respect to time t, where
α is a component of a and α ∈ R

∗
+. Fractional-order differential

equations have been used to describe successfully various phenom-
ena such as viscoelasticity,21,22 anomalous diffusion and transport,23

dielectric losses,24–26 eddy current and hysteresis losses in magnetic
coils,25,27 processes in biology and bioengineering (power-law adap-
tation in the firing activity of neurons, anomalous diffusion of ions
in cells, and memory effects in epidemic spreading and microbial
growth),23,28–34 to name a few.

The study of coupled fractional-order systems has attracted a
lot of attention in the past few decades, in particular, as regards the
synchronization of chaotic fractional-order systems.35–40 However,
although much work has been done on symmetry-breaking phe-
nomena, their investigation in coupled fractional-order systems is
only in its debut. The impact of fractional derivatives on oscillation
death was considered for the first time by some of us in Ref. 41,
which triggered a wave of interesting works on the study of quench-
ing phenomena (amplitude death and oscillation death) in coupled
fractional-order systems.42–46 Overall, these studies yield similar con-
clusions, namely, that fractional derivatives have a stabilizing effect.
On the other hand, the investigation of chimera states in fractional-
order systems has only recently become a focus of research, the
very first reports on this subject dating from 2020.47,48 Recently,
we considered a network of fractional-order Stuart–Landau oscil-
lators in this context,11 and we found that fractional derivatives
impact deeply the behavior of the network. As the order of frac-
tional derivatives decreases, the lifetime of amplitude chimeras is
extended up to a critical value of the derivatives order where there is
a transition to a novel amplitude chimera that is transient to oscilla-
tion death. A further decrease in the order of fractional derivatives
promotes diverse oscillation death and chimera death states and
inhibits the in-phase synchronized state and amplitude chimeras, as
a consequence of the aforementioned stabilizing effect of fractional
derivatives.

In the present work, we proceed with the study of symmetry-
breaking phenomena in coupled fractional-order systems by con-
sidering fractional-order counterparts of two other famous limit
cycle oscillators, namely, the van der Pol and Rayleigh oscilla-
tors. Like the Stuart–Landau oscillator, the van der Pol oscilla-
tor is a paradigmatic model widely used for studying symmetry-
breaking phenomena, namely, oscillation death15,45,49–53 and chimera
states.14,54–57 In these previous works, the equations of the van der
Pol oscillator were written in the classical form, i.e., a second-
order differential equation with a nonlinear damping term, and it
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was found that the corresponding coupled systems exhibit phase
chimeras and amplitude mediated chimeras.14,54–57 In the present
work, we consider the van der Pol oscillator in the Liénard plane,58

obtained by applying the Liénard transformation to the classical
van der Pol model.59,60 And, it is found for the first time that a
network of this form of the van der Pol model exhibits ampli-
tude chimeras. On the other hand, the Rayleigh oscillators has been
less considered in the context of studies on symmetry-breaking
phenomena. It was found that oscillation death and amplitude
chimeras can emerge in a network of Rayleigh oscillators with
direct couplings.16 In Ref. 61, it was shown that cross couplings can
induce a transition from amplitude chimera to amplitude mediated
chimeras and variable-amplitude chimeras in a network of Rayleigh
oscillators.

By considering two other limit-cycle oscillator models (the
van der Pol and Rayleigh oscillators), we intend to generalize the
results of the work reported in Ref. 11 where symmetry-breaking
states were studied in a network of fractional-order Stuart–Landau
oscillators. For better comparison, the networks of the two models
considered here are set in the same conditions as the network in
Ref. 11, i.e., the same size, the same coupling scheme, and the same
initial conditions. As regards the coupling scheme, each oscillator of
these two networks is diffusively and directly coupled to all its coun-
terparts, and the coupling strength decays in a power-law fashion
with the lattice distance—a realistic coupling scheme that interpo-
lates between the nearest-neighbor (local) and mean-field (global)
limits, via nonlocal coupling.62,63 This coupling scheme has proved
to favor the occurrence of oscillation death states and amplitude
chimeras by tuning the coupling exponent.11,16,19 The initial con-
ditions are specially prepared such that the networks can exhibit
chimera states, including chimera death. Note that as networks of
nonlocally coupled integer-order Stuart–Landau oscillators,11,13 the
integer-order counterparts of the considered networks can exhibit
amplitude chimeras and oscillation death states. As there is a sim-
ilarity in the behavior of coupled systems of these three models,
an interesting question arises naturally: what about the impact of
fractional derivatives? The present work aims at solving the issues
behind this question. The rest of the paper is structured as fol-
lows. In Sec. II, the networks models are described. Section III
is devoted to the study of the basic dynamical features of the
uncoupled units that are fractional-order van der Pol and Rayleigh
oscillators, which reveals that each of them undergoes a supercrit-
ical Hopf-like bifurcation as the order of the derivatives decreases.
The dynamical behavior of the two networks are explored numer-
ically and analytically in Sec. IV. In this section, the integer-order
counterparts of the two networks are studied first, which reveals
that they can exhibit simple oscillation death patterns and two
types of amplitude chimeras that are transient to synchronization
and oscillation death, respectively. Then, the stability of asymp-
totic states are analyzed in order to predict the effect of fractional
derivatives on the occurrence and on the characteristics of these
states. At last, the dynamical behavior of the fractional-order oscil-
lator networks are explored numerically, and the analytical stability
results are confirmed. In particular, the effect of fractional deriva-
tives on amplitude chimeras is discussed. The paper ends with
a conclusion in Sec. V where the main results of this work are
summarized.

II. NETWORK MODELS

We study two networks of fractional-order van der Pol and
Rayleigh oscillators, respectively. Each network is made up of N
identical fractional-order oscillators, where the coupling is global
with a weighted coupling strength decreasing with distance accord-
ing to a power-law.62,63 The coupling is diffusive and direct through
one of the two dynamical variables. Let x = (x y)T be the vector of
dynamical variables of an uncoupled unit, F (·) the vector function
describing the local dynamics, G the global power-law connectivity
matrix, H (·) the vector function specifying which one of the two
variables is involved in the direct diffusive coupling between two
units, and σ ∈ R+ the coupling strength. Then, each network of cou-
pled fractional-order oscillators is described by the following generic
set of fractional-order differential equations:

Da
t xk = F (xk) +

σ

η

N
∑

j=1

GkjH
(

xj

)

, (1)

where k = 1, 2, . . . , N, and periodic boundary conditions are
assumed; Gkk = −η, Gk,k−r = Gk,k+r = 1

/

rs, for r = 1, . . . , P − 1,

and Gk,k−P ≡ Gk,k+P = 1
/

Ps, η = 2
∑P−1

r=1

(

1
/

rs
)

+ 1
/

Ps is a nor-
malization factor, with P = N/ 2 and N is even; and s ∈ R+ is the

coupling exponent. In the term Da
t x, a = (α α)

T
, and Dα

t is the
fractional derivative operator that, applied to a given dynamical vari-
able, denotes its derivative of order α with respect to time t, where
α ∈ R

∗
+. We use Caputo’s definition of fractional derivative since

with this it is not necessary to define the fractional-order initial
conditions.20 It is given by (see Ref. 64)

Dα
t x (t) =

1

0 (n − α)

∫ t

0

x(n) (τ )

(t − τ)α−n+1
dτ , (2)

where n − 1 < α < n ∈ N and 0 (·) is the Gamma function. Two
types of local dynamics are considered, namely, the van der Pol
oscillator (whose equations are written in the Liénard plane58–60) for
which

F (x) =
( (

y + x − x3
/

3
)/

ε

−x

)

, (3)

and the Rayleigh oscillator65 for which

F (x) =
(

ωy
µ
(

1 − y2
)

y − ωx

)

. (4)

The vector function H (x) = E.x, where E =
(

0 0
0 1

)

for the net-

work of van der Pol oscillators and E =
(

1 0
0 0

)

for the network

of Rayleigh oscillators. The coupling exponent s (along with the
normalization factor η) allows us to interpolate between the nearest-
neighbor (s → ∞, η → 2) and mean-field (s = 0, η = N − 1) limit
topologies. Thus, η

/

(2N) can be conceived as the normalized cou-
pling radius, i.e., the coupling range.

In the following, we give a brief derivation of the van der
Pol model in the version of Eq. (3) from the classical van der Pol
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equation:

v̈ − µ
(

1 − v2
)

v̇ + v = 0, (5)

where v is the dynamical variable, µ is the nonlinearity parameter,
and the dot over v denotes the first-order derivative with respect to
time. If one applies the Liénard transformation59,60

y = −v +
v3

3
+

v̇

µ
, (6)

in Eq. (5), then it is transformed into the following first-order
differential equation:

µẏ = −v. (7)

Associating Eqs. (6) and (7) and rescaling the time in these two
equations by applying the transformation t → t

/

µ, one obtains the
following set of first-order differential equations:

ẋ =
1

ε

(

y + x −
x3

3

)

,

ẏ = −x,

(8)

where x = v and ε = 1
/

µ2. By this equation, the van der Pol model

is written in the Liénard plane
(

x, y
)

. Thus, one uncovers the version
of the van der Pol model considered in this work [see Eq. (3)]. The
FitzHugh–Nagumo model66,67 (also known as the Bonhoeffer–van
der Pol model66) is closely related to this form of the van der Pol
equation.

We are all familiar with the integer-order version of Eq. (1),
where the term on the left hand side is the first-order derivative
of the vector x. Indeed, much dynamical systems are described
by sets of first-order differential equations. However, experimen-
tal evidence suggests that in some cases, the first-order derivatives
should be replaced by real-number-order derivatives. For example,
the voltage–current characteristics of a real capacitor is given by
i (t) = CαDα

t v (t), where Cα is a parameter related to the capacitance
C of the capacitor and α is a positive real number lesser than 1
that is related to the dielectric losses in the capacitor.24 The values
of Cα and α depend on the kind of dielectrics and some of these
coefficients can be found in Refs. 24 and 26 for real capacitors. For
an ideal capacitor, α → 1 and Cα = C. Another classical example
is provided by the theory of viscoelasticity: For the description of
viscoelastic materials, one should consider the existence of a third
element known as the spring-pot whose properties are intermediate
between the spring and the dashpot.21 The stress σ (t) of a spring-
pot is proportional to the fractional derivative of the strain ε (t) (see
Ref. 21): σ (t) = E(F/E)αDα

t ε (t), where F is the coefficient of viscos-
ity for the corresponding dashpot element and E is the modulus of
elasticity for the corresponding spring element, and 0 < α < 1. The
spring-pot interpolates between the spring (α → 0) and the dashpot
(α → 1).

Taking into account the above arguments, we consider the net-
work model given by Eq. (1) for 0 < α < 1, which is a generalization
of the integer-order model, as limα→1− Dα

t x = dx
/

dt (see Ref. 64).
Before investigating the coupled dynamics, it is necessary to

discuss the basic behavior of a single fractional-order oscillator of
each network.

III. THE UNCOUPLED FRACTIONAL-ORDER

OSCILLATOR

In case the N oscillators of a considered network are uncoupled,
i.e., for σ = 0 in Eq. (1), this set of equations degenerates into those
of one oscillator, i.e.,

Da
t x = F (x) , (9)

where F (x) is given either by Eq. (3) or by Eq. (4). The parameters
ε, ω, and µ are chosen such that the dynamics of the integer-order
counterparts of the two considered oscillators are characterized
by self-sustained oscillations around the unique equilibrium point
E
(

xE = 0, yE = 0
)

whose stability changes via a Hopf bifurcation
when a parameter varies. The fractional derivative affects neither
the number of equilibrium points of a system nor their positions,
but it may change their stability. So, it is appropriate to study the
stability of E in this particular context. Let {λ} be the eigenvalues
spectrum of the Jacobian matrix of the uncoupled system evaluated
at E. According to the stability theorem of commensurate fractional-
order systems,20 the equilibrium point E is asymptotically stable if all
the eigenvalues λ1,2 satisfy the condition

∣

∣arg
(

λ1,2

)
∣

∣ > απ / 2, which

can be rewritten as
∣

∣Im
(

λ1,2

)/

Re
(

λ1,2

)
∣

∣ > tan (απ / 2). For the van

der Pol oscillator, λ1,2 =
(

1 ± i
√

4ε − 1
)/

(2ε) (where i2 = −1 and
ε > 1/ 4), and the stability condition is

α <
2

π
tan−1

√
4ε − 1. (10)

For the Rayleigh oscillator, λ1,2 =
(

µ ± i
√

4ω2 − µ2

)/

2 (where

µ < 2ω), and the stability condition is

α <
2

π
tan−1

√

4ω2 − µ2

µ
. (11)

It was proved in Ref. 68 that periodic solutions do not exist
in fractional-order autonomous systems involving fractional-order
derivatives with bounded lower limit of the integral. However,
such a system may have S-asymptotically T-periodic functions as
solutions, instead of T-periodic solutions.69 Thus, for the fractional-
order oscillators considered, we assume that the nonlinearities are
rather weak so that the solution of an uncoupled oscillator is an S-
asymptotically T-periodic function if the equilibrium E is unstable,
which retains the classical form x (t) = A cos (�t), and the corre-
sponding expression for y (t). Note that y (t) is also a sinusoidal
function of time whose frequency is equal to � and amplitude
depends on A and eventually on some parameters of the system.
According to Eq. (2), Dα

t x (t) = ADα
t cos (�t). Since we are looking

for asymptotic solutions, we need to utilize the asymptotic expres-
sion of Caputo’s fractional derivative of the cosine function, i.e.,
limt→∞ Dα

t cos (�t) = �α cos (�t + απ / 2) (see Ref. 70). Introduc-
ing these expressions into Eq. (9) [associated with Eqs. (3) and (4)],
we find that the amplitude A and the frequency � are given by

A = 2

√

1 − 2
√

ε cos
απ

2
and � = ε− 1

2α (12)
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for the van der Pol oscillator, and

A =
2

√
3

√

1 −
2ω

µ
cos

απ

2
and � = ω

1
α (13)

for the Rayleigh oscillator.
These oscillatory solutions do not exist when A2 < 0; then,

the oscillations are quenched, which means that the equilibrium
point E of each fractional-order oscillator loses stability via a Hopf-
like bifurcation when A2 = 0. Actually, in a strict sense, Hopf
bifurcation cannot occur in a fractional-order system as here an
exact periodic solutions on a finite time interval is not possible.68

Therefore, the concept of Hopf-like bifurcation was introduced in
Ref. 71 to characterize the change of stability of an equilibrium
point giving rise to the birth of S-asymptotically T-periodic solu-
tions. Applying the condition A2 = 0 in Eqs. (12) and (13), we
obtain that a Hopf-like bifurcation occurs at α = αH, where αH

= 2tan−1
(√

4ε − 1
)/

π for the fractional-order van der Pol oscil-

lator and αH = 2tan−1
(

√

4ω2 − µ2

/

µ

)/

π for the fractional-

order Rayleigh oscillator. These results are in perfect agreement
with the results of local stability analysis given by Eqs. (10)
and (11). Figure 1 shows an illustration of these results, where
the numerical results are obtained by solving the set of fractional
differential equations (9) [associated with Eqs. (3) and (4)] with
the Adams–Bashforth–Moulton predictor–corrector scheme72,73

— developed on the basis of Caputo’s definition of fractional deriva-
tive [given by Eq. (2)]. Figure 1 shows that as the order of fractional
derivatives decreases, the amplitude of oscillations decreases up to
α = αH where a supercritical Hopf-like bifurcation occurs. This
means that oscillatory behaviors should be expected in the network
only for α > αH. In the following, the network behavior is explored
for α values within this range. As regards the variations of A with
respect to α, we see that there is a striking similarity between the
subsets (a) and (b) of Fig. 1. We should also point out the striking
similarity with the behavior of the radius of the limit cycle of the
fractional-order Stuart–Landau oscillator.11,41

IV. THE NETWORK DYNAMICS

Here, we investigate two networks of N = 100 identical
fractional-order van der Pol and Rayleigh oscillators, respectively,
described by Eq. (1) associated with Eqs. (3) and (4). Through-
out the paper, the coupled systems are studied for parameters
used in Fig. 1. As control parameters, we consider the coupling
parameters σ and s, and the derivatives order α. For the numer-
ical solution of the coupled system, we employ initial conditions
as in Ref. 11:

(

xk (0) , yk (0)
)

= (0, −1) for k ∈ [1, N/ 4] ∪ (3N/ 4, N]

≡ (−N/ 4, N/ 4] = (−25, 25] and
(

xk (0) , yk (0)
)

=
(

0, randk

)

for
k ∈ (N/ 4, 3N/ 4] = (25, 75], where randk are elements of a random
sequence of real numbers in [0, 1].

A. Dynamical behavior of the networks of

integer-order oscillators

The sets of differential equations describing the networks of
integer-order elements [Eq. (1) for α → 1, along with Eqs. (3)

FIG. 1. Amplitude and frequency of the periodic solution x (t) = A cos (�t) of
the fractional-order oscillators vs fractional derivatives order α: (a) van der Pol
oscillator for ε = 4 and (b) Rayleigh oscillator for ω = 2 and µ = 1. At these
parameter values, αH ≈ 0.839 for the two fractional-order systems.

and (4)] are solved numerically thanks to the fourth-order Runge-
Kutta method.

Depending on the parameter values, the network of van der
Pol oscillators may exhibit three prominent asymptotical dynamical
states shown in Fig. 2: a two-cluster coherent OD state that we will
call coherent OD [see Fig. 2(a)], the in-phase synchronized state in
Fig. 2(b), and another OD state that we will call alternating OD [see
Fig. 2(c)]. The in-phase synchronization and alternating OD regimes
are eventually preceded by chimera states as shown in Figs. 2(b)
and 2(c).

In the case of coherent OD, obtained for small values of s
(including s = 0: global coupling), the network is split up in two
subpopulations with identical sizes: one population of oscillators
lying on the upper steady state branch, where xk (t) ≈ +x∗ for k
∈ (N/ 4, 3N/ 4] = (25, 75] (corresponding to the incoherent region
of the initial state), and the other population of oscillators lying on
the lower steady state branch xk (t) ≈ −x∗, where x∗ is a positive
constant number. In the case of alternating OD states, obtained for
higher values of s, adjacent oscillators populate alternately one of
the two branches (−x∗ and +x∗) of the inhomogeneous steady state,
almost all through the network [see the snapshot in Fig. 2(c)]. How-
ever, the degree of coherence decreases with increasing value of the
coupling strength σ . The incoherence appears here in two ways: on
the one hand, two adjacent oscillators may populate the same branch
of the OD, and on the other hand, even if adjacent oscillators pop-
ulate alternating branches of the OD, equivalent levels (either upper
or lower branch) may not exactly coincide.

The network of Rayleigh oscillators behaves almost in the same
way. Besides the prominent dynamical regimes obtained in the case
of the network of van der Pol oscillators, there are two other types
of OD states that appear in narrow regions of the parameter s at the
transition from coherent OD state to in-phase synchronized state,
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FIG. 2. Space–time plots xk (t) and snapshots xk
(

tSnap
)

of the collective dynam-
ical states exhibited by the network of integer-order van der Pol oscillators for
ε = 4 as in Fig. 1, and different values of s and σ : (a) s = 0.35 and σ = 5.6:
coherent OD (COD); (b) and (c) s = 3.5 and (b) σ = 2.5: chimera state transient
to the in-phase synchronized state (Sync); and (c) σ = 3.5: chimera state tran-
sient to alternating OD (AOD). Snapshots at tSnap = 300 for (a) and (b) and at
tSnap = 2480 for (c).

namely, solitary OD states. In a solitary OD state [see Figs. 3(b) and
3(c)], some solitary oscillators break away from the upper branch
of the coherent OD state. So, one obtains solitary steady states
within the coherent OD pattern.11 The solitary steady states that
appear only in the incoherent region of the initial state, i.e., for
k ∈ (N/ 4, 3N/ 4] = (25, 75], are randomly distributed in this region.
By m-cluster solitary OD, we denote an OD pattern with an inco-
herent region involving solitary steady states and a coherent region
that is split up in m clusters. The number of solitary steady states in
a solitary OD pattern increases with increasing value of the coupling
exponent s.

In what follows, we will determine the type of chimera states
observed in the two networks using some quantitative measures.

B. Dynamical regimes characterization using

quantitative measures

In order to check whether the chimera states mentioned
above (see Figs. 2 and 3) are pure amplitude chimeras or ampli-
tude mediated chimeras, we use the mean phase velocity profile
{

ωk = 2πMk

/

1t, k = 1, 2, . . . , N
}

, where Mk is the number of
periods or pseudo-periods performed by the kth unit in the time
interval 1t (see Refs. 61 and 74). A period or pseudo-period is
the elapsed time between two consecutive maxima of a dynamical
variable. The term pseudo-period is used in the case of the ampli-
tude chimeras that are asymptotically transformed to alternating OD
where the oscillators belonging to incoherent regions do not show
periodic oscillations because of the drifting and damping phenom-
ena characterizing their dynamics.11 Indeed, the mean phase velocity
profile is typically arc-shaped for incoherence with respect to the

phase, while it is flat for coherence of phases. We plotted the mean
phase velocity profile for the chimera states shown in Figs. 2(b),
2(c), 3(d), and 3(e) and found that all these profiles are flat, showing
the total coherence of phases in all these chimera states. In conse-
quence, the chimera states obtained in this work are pure amplitude
chimeras, known as amplitude chimeras.

To further characterize the amplitude chimeras obtained in this
work, we use some pertaining quantitative measures developed in
Ref. 13. The center of mass (c.m.) of the oscillator on the site k is
given by

xc.m.
k (t) =

1

T

∫ t+T

t

xk (τ ) dτ , (14)

where T = 2π
/

�, with � defined in Eqs. (12) and (13). A similar
definition holds for yc.m.

k (t). For the kth oscillator, the shift of the
center of mass from the origin is given by

zc.m.
k (t) =

√

[

xc.m.
k (t)

]2 +
[

yc.m.
k (t)

]2
. (15)

The quantities xc.m.
k , yc.m.

k , and zc.m.
k can serve as local order param-

eters, as they vanish for the nodes within the coherent regions of
an amplitude chimera, whereas all the nodes within the incoherent
regions have non-zero finite values, allowing to distinguish between
coherent and incoherent regions.

The degree of incoherence of an amplitude chimera can be
measured by the relative size of the incoherent regions that can
serve as a global order parameter derived from the above local order
parameter zc.m.

k (t). The size of incoherent regions (SInc) is the relative
number of drifting oscillators given by the total number of drifting
oscillators (NDrift) normalized by the overall number of oscillators
within the whole network as follows:

SInc (t) =
NDrift (t)

N
=

1

N

N
∑

k=1

H
(

zc.m.
k (t) − δ

)

, (16)

where H (·) is the Heaviside function and δ is a predefined small
threshold number chosen such as zc.m.

k (t) < δ when the node k
belongs to a coherent region of the amplitude chimera state.

A long-living or stable amplitude chimera is characterized in
the course of time by non-drifting and constant size incoherent
regions, constant amplitudes, and fixed shifts of center of mass of
drifting units’ oscillations (see Fig. 4). However, we obtain here
another type of amplitude chimera [as shown in Figs. 2(c) and 3(e)]
whose incoherent region(s) size grows in the course of time (see the
time evolution of SInc in Fig. 5) and drifting units are characterized
by damped oscillations as shown in Fig. 5. An oscillator k belongs to
the coherent region when xc.m.

k (t) = 0, then it starts drifting when
the value of xc.m.

k (t) starts drifting from the zero value—this situa-
tion is illustrated in Fig. 5 for the unit k = 20. This oscillator starts
drifting at t ≈ 840 and afterward, the oscillations are continuously
damped until they are quenched at t ≈ 2440. This is the case for
all the oscillators; only the beginning instant of the drifting changes
from one oscillator to another. We make the same observations in
the behavior of the network of Rayleigh oscillators. Thereafter, the
amplitude chimera transient to synchronization will be referred to as
classical amplitude chimera and the amplitude chimera transient to
OD will be referred to as damped amplitude chimera. The damped
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FIG. 3. Space–time plots yk (t) and snapshots yk
(

tSnap
)

of the collective dynamical states exhibited by the network of integer-order Rayleigh oscillators forω = 2 andµ = 1
as in Fig. 1, and different values of s and σ : (a)–(c) σ = 14 and (a) s = 0.5: coherent OD (COD); (b) s = 0.78: one-cluster solitary OD (1-SOD); (c) s = 0.95: three-cluster
solitary OD (3-SOD); (d) and (e) s = 3.5 and (d) σ = 11.2: chimera state transient to the in-phase synchronized state (Sync); and (e) σ = 13.2: chimera state transient to
alternating OD (AOD). Snapshots at tSnap = 75 for (a)–(d) and at tSnap = 945 for (e).

amplitude chimera was observed for the first time in a network of
Rayleigh oscillators,16 and subsequently, its occurrence was shown to
be induced by fractional derivatives in a network of Stuart–Landau
oscillators.11

As a global order parameter, SInc (t) is used to identify the
prominent dynamical states that the networks exhibit and to detect
the transitions between these states. Indeed, as shown in Fig. 6,
SInc (t) = 0∀t for the in-phase synchronized state, SInc (t) = 1∀t for
alternating OD states, and 0 < SInc (t) < 1 for amplitude chimeras.

In order to provide an overall view on the network behavior for
a wide range of coupling parameters, the dynamical regimes maps in

FIG. 4. Long-living amplitude chimera occurring in the network of integer-order
van der Pol oscillators for ε = 4 as in Fig. 1, s = 3.5, and σ = 3.027 04: (a)
space–time plot for the variable x and (b) phase portraits [xk (t) , yk (t)] of selected
oscillators, with k mod 3 = 0, and for 4000 < t < 8000.

the plane of coupling exponent (s) and coupling strength (σ ) is pro-
duced (see Fig. 7) with the help of the global order parameter SInc.
As SInc is no longer of any use in making the distinction between the
different OD states, we use the intrinsic properties of these patterns,

FIG. 5. Time series of the global order parameter SInc and time series xk (t) for
two selected oscillators of the amplitude chimera pattern of Fig. 2(c). The two
incoherent regions of the initial amplitude chimera collide at a certain time and the
two-headed amplitude chimera (2-AC) is transformed into one-headed amplitude
chimera (1-AC), which justifies the change of slope in the time series of SInc.
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FIG. 6. Some collective dynamical regimes for integer-order van der Pol oscilla-
tors network with the corresponding time series of the global order parameter SInc:
(a) dynamical regimes of Fig. 2(b): classical amplitude chimera and in-phase syn-
chronization and (b) dynamical regimes of Fig. 2(c): damped amplitude chimera
and alternating OD.

i.e., the way the oscillators are organized in these patterns. We see
that there is a striking similarity between the two subsets (a) and (c)
of Fig. 7 showing the mapping of the dynamical states occurring in
networks of van der Pol oscillators and Rayleigh oscillators, respec-
tively. A comparison with the results in Ref. 11 shows that there is
also a similarity with the map, in the same parameter space, of the
dynamical states occurring in a network of the same number of Stu-
art–Landau oscillators coupled in the same way and subject to the
same initial conditions as in the present work.

Figures 7(b) and 7(d) show that there is a region in the parame-
ter space where the transient amplitude chimeras are more and more
important with high lifetimes (tTrans) able to reach 4000T, where
T is the period of oscillation of an uncoupled unit. This region of
amplitude chimeras with high lifetimes occurs at the transition from
asymptotic in-phase synchronization to asymptotic alternating OD
as the coupling strength σ varies for a fixed coupling exponent s.
As the value of σ comes closer to the bifurcation point σC, the life-
time (tTrans) of amplitude chimeras increases at the two sides, as
shown in Fig. 8. However, the growth of the lifetime of classical
amplitude chimeras is modest compared to the growth of the life-
time of damped amplitude chimeras. This is the reason why one
should pay attention to the damped amplitude chimera. Figure 8 also
shows that the growth of tTrans follows the logarithmic law tTrans (σ )

= b log (|σ − σC|) + d in an exponentially narrow interval of the

FIG. 7. Asymptotic dynamical regimes [(a) and (c)] and lifetime of transient
regimes tTrans [(b) and (d)] in the plane (s, σ) of coupling parameters. (a) and
(b) Network of integer-order van der Pol oscillators for ε = 4 as in Fig. 1; (c)
and (d) network of integer-order Rayleigh oscillators for ω = 2 and µ = 1 as
in Fig. 1. Sync: in-phase synchronization, COD: coherent OD, AOD: alternat-
ing OD, 1-SOD: one-cluster solitary OD, and 3-SOD: three-cluster solitary OD.
The asymptotic alternating OD regime is preceded by an amplitude chimera with
noticeable lifetime, whereas the asymptotic in-phase synchronized state regime is
sometime preceded by an amplitude chimera. For the sake of visibility, the asymp-
totic in-phase synchronized state region is split up in two subdomains according
to the range of the lifetime of transient amplitude chimera states : tTrans < 50T
in the region labeled Sync (1), and tTrans ≥ 50T in the region labeled Sync (2),
where T is the period of oscillation of an uncoupled unit. The circle, square, and
diamond markers show the parameter values used for Figs. 2, 3(a)–3(c), and 3(d)
and 3(e), respectively. Note that extending the range of σ in (a) up to 15 as in (c)
does not bring any important information since no new state appears.

bifurcation parameter σ . Similar behavior of the lifetime of the clas-
sical amplitude chimera with respect to the coupling parameters was
observed in networks of Stuart–Landau oscillators75 and Rayleigh
oscillators16 under phase–antiphase (or antisymmetric) distribution
of initial conditions. Indeed, under such initial conditions, these net-
works exhibit long-living, even stable classical amplitude chimeras
in the parameter space at the interface between the asymptotic
in-phase synchronized state and asymptotic OD states.

Futhermore, it is interesting to investigate how the network size
influences the dynamical regimes attained by the two networks. To
do so, we increase the size of each network from N = 100 oscillators
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FIG. 8. Amplitude chimeras lifetime tTrans vs coupling strength σ and vs the shift
|σ − σC| in the logarithmic scale, where σC marks the threshold between clas-
sical amplitude chimeras and damped amplitude chimeras. Black (respectively,
red) dots for classical (respectively, damped) amplitude chimeras. Network of inte-
ger-order van der Pol oscillators (a) and (b); network of integer-order Rayleigh
oscillators (c) and (d). The gray lines in (b) and (d) are fitting curves with the
formula tTrans (σ ) = b log (|σ − σC|) + d, where b and d are different sets of
fit parameters for each curve. For this figure, s = 3.5, and other parameters as
in Fig. 1.

to N = 200. Keeping the same initial conditions as above, the two
networks are studied using numerical simulations. For the two net-
works, we observe the same dynamical states as above. However, the
region of existence of asymptotic alternating OD states in the plane
(s, σ) shifts significantly to higher values of the coupling strength
σ in the case of the network of van der Pol oscillators. In other
words, the transition from the in-phase synchronized state to alter-
nating OD states occurs at higher values of σ compared to the case
N = 100. As a consequence, the growth of the lifetime of amplitude
chimeras observed for N = 100 as the value of σ approaches the
transition point σC is not anymore observed. Overall, in the case
of the network of van der Pol oscillators, the lifetime of classical
amplitude chimeras decreases with increasing size of the network,
a phenomenon observed in networks of Stuart–Landau oscillators.76

Contrarily, in the case of the network of Rayleigh oscillators, the
position of the transition point σC does not vary significantly. So,
the growth of the lifetime of the chimera states is still observed as
confirmed by Fig. 9. In addition, as shown by this figure, the rate
of growth of the chimeras lifetime increases with increasing size of
the network. Interestingly, as the value of the coupling strength σ

decreases coming closer to σC, damped amplitude chimera states
disappear at σ = σS and the amplitude chimeras become stable. In

FIG. 9. Lifetime tTrans of amplitude chimeras occurring in networks of integer-order
Rayleigh oscillators vs |σ − σC| in the logarithmic scale, where σC marks the
threshold between classical amplitude chimeras and damped amplitude chimeras:
(a) classical amplitude chimeras and (b) damped amplitude chimeras. Black
(respectively, magenta) dots for N = 100 (or N = 200, respectively). For this
figure, s = 3.5, and other parameters as in Fig. 1(b). σS is the critical value of σ
at which there is transition from damped amplitude chimeras to stable amplitude
chimeras.

this case, the bifurcation scenario can be read as follows: classi-
cal amplitude chimeras for σ < σC, stable amplitude chimeras for
σC < σ < σS, and damped amplitude chimeras for σ > σS. We
believe that the growth of the lifetime of chimera states might
become more and more drastic as the size of the network increases,
and as a consequence, the region σC < σ < σS of stable amplitude
chimeras might get larger.

The results depicted in Fig. 7 rely on the extensive numerical
simulations. In Sec. IV C, we will perform the stability analysis of
the in-phase synchronized state, coherent OD and alternating OD
states in order to verify the results of numerical simulations and to
predict the effect of fractional derivatives.

C. Linear stability analysis of dynamical states

For the study of the stability of the in-phase synchronized state,
coherent OD, and alternating OD states, we make use of the prop-
erties of the variational equations of the coupled fractional-order
systems. Let us recall that for certain parameter values, the in-phase
synchronized state and alternating OD states are asymptotic states
preceded by amplitude chimeras. The linear stability analysis pro-
ceeds in the same way as for the Stuart–Landau fractional-order
oscillator.11

We investigate the stability of a given state x∗ by considering
small perturbations δxk = xk − x∗. By linearizing Eq. (1) around x∗
we obtain the following variational equations:

Da
t δxk = DF (x∗) δxk +

σ

η

N
∑

j=1

GkjEδxj, (17)

where k = 1, 2, . . . , N and DF (x∗) is the Jacobian matrix of the
vector function F (·) evaluated on x∗. Equation (17) can be
treated using the discrete Fourier transforms of the sequence
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{

δxk, k = 1, 2, . . . , N
}

given by

ζn =
1

√
N

N
∑

j=1

δxj exp

(

2π ijn

N

)

, (18)

where n = 0, 1, 2, . . . , N − 1 and i2 = −1. Using the convolution
theorem for discrete Fourier transforms,77 Eq. (17) is block-
diagonalized and it reduces to the following N independent varia-
tional equations:

Da
t ζn =

[

DF (x∗) +
σ

η
γnE

]

ζn, (19)

where the eigenvalues of the connectivity matrix G are given by

γn = −η + 2

P−1
∑

r=1

[

1

rs
cos

(

2πrn

N

)]

+
(−1)n

Ps
. (20)

Note that these N variational equations only differ by the depen-
dence of γn on n, and that the sequence {γn, n = 1, 2, . . . , N − 1} is
symmetric with respect to n = N/ 2. Therefore, the study of N equa-
tions given by Eq. (17) is reduced to the study of N/ 2 + 1 equations
given Eq. (19) for n = 0, 1, 2, . . . , N/ 2.

1. Linear stability of the in-phase synchronized state

The synchronous state xSync defines the synchronization man-

ifold
{

xk (t) = xSync, ∀ k = 1, 2, . . . , N
}

. Accordingly, in the case of
synchrony of all oscillators, the coupling term in Eq. (1) vanishes and
Eq. (1) reduces to the equation of an uncoupled oscillator. Thus, the
state x∗ = xSync is the solution of Eq. (9). The in-phase synchronized
state is characterized by the eigenmode n = 0 since γ0 = 0, cor-
responding to the variational equation of an uncoupled oscillator.
The study of the stability of the in-phase synchronized state is, thus,
reduced to the study of the dynamical properties of the transverse
eigenmodes [ruled by Eq. (19) for n 6= 0] which may be expressed by
the conditional Lyapunov exponents λ1,2

n = limt→+∞ ln
(
∣

∣ζ 1,2
n

∣

∣

)/

t,
where n = 1, 2, . . . , N/ 2 and ζ 1,2

n are the two components of ζn.
A necessary condition for the linear stability of the in-phase syn-
chronized state is that the maximum Lyapunov exponent must be
negative,78 i.e.,

3Sync = max
n=1,2,...,N/ 2

(

max
(

λ1,2
n

))

< 0. (21)

Generally, the maximum Lyapunov exponent 3Sync as a function
of the eigenvalues of G is called master stability function, and it
describes the stability of the network78 when it is applied to all
eigenvalues. Therefore, the behavior of the master stability function
3Sync (σ , s, α) in dependence on the parameters σ , s, and α will be
considered in the following.

2. Stability of oscillation death states

An OD state is an inhomogeneous steady state where certain
oscillators populate the branch

(

x (t) , y (t)
)

≈
(

x∗, y∗
)

and the oth-

ers populate the branch
(

x (t) , y (t)
)

≈
(

−x∗, −y∗
)

, where x∗ and y∗
are independent of time.

As mentioned above, the coherent OD state is defined as
follows:

(

xk (t) , yk (t)
)

≈
(

x∗, y∗
)

for k ∈ (N/ 4, 3N/ 4] and

(

xk (t) , yk (t)
)

≈
(

−x∗, −y∗
)

elsewhere, and alternating OD states

are defined as follows:
(

xk (t) , yk (t)
)

≈
(

x∗, y∗
)

for k odd (or even,

respectively) and
(

xk (t) , yk (t)
)

≈
(

−x∗, −y∗
)

for k even (or odd,
respectively). With this, the equations for the oscillator k = 1 can
be derived from Eq. (1),

y∗ + x∗ −
x3

∗

3
= 0,

− x∗ − 2σ ′y∗ = 0

(22)

for the network of van der Pol oscillators and

ωy∗ − 2σ ′x∗ = 0,

µ
(

1 − y2
∗
)

y∗ − ωx∗ = 0
(23)

for the network of Rayleigh oscillators, where σ ′

= σ

[

1
/

(N/ 4)s + 2
∑P−1

r=N/ 4+1

(

1
/

rs
)

+ 1
/

Ps
]/

η for the coherent

OD state and σ ′ = 2σ
∑N/ 4−1

r=0

[

1
/

(2r + 1)s
]

/

η for alternating OD

states. Equations (22) and (23) admit a trivial solution, that is,
(

x∗, y∗
)

= (0, 0), and eventually two other solutions that emerge due

to the coupling, namely,
(

x∗, y∗
)

=
(

x−, y−
)

and
(

x∗, y∗
)

=
(

x+, y+
)

,

x± = ±

√

3

(

1 −
1

2σ ′

)

, y± = −
x±

2σ ′ , (24)

for the network of van der Pol oscillators, with σ ′ > σ ′
P = 1/ 2 and

x± =
ωy±

2σ ′ , y± = ±

√

1 −
ω2

2µσ ′ , (25)

for the network of Rayleigh oscillators, with σ ′ > σ ′
P = ω2

/

(2µ).

When the value of σ increases from 0, the trivial solution
(

x∗, y∗
)

= (0, 0) is the only solution of Eqs. (22) and (23) until at σ = σP

(corresponding to σ ′
P), a pitchfork bifurcation gives rise to the birth

of two symmetric solutions
(

x−, y−
)

and
(

x+, y+
)

, which represent
the emerging symmetry-breaking death states in the two networks.

The stability of these death states can be determined by the vari-

ational equations given by Eq. (19) with x∗ = x+ = (x+ y+)
T

and

x∗ = x− = (x− y−)
T

and with the degenerate eigenvalues spec-
trum of Eq. (20). We substitute ζn ∼ exp (λn±t) into Eq. (19) and
use Dα

t ζn ∼ λα
n± exp (λn±t) (see Ref. 70), where λn+ and λn− are the

eigenvalues associated with x+ and x−, respectively. Hence, λn± are
solutions of the characteristic equation,

det

(

DF (x±) +
σ

η
γnE − λα

n±I2

)

= 0, (26)

where I2 is the 2 × 2 unit matrix. This equation can be rewritten as
follows in the form of an algebraic equation:

λ2α
n± + bλα

n± + c = 0. (27)

Because, Eq. (27) contains only quadratic terms in x± and y±, and
according to Eqs. (24) and (25), x2

− = x2
+ and y2

− = y2
+, we find
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λn+ = λn−. Thus, the two solutions λ
1,2
n+ of Eq. (27) are

λ1,2
n+ =

(

−b ±
√

1

2

)
1
α

, or λ1,2
n+ =

(

−b ± i
√

−1

2

)
1
α

, (28)

according to the sign of 1 = b2 − 4c. The stability condition for
an OD state is that the real parts of all eigenvalues λ

1,2
n+ (for

n = 0, 1, 2, . . . , N/ 2) are negative, which yields

3COD,AOD = max
n=0,2,...,N/ 2

(

max
(

Re
(

λ1,2
n+
)))

< 0, (29)

where 3COD and 3AOD are the maximum real part of the eigenvalues
in the case of coherent and alternating OD states, respectively. As in
the case of the in-phase synchronized state, we define the following
OD master stability functions: 3COD (σ , s, α) and 3AOD (σ , s, α).

3. Stability analysis: The case of coupled integer-order

oscillators

Numerical simulation shows that for α → 1, 3Sync < 0 all
through the parameter spaces of Fig. 7, which means that the
in-phase synchronized state is stable throughout these parameter
spaces. However, as shown in Fig. 7, the in-phase synchronized
state does not cover all the parameter space in each network case.
Indeed, the in-phase synchronized state coexists in certain regions
of the parameter space with coherent OD and alternating OD states
as shown by the results of stability analysis depicted in Fig. 10.
For example, the in-phase synchronized state, coherent OD, and
alternating OD states may coexist in region A. The in-phase syn-
chronized state and alternating OD states may coexist in region B. In
region C, only the in-phase synchronized state may exist. However,
the realization of each of these states relies on the choice of the initial
conditions11 and may also rely on the interplay between the master
stability functions 3Sync, 3COD, and 3AOD. Indeed, although 3Sync,
3COD, and 3AOD all have negative values in region A, comparing

FIG. 10. Result of the stability analysis of dynamical regimes for α → 1 and other parameters as in Fig. 1: (a)–(c) network of van der Pol oscillators and (d)–(f) network of
Rayleigh oscillators. (a) and (d) Coherent OD and alternating OD stability regions with their boundaries 3COD = 0 and 3AOD = 0 and (b), (c), (e), and (f) interplay between
the master stability functions. The region above 3COD = 0 (respectively, 3AOD = 0) corresponds to stable coherent (respectively, alternating) OD states, i.e., in region A,
coherent OD and alternating OD are stable, in region B, only alternating OD is stable, and in region C, all these OD states are unstable or do not exist. Note that the in-phase
synchronized state is stable throughout the whole parameter space in the two networks considered as 3Sync (s, σ) < 0, which means that OD phenomena coexist with
in-phase synchronization in regions A and B, whereas in region C, the in-phase synchronized state is the only stable state. Coherent (respectively, alternating) OD does not
exist in the dark blue-colored regions in (b) and (e) [respectively, in (c) and (f)]. These phenomena may coexist with in-phase synchronization in multicolored regions, with the
stability regions shown in (a) and (d).
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FIG. 11. Effect of fractional derivatives on the stability regions of in-phase synchronization, coherent OD, and alternating OD: (a) network of van der Pol oscillators and (b)
network of Rayleigh oscillators. Coherent (respectively, alternating) OD states are stable in the region above3COD = 0 (respectively,3AOD = 0). The in-phase synchronized
state is stable in the region below3Sync = 0. These states do not exist or are unstable elsewhere. Note that the in-phase synchronized state is stable everywhere in the two
parameter spaces for α → 1 and α = 0.96. Other parameters as in Fig. 1.

the dynamical regimes in Fig. 7 and the corresponding stability dia-
grams in Fig. 10, one notices that the visualization of the coherent
OD region in Fig. 7(c) agrees very well with the stability condition
3COD < 0 marked by region A in Fig. 10(d). This means that the ini-
tial conditions considered in this work strongly favor the occurrence
of coherent OD in region A compared to in-phase synchronization
and alternating OD. However, in the case of the network of van der
Pol oscillators, there is a gap between region A in Fig. 10(a) and the
coherent OD region in Fig. 7(a) that matches rather with region D in
Fig. 10(a). Region D defined by |3COD| >

∣

∣3Sync

∣

∣ is a patch of region

A and its complement is region D̄ defined by
∣

∣3Sync

∣

∣ > |3COD|. Let
us point out that the larger is the master stability function |3| of a
state, the earlier this state might emerge as an asymptotic state. So,
as the three states mentioned above are in competition, when the
distribution of initial condition is not clearly favoring one state, the
state with larger dynamic master eigenvalue might take over because
its probability to emerge earlier is higher. So, in the case of the van
der Pol network, there is a strong competition between in-phase
synchronization and coherent OD in region A that splits up in two
subdomains: region D and region D̄, corresponding to coherent OD
and in-phase synchronization, respectively.

Still comparing Figs. 7 and 10, one can notice that alternat-
ing OD states are actually observed in stability regions defined by
3AOD < 0, i.e., region B. However, alternating OD states do not fill
completely their stability regions because they coexist with the in-
phase synchronized state and the distribution of initial conditions
is not favorable for their realization. To understand why alternat-
ing OD emerges in the patches of region B shown in Fig. 7, we
analyze the level of competition between alternating OD and in-
phase synchronization. To do so, we compare 3AOD and 3Sync

by visualizing
[

3Sync (s, σ) − 3AOD (s, σ)
]

. The regions where alter-
nating OD emerges in Fig. 7 match perfectly with the regions in
Figs. 10(c) and 10(f) where 3AOD is larger than 3Sync, and the surface
[

3Sync (s, σ) − 3AOD (s, σ)
]

has a bump, corresponding to an explo-
sion of the gap between 3AOD and 3Sync. These regions are visualized
in Figs. 10(c) and 10(f) by dark red color.

FIG. 12. Snapshots xk
(

tSnap
)

of some partially coherent OD states exhibited
by the network of fractional-order van der Pol oscillators for ε = 4 as in Fig. 1,
α = 0.88, σ = 5.6, and tSnap is any time instant taken after the transient regime.
In particular, this figure shows the transitions between different OD states when
the coupling exponent s varies: (a) s = 1: one-cluster solitary OD (1-SOD);
(b) s = 1.3: three-cluster chimera death (3-CD); (c) s = 1.6: five-cluster chimera
death (5-CD); and (d) s = 2.3: thirteen-cluster chimera death (13-CD).

Alternating OD states emerge for values of the coupling expo-
nent s that are higher than 2, corresponding to a coupling normal-
ization factor η < 3.25 that can be viewed as the mean number of
counterparts to which each oscillator is coupled in the case of a
nonlocal coupling scheme. This corresponds to a coupling range
η
/

(2N) < 0.016 25 that is favorable to the realization of amplitude
chimera states.13 This justifies why alternating OD states are pre-
ceded by amplitude chimeras, just like the in-phase synchronized
state at this scale of the coupling range.
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FIG. 13. Dynamical regimes of the network of van der Pol oscillators in the plane (s, σ) of coupling parameters for ε = 4 as in Fig. 1, and different values of the derivatives
order α: (a) α → 1; (b) α = 0.96; and (c) α = 0.88. Sync: in-phase synchronization, COD: coherent oscillation death, 1-SOD: one-cluster solitary oscillation death, 3-CD:
three-cluster chimera death, 5-CD: five-cluster chimera death, m-CD: multi-cluster chimera death (with m = 7, 9, 11, . . . ), and AOD: alternating oscillation death. The
in-phase synchronized state region is split up in two subdomains as in Fig. 7. In region Sync (2), the totally synchronized regime is preceded by an amplitude chimera of
lifetime tTrans ≥ 50T , where T is the period of oscillation of an uncoupled integer-order van der Pol oscillator. The boundaries of dynamical regimes regions obtained from the
stability analysis are superimposed on the maps.

4. Stability analysis: Fractional derivatives effect

For a fixed set (s, σ), the master stability function 3Sync (α)

increases with decreasing value of the fractional derivatives order
α. Whereas on the contrary, the OD dynamic master eigenvalues
3COD (α) and 3AOD (α) decrease with increasing value of α, result-
ing in the expansion of the stability regions of coherent OD and
alternating OD states as it is shown in Fig. 11. Overall, the simulta-
neous increase of 3Sync (α) and decrease of 3COD (α) and 3AOD (α)

with decreasing value of α express the tendency of synchronization
to disappear with decreasing value of α, for the benefit of OD states.

D. Dynamical behavior of the networks of

fractional-order oscillators

The sets of equations describing the considered networks of
fractional-order van der Pol and Rayleigh oscillators [Eq. (1) asso-
ciated with Eqs. (3) and (4), for α > αH] are solved with the
Adams–Bashforth–Moulton predictor–corrector method with the
help of the Matlab routineFDE_PI12_PC.79 In this routine, the dis-
crete convolutions (obtained by discretizing the integral in Eq. (2)
are evaluated by means of the fast Fourier transform algorithm

allowing to reduce considerably the computational cost compared
to the classical implementation, while preserving the order of
accuracy.79

Apart from the collective dynamical states exhibited by the net-
works of integer-order van der Pol and Rayleigh oscillators (see
Subsection IV A), multi-cluster chimera death states appear progres-
sively in the networks of fractional-order oscillators as the value of
the order of fractional derivatives α decreases. In particular at low
values of α, if the value of the coupling strength is fixed, an increase
in the coupling exponent s (i.e., a decrease in the coupling range)
leads to an increase in the degree of incoherence of the death states
and there is a transition from coherent two-cluster OD to totally
incoherent OD states via solitary OD states and chimera death states
(see Fig. 12). The number of solitary steady states in a solitary OD
pattern increases with increasing value of the coupling exponent
s. Thus, solitary oscillation death states represent a soft transition
to incoherent oscillation death since the oscillators are leaving the
coherent cluster gradually,11 just like solitary states represent a soft
transition to incoherent collective oscillatory behavior.7 In addition,
it is found here that the transition from the coherent OD state to
chimera death states goes through solitary OD states. In the same

FIG. 14. Dynamical regimes of the network of Rayleigh oscillators in the plane (s, σ) of coupling parameters for ω = 2 and µ = 1 as in Fig. 1, and different values of the
derivatives order α: (a) α → 1 ; (b) α = 0.96 ; and (c) α = 0.88. Other comments as in Fig. 13.
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way, it was recently found that classical solitary states may mediate
the transition from complete coherence to chimera states.80,81

All these dynamical regimes are mapped in the parameter
space with the help of the aforementioned characterization tools,
as shown in Figs. 13 and 14. As predicted by the above stability
analysis, the in-phase synchronized state disappears progressively
to the benefit of multi-cluster chimera death states and alternating
OD states whose degree of coherence decreases as α decreases. This
also means that, for high values of the coupling exponent s, classical
amplitude chimera patterns (corresponding to asymptotic in-phase
synchronized state) are replaced progressively by damped ampli-
tude chimera patterns (corresponding to asymptotic alternating OD
states).

E. Fractional derivatives effect on amplitude chimeras

It was shown in Ref. 11 that the distribution of initial condi-
tions described in the beginning of this section is not favorable to the
occurrence of stable amplitude chimeras in the network of integer-
order Stuart–Landau oscillators. However, it was found that under
the effect of fractional derivatives, the lifetime of damped amplitude
chimeras increases exponentially as the order of fractional deriva-
tives approaches a certain critical value, suggesting the occurrence of
a stable amplitude chimera at this critical value. It is worth pointing
out that the lifetime of amplitude chimeras strongly depends on the
initial conditions in the deterministic case.75 The phase–antiphase
(or antisymmetric) distribution of initial conditions has proved to
induce stable amplitude chimeras.16,61,75,82 In this work, we intend to
confirm the result in Ref. 11 according to which fractional deriva-
tives can help to induce long-living, even stable amplitude chimeras
with the distribution of initial conditions considered here. To do
so, we analyze the effect of fractional derivatives on the amplitude
chimera patterns shown in Figs. 2(b) and 3(d). Figure 15 shows that,
decreasing the derivatives order α from the value 1, the classical
amplitude chimera is transformed into damped amplitude chimera
at a critical point noted αC. Also, Fig. 15 shows that the lifetime tTrans

FIG. 15. Amplitude chimeras lifetime tTrans (in logarithmic scale) vs fractional
derivatives order α: (a) network of fractional-order van der Pol oscillators with the
parameters of Fig. 2(b) and (b) network of fractional-order Rayleigh oscillators with
the parameters of Fig. 3(d). Red (respectively, black) dots for classical (respec-
tively, damped) amplitude chimeras. The gray lines are fitting curves obtained with
the formula tTrans (α) = b exp (c/ (α − e)) + d, where b, c, d, and e are different
sets of fit parameters for each curve.

of these two types of amplitude chimeras grows exponentially as the
value of α comes closer to αC. At equal distances from αC, the life-
time of the damped amplitude chimera is extremely larger than that
of the classical amplitude chimera. The exponential growth of tTrans

at the two sides of αC is stopped at certain values of α very close to
αC, and one would expect a logarithmic dependence of tTrans with
respect to α in the exponentially narrow interval of α around αC, as
it is the case for tTrans (σ ) in Fig. 8.

V. CONCLUSION

In this paper, we have explored the impact of fractional deriva-
tives on the symmetry-breaking dynamics of coupled systems of
identical limit-cycle oscillators. In a previous work,11 it was found
that a decrease in the derivatives order induces significant qualita-
tive and quantitative changes in the symmetry-breaking dynamical
behavior of a network of fractional-order Stuart–Landau oscillators.
In the present work, we have considered two important limit-cycle
oscillators, namely, the van der Pol and Rayleigh oscillators. The
coupled systems of these two oscillator models are capable, as cou-
pled Stuart–Landau oscillators, to exhibit amplitude chimeras and
oscillation death phenomena. It was previously found that coupled
systems of Rayleigh oscillators can exhibit amplitude chimera states,
but their occurrence in a network of van der Pol oscillators has
not been observed yet. Studying networks of fractional-order ver-
sions of these two limit-cycle oscillators, we have demonstrated that
the results of the aforementioned previous work can be generalized.
At first, the coupled dynamics of integer-order oscillators has been
explored thoroughly. And, it has been found that the two coupled
systems can exhibit two types of amplitude chimeras, namely, the
classical amplitude chimera (transient to an in-phase synchronized
state) and a novel amplitude chimera state named here “damped
amplitude chimera,” whose (i) incoherent region(s) size increases
continuously in the course of time and (ii) drifting units oscillations
are damped continuously until they are quenched. Besides these
transient regimes with oscillatory behaviors, some simple oscillation
death states emerge in the behavior of the two networks. In particu-
lar, we have observed solitary oscillation death states in the behavior
of the network of Rayleigh oscillators. Then, the effect of fractional
derivatives has been investigated, which reveals that multi-cluster
chimera death states are induced in the networks’ dynamics by the
fractional derivatives. Under the effect of fractional derivatives, the
classical amplitude chimera is transformed into damped amplitude
chimera. Indeed, as the value of the fractional derivatives order
decreases, the lifetime of classical amplitude chimeras increases, and
there is a critical point at which there is a transition to damped
amplitude chimeras. In addition, damped amplitude chimera pat-
terns become gradually short-living transient states, which expresses
the tendency of the coupled systems to stabilization toward steady
states under the effect of fractional derivatives. Overall, a decrease
in the order of fractional derivatives reduces the networks’ ability
to synchronization and promotes diverse oscillation death patterns.
The results have been verified by the stability analysis of synchro-
nization and of some oscillation death states carried out with the
help of the properties of the dynamic eigenvalues associated with
the block-diagonalized variational equations of the coupled systems.
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The present study will deepen our understanding of the emergent
dynamics of coupled fractional-order systems.

ACKNOWLEDGMENTS

S. G. Ngueuteu Mbouna would like to acknowledge Professor
Roberto Garrappa (Department of Mathematics, University of Bari)
for having kindly provided him with the literature on the Matlab
routine FDE_PI12_PC.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

S. G. Ngueuteu Mbouna: Conceptualization (equal); Formal anal-
ysis (equal); Investigation (equal); Methodology (equal); Software
(equal); Writing – original draft (equal). Tanmoy Banerjee: Con-
ceptualization (equal); Supervision (equal); Writing – review &
editing (equal). Eckehard Schöll: Conceptualization (equal); Super-
vision (equal); Writing – review & editing (equal). René Yamapi:
Conceptualization (equal); Supervision (equal); Writing – review &
editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

REFERENCES
1A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept
in Nonlinear Science (Cambridge University Press, Cambridge, 2001).
2A. Balanov, N. Janson, D. Postnov, and O. Sosnovtseva, Synchronization: From
Simple to Complex (Springer-Verlag, Berlin, 2009).
3S. Strogatz, Sync: The Emerging Science of Spontaneous Order (Hyperion, New
York, 2003).
4S. Boccaletti, A. N. Pisarchik, C. I. del Genio, and A. Amann, Synchroniza-
tion: From Coupled Systems to Complex Networks (Cambridge University Press,
Cambridge, 2018).
5Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380
(2002).
6D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004).
7A. Zakharova, Chimera Patterns in Networks: Interplay between Dynamics,
Structure, Noise, and Delay (Springer Nature Switzerland AG, Cham, 2020).
8F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, and
M. Perc, Phys. Rep. 898, 1 (2021).
9A. Koseska, E. Volkov, and J. Kurths, Phys. Rep. 531, 173 (2013).
10W. Zou, D. V. Senthilkumar, M. Zhan, and J. Kurths, Phys. Rep. 931, 1 (2021).
11S. G. Ngueuteu Mbouna, T. Banerjee, R. Yamapi, and P. Woafo, Chaos Solitons
Fract. 157, 111945 (2022).
12I. Schneider, M. Kapeller, S. Loos, A. Zakharova, B. Fiedler, and E. Schöll, Phys.
Rev. E 92, 052915 (2015).
13A. Zakharova, M. Kapeller, and E. Schöll, Phys. Rev. Lett. 112, 154101 (2014).
14I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, and E. Schöll, Chaos 25,
083104 (2015).
15T. Banerjee and D. Ghosh, Phys. Rev. E 89, 062902 (2014).
16B. Bandyopadhyay, T. Khatun, P. S. Dutta, and T. Banerjee, Chaos Solitons
Fract. 139, 110289 (2020).
17A. Rontogiannis and A. Provata, Eur. Phys. J. B 94, 97 (2021).

18S. G. Ngueuteu Mbouna, T. Banerjee, and E. Schöll, Phys. Rev. E 107, 054204
(2023).
19T. Banerjee, P. S. Dutta, A. Zakharova, and E. Schöll, Phys. Rev. E 94, 032206
(2016).
20R. Caponetto, R. Dongola, L. Fortuna, and I. Petráš, Fractional Order Systems:
Modeling and Control Applications (World Scientific Publishing Co. Pte. Ltd.,
Singapore, 2010).
21R. C. Koeller, J. Appl. Mech. 51, 299 (1984).
22F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Intro-
duction to Mathematical Models (Imperial College Press, London, 2010).
23Fractional Dynamics: Recent Advances, edited by J. Klafter, S. C. Lim, and R.
Metzler (World Scientific Publishing Co. Pte. Ltd., Singapore, 2012).
24S. Westerlund and I. Ekstam, IEEE Trans. Dielectr. Electr. Insul. 1, 826
(1994).
25S. Westerlund, Dead Matter Has Memory! (Causal Consulting, Kalmar, 2002).
26S. Faraji and M. S. Tavazoei, Cent. Eur. J. Phys. 11, 836 (2013).
27I. Schäfer and K. Krüger, J. Phys. D: Appl. Phys. 41, 045001 (2008).
28R. L. Magin, Fractional Calculus in Bioengineering (Begell House, CT, 2006).
29R. L. Magin, Comput. Math. Appl. 59, 1586 (2010).
30B. N. Lundstrom, M. H. Higgs, W. J. Spain, and A. L. Fairhall, Nat. Neurosci.
11, 1335 (2008).
31W. Teka, T. M. Marinov, and F. Santamaria, PLOS Comput. Biol. 10, e1003526
(2014).
32I. Goychuk and P. Hänggi, Phys. Rev. E 70, 051915 (2004).
33S. Z. Rida, A. M. A. El-Sayed, and A. A. M. Arafa, J. Stat. Phys. 140, 797 (2010).
34C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, and J. H. T. Bates, Commun.
Nonlinear Sci. Numer. Simulat. 51, 141 (2017).
35C. li, X. Liao, and J. Yu, Phys. Rev. E 68, 067203 (2003).
36W. Deng, Phys. Rev. E 75, 056201 (2007).
37G. S. M. Ngueuteu and P. Woafo, Mech. Res. Commun. 46, 20 (2012).
38I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simula-
tion (Higher Education Press, Beijing, 2011).
39F. Zhang, G. Chen, C. Li, and J. Kurths, Philos. Trans. R. Soc. A 371, 20120155
(2013).
40Fractional Order Control and Synchronization of Chaotic Systems, edited by
A. T. Azar, S. Vaidyanathan, and A. Ouannas (Springer International Publishing
AG, Cham, 2017).
41G. S. M. Ngueuteu, R. Yamapi, and P. Woafo, Europhys. Lett. 112, 30004
(2015).
42Q. X. Liu, J. K. Liu, and Y. M. Chen, Commun. Nonlinear Sci. Numer. Simulat.
48, 414 (2017).
43Z. Sun, R. Xiao, X. Yang, and W. Xu, Chaos 28, 033109 (2018).
44R. Xiao, Z. Sun, X. Yang, and W. Xu, Commun. Nonlinear Sci. Numer. Simulat.
69, 168 (2019).
45S. Liu, Z. Sun, and N. Zhao, Chaos 30, 103108 (2020).
46Y. Liu, Z. Sun, X. Yang, and W. Xu, Commun. Nonlinear Sci. Numer. Simulat.
93, 105501 (2021).
47P. Vázquez-Guerrero, J. F. Gómez-Aguilar, F. Santamaria, and R. F. Escobar-
Jiménez, Physica A 539, 122896 (2020).
48S. He, Front. Appl. Math. Stat. 6, 24 (2020).
49D. Ghosh, T. Banerjee, and J. Kurths, Phys. Rev. E 92, 052908 (2015).
50K. Kumar, D. Biswas, T. Banerjee, W. Zou, J. Kurths, and D. V. Senthilkumar,
Phys. Rev. E 100, 052212 (2019).
51N. Zhao, Z. Sun, X. Yang, and W. Xu, Phys. Rev. E 97, 062203 (2018).
52A. Franci, M. A. Herrera-Valdez, M. Lara-Aparicio, and P. Padilla-Longoria,
Front. Appl. Math. Stat. 4, 51 (2018).
53S. Dixit, A. Sharma, and M. D. Shrimali, Phys. Lett. A 383, 125930 (2019).
54V. M. Bastidas, I. Omelchenko, A. Zakharova, E. Schöll, and T. Brandes, Phys.
Rev. E 92, 062924 (2015).
55C. R. Hens, A. Mishra, P. K. Roy, A. Sen, and S. K. Dana, Pramana 84, 229
(2015).
56S. Ulonska, I. Omelchenko, A. Zakharova, and E. Schöll, Chaos 26, 094825
(2016).
57J. Sawicki, I. Omelchenko, A. Zakharova, and E. Schöll, Eur. Phys. J. Spec. Top.
226, 1883 (2017).
58M. Desroches and M. R. Jeffrey, Proc. R. Soc. A 467, 2404 (2011).

Chaos 33, 063137 (2023); doi: 10.1063/5.0144713 33, 063137-15

Published under an exclusive license by AIP Publishing

 22 N
ovem

ber 2023 13:58:49

https://aip.scitation.org/journal/cha
https://doi.org/10.1103/PhysRevLett.93.174102
https://doi.org/10.1016/j.physrep.2020.10.003
https://doi.org/10.1016/j.physrep.2013.06.001
https://doi.org/10.1016/j.physrep.2021.07.004
https://doi.org/10.1016/j.chaos.2022.111945
https://doi.org/10.1103/PhysRevE.92.052915
https://doi.org/10.1103/PhysRevLett.112.154101
https://doi.org/10.1063/1.4927829
https://doi.org/10.1103/PhysRevE.89.062902
https://doi.org/10.1016/j.chaos.2020.110289
https://doi.org/10.1140/epjb/s10051-021-00097-9
https://doi.org/10.1103/PhysRevE.107.054204
https://doi.org/10.1103/PhysRevE.94.032206
https://doi.org/10.1115/1.3167616
https://doi.org/10.1109/94.326654
https://doi.org/10.2478/s11534-013-0255-8
https://doi.org/10.1088/0022-3727/41/4/045001
https://doi.org/10.1016/j.camwa.2009.08.039
https://doi.org/10.1038/nn.2212
https://doi.org/10.1371/journal.pcbi.1003526
https://doi.org/10.1103/PhysRevE.70.051915
https://doi.org/10.1007/s10955-010-0007-8
https://doi.org/10.1016/j.cnsns.2017.04.001
https://doi.org/10.1103/PhysRevE.68.067203
https://doi.org/10.1103/PhysRevE.75.056201
https://doi.org/10.1016/j.mechrescom.2012.08.003
https://doi.org/10.1098/rsta.2012.0155
https://doi.org/10.1209/0295-5075/112/30004
https://doi.org/10.1016/j.cnsns.2017.01.007
https://doi.org/10.1063/1.5019772
https://doi.org/10.1016/j.cnsns.2018.09.015
https://doi.org/10.1063/5.0012212
https://doi.org/10.1016/j.cnsns.2020.105501
https://doi.org/10.1016/j.physa.2019.122896
https://doi.org/10.3389/fams.2020.00024
https://doi.org/10.1103/PhysRevE.92.052908
https://doi.org/10.1103/PhysRevE.100.052212
https://doi.org/10.1103/PhysRevE.97.062203
https://doi.org/10.3389/fams.2018.00051
https://doi.org/10.1016/j.physleta.2019.125930
https://doi.org/10.1103/PhysRevE.92.062924
https://doi.org/10.1007/s12043-015-0941-8
https://doi.org/10.1063/1.4962913
https://doi.org/10.1140/epjst/e2017-70036-8
https://doi.org/10.1098/rspa.2011.0053


Chaos ARTICLE scitation.org/journal/cha

59D. Kaplan and L. Glass, Understanding Nonlinear Dynamics (Springer-Verlag,
New York, 1995).
60T. Kanamaru, Scholarpedia 2, 2202 (2007).
61T. Banerjee, D. Biswas, D. Ghosh, E. Schöll, and A. Zakharova, Chaos 28, 113124
(2018).
62S. E. de S. Pinto, S. R. Lopes, and R. L. Viana, Physica A 303, 339 (2002).
63A. M. dos Santos, C. F. Woellner, S. R. Lopes, A. M. Batista, and R. L. Viana,
Chaos Solitons Fract. 32, 702 (2007).
64C. Li and W. Deng, Appl. Math. Comput. 187, 777 (2007).
65L. Rayleigh, Lond. Edinb. Dublin Philos. Mag. J. Sci. 15, 229 (1883).
66R. FitzHugh, Biophys. J. 1, 445 (1961).
67J. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE 50, 2061 (1962).
68M. S. Tavazoei and M. Haeri, Automatica 45, 1886 (2009).
69H. R. Henrìquez, M. Pierri, and P. Tàboas, J. Math. Anal. Appl. 343, 1119 (2008).
70R. Garrappa, E. Kaslik, and M. Popolizio, Mathematics 7, 407 (2019).
71M.-S. Abdelouahab, R. Lozi, and G. Chen, Int. J. Bifurcat. Chaos 29, 1950111
(2019).

72K. Diethelm, N. J. Ford, and A. D. Freed, Nonlinear Dyn. 29, 3 (2002).
73C. Li, A. Chen, and J. Ye, J. Comput. Phys. 230, 3352 (2011).
74I. Omelchenko, O. E. Omel’chenko, P. Hövel, and E. Schöll, Phys. Rev. Lett. 110,
224101 (2013).
75L. Tumash, A. Zakharova, J. Lehnert, W. Just, and E. Schöll, Europhys. Lett. 117,
20001 (2017).
76S. A. M. Loos, J. C. Claussen, E. Schöll, and A. Zakharova, Phys. Rev. E 93,
012209 (2016).
77J. F. Heagy, T. L. Carroll, and L. M. Pecora, Phys. Rev. E 50, 1874 (1994).
78L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80, 2109 (1998).
79R. Garrappa, Mathematics 6, 16 (2018).
80P. Jaros, Y. Maistrenko, and T. Kapitaniak, Phys. Rev. E 91, 022907
(2015).
81L. Schülen, A. Gerdes, M. Wolfrum, and A. Zakharova, Phys. Rev. E 106,
L042203 (2022).
82K. Sathiyadevi, V. K. Chandrasekar, and D. V. Senthilkumar, Phys. Rev. E 98,
032301 (2018).

Chaos 33, 063137 (2023); doi: 10.1063/5.0144713 33, 063137-16

Published under an exclusive license by AIP Publishing

 22 N
ovem

ber 2023 13:58:49

https://aip.scitation.org/journal/cha
https://doi.org/10.4249/scholarpedia.2202
https://doi.org/10.1063/1.5054181
https://doi.org/10.1016/S0378-4371(01)00549-0
https://doi.org/10.1016/j.chaos.2005.11.055
https://doi.org/10.1016/j.amc.2006.08.163
https://doi.org/10.1080/14786448308627342
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1016/j.automatica.2009.04.001
https://doi.org/10.1016/j.jmaa.2008.02.023
https://doi.org/10.3390/math7050407
https://doi.org/10.1142/S0218127419501116
https://doi.org/10.1023/A:1016592219341
https://doi.org/10.1016/j.jcp.2011.01.030
https://doi.org/10.1103/PhysRevLett.110.224101
https://doi.org/10.1209/0295-5075/117/20001
https://doi.org/10.1103/PhysRevE.93.012209
https://doi.org/10.1103/PhysRevE.50.1874
https://doi.org/10.1103/PhysRevLett.80.2109
https://doi.org/10.3390/math6020016
https://doi.org/10.1103/PhysRevE.91.022907
https://doi.org/10.1103/PhysRevE.106.L042203
https://doi.org/10.1103/PhysRevE.98.032301

