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The social costs of tropical cyclones

Hazem Krichene1, Thomas Vogt 1, Franziska Piontek1, Tobias Geiger1,2,
Christof Schötz1 & Christian Otto 1

Tropical cyclones (TCs) can adversely affect economic development for more
than a decade. Yet, these long-term effects are not accounted for in current
estimates of the social cost of carbon (SCC), a key metric informing climate
policy on the societal costs of greenhouse gas emissions. We here derive
temperature-dependent damage functions for 41 TC-affected countries to
quantify the country-level SCC induced by the persistent growth effects of
damaging TCs. We find that accounting for TC impacts substantially increases
the global SCC by more than 20%; median global SCC increases from US$ 173
to US$ 212 per tonne of CO2 under a middle-of-the-road future emission and
socioeconomic development scenario. This increase is mainly driven by the
strongly TC-affected major greenhouse gas emitting countries India, USA,
China, Taiwan, and Japan. This suggests that the benefits of climate policies
could currently be substantially underestimated. Adequately accounting for
the damages of extreme weather events in policy evaluation may therefore
help to prevent a critical lack of climate action.

Tropical cyclones (TCs) are among themost harmful extreme weather
events. They affect on average 20.4 million people annually, and they
caused mean direct annual economic losses of US$ 51.5 billion aver-
aged over the last decade1. Critically, there is increasing empirical
evidence that TC impacts can reduce economic growth in the affected
country for more than a decade2–4. In consequence, the economic
repercussions of subsequent events can overlap in TC-prone coun-
tries, leaving insufficient time for the economy to recover in
between5,6. In this way, the long-term reductions in economic growth
may harm economic development even more strongly than the direct
loss and damage caused by the TC landfalls7–9. The projected increase
in the frequency of themost intense TCs under global warming10,11 may
render overlapping economic repercussions more likely, amplifying
long-term growth losses in the absence of additional adaptation
measures. This may deteriorate the development perspectives, espe-
cially for strongly affected low- and middle-income countries3,12,13.
(Throughout the study, we group countries according to the 2024
World Bank’s country income classification scale into high-income
(2022 per–capita gross national income (GNIpc) US$≥13, 846), upper-
middle-income (US$4, 466≤GNIpc≤US$13, 845)), lower-middle-income
(US$1, 136≤GNIpc≤US$4, 465), and low-income countries (GNIp-
c≤US$1, 135)).

Over the years, a number of TC damage functions were devel-
oped, ranging from rather simple estimations of how damages change
with global mean temperature (GMT) and socioeconomic
development14,15 tomore complex event-based approaches accounting
for characteristics of individual storms suchas areas affectedby strong
TC winds16 and lifetime rainfall17. Many works are USA specific18–23 or
employ damage functions derived for the USA to estimate damages in
other countries24,25. Considerably fewer studies derive damage func-
tions accounting for the TC climatology and socioeconomic vulner-
abilities of other TC-prone countries such as the Philippines26,27,
China28, or South-Korea17, or to derive global sets of region-specific
damage functions29,30. With the notable exceptions of Hsiang et al.4

and Elliott et al.25, projections of future damages in the literature are
based on damage functions which statistically link TC predictors to
reported (direct) damages. This approach has the advantage that
damage databases can be employed for calibration, but it does not
allow to account for the persistence of damages in the economic sys-
tem. This could result in an underestimation of (future) damages and
limit the applicability of these earlier estimates for national policy-
makers and actors of international climate finance charged with esti-
mating adaptation needs at the country level and comparing them
across countries.
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We here present a modeling framework to quantify future TC
damages that comprises three components. First, we estimate the
historical growth responses of countries to TC strikes accounting for
the persistence of damages in the economic system. Second, we gen-
erate probabilistic, event-based projections of TC damages by pro-
jecting the historical growth losses along a large set of synthetic time
series of TCswith landfalls generatedwith a TC emulator31. Accounting
for different emission (Representative Concentration Pathways
(RCPs)32), socioeconomic development (Shared Socioeconomic Path-
ways (SSPs)33,34), and economic discounting scenario combinations
thereby allows for a systematic assessment of compounding uncer-
tainties. Third, we derive event-based, and country-specific tempera-
ture-dependent damage functions that account for the persistence of
damages in the economic system from the growth losses calculated
along the different scenario combinations. Similarly to earlier works
by Mendelsohn et al. 35 and Bakkensen et al.17, we employ large sets of
synthetic TCs with landfall to account for changes in TC climatology
with global warming. In addition, we here account for the persistence
of damages in the economic system, building on earlier works
by Elliott et al.25 and Hsiang et al.4. We finally express damages as
functions of GMT change. These temperature damage functions are
needed by most climate integrated assessment models to weigh the
costs of mitigation and adaptation measures with the remaining cli-
mate change impacts15. In our analyses, we focus on two com-
plementary metrics of high policy relevance: i) the discounted annual
damage (DAD) caused by TCs and ii) the contribution of TCs to the
social cost of carbon (SCC). Both metrics are projected for different
RCP-SSP scenario combinations and discounting choices in order to
allow for a thorough sensitivity assessment. The DAD is a measure for
the additional TC-induced future economic burdens of countries
induced by climate change. It reveals adaptation needs and allows the
development of tailored evidence-based National Adaptation Plans
(NAPs)36. We calculate DAD for 41 TC-prone countries and – given our

globally harmonized approach – compare the DAD among these
countries. The SCC allows to directly measure the costs arising for the
global society from additional CO2 emissions which is why it is a key
metric when it comes to informing the international climate negotia-
tions and national mitigation decisions37. However, common approa-
ches to estimate the SCC have been criticized for not adequately
accounting for the contributions of extreme weather events38,39. Our
SCC estimates are based on Ricke et al.40. This approach allows us to
calculate the SCC globally as well as the contributions of individual
countries. While the original estimates by Ricke et al. do not comprise
the contributions of extreme weather events, we here employ our
event-based temperature-dependent damage functions to quantify the
contribution from TCs to the overall SCC.

Results
Historical growth responses of countries to tropical cyclones
We empirically estimate the long-term response of economic growth
rates to TC strikes for a sample of 41 TC-affected countries over the
historical period 1981–2015 (Fig. 1a). To avoid the potential endo-
geneity issues of earlier works using Barro-type growth regressions
(see ref. 3 for a detailed discussion), we employ a three-way fixed
effects panel model with annual national shares of people exposed to
TCs for different lag-years as exogenous predictors introduced in
ref. 2. We add methodologically to this previous work in two regards.
First, we additionally control for the impact of temperature on growth.
Thereby,we follow the approachof Burke et al.41 and account for linear
and quadratic terms in population-weighted annual mean tempera-
tures over land for a set of 174 countries that includes the 41 TC-
affected countries. Estimating temperature and TC impacts on growth
in a single regression framework allows also to investigate potential
interactions of both effects. If temperature and TCs can be considered
as independent impact channels, their contributions to growth losses
become additive. We find that including TC effects does not affect the

Fig. 1 | Long-term economic growth response to tropical cyclones. aMap of the
set of 41 countries that are considered to be exposed to tropical cyclones in this
analysis. b Average historical responses of per-capita GDP growth to tropical
cyclone exposure as a function of lag years for selected countries (colors) and on
global average (gray). Shaded areas indicate the 66% confidence intervals (as

obtained from 1200 bootstraps (uncertainty dimension 1 in Table 1; n = 42, 000
data points per country (Methods)). cDistributions of growth responses for model
configurationswith 2, 5, 8, 12, and 15 lagyears (color code). Vertical lineswith circles
denote the medians of the distributions with 0–-15 lag years (n = 42, 000 data
points per country).
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temperature effect at the 10% level of significance and vice versa
(Methods). This suggests that TC impacts are indeed an additional
impact channel not captured by population-weighted temperature
over land alone (Fig. S1 and Methods). This is plausible because TC
activity is rather linked to sea-surface temperature than to air tem-
perature over land, and the number and locations of TCswith landfall–
and thus the national annual shares of people exposed – are strongly
influenced by confounding factors (e.g., atmospheric circulation con-
ditions such as shear winds, location of genesis)42. Second, we employ
a maximum entropy bootstrapping method43 to express the uncer-
tainties associated with the historical growth estimates. This approach
also allows us to propagate the uncertainty to future projections of TC
damages. The bootstrapping preserves spatio-temporal correlation
patterns of the predictor resulting from TCs affecting more than one
country. We generate 1200 bootstraps for each country and estimate
the growth response individually for each bootstrap (Methods).

We find that TC strikes reduce growth in the short-, mid-, and
long-term. Cumulative (median) growth losses first monotonously
increase with the number of lag years considered before they some-
what remain constant for 6–13 lags (Fig. 1c). This highlights the
importance to account for the accumulation of persistent growth
impacts also in the future projection of TC damages. In the remainder
of this paper, we use a model with eight lag years asmain specification
since it represents the best compromise between capturing the full
persistence of damages and statistical robustness (Methods). The
heterogeneous exposure of countries to TCs leads to substantially
different induced growth losses (Figs. 1b, S3, and S5–S11). For instance,
we find that the average annual growth losses for strongly exposed
countries such as Japan (1.63%) or the Philippines (2.62%) were in the
historical period on average 10 and 15 times higher than for the only
partially exposed USA (0.17%).

Uncertainty dimensions of future damage projections
Future projections of climate damages are subject to substantial and
compounding climate and socioeconomic uncertainties44. For the
projections of TC damages in terms of DAD and TC-induced SCC, we
identify six relevant uncertainty dimensions (UD) which we map out
carefully by a combination of scenario analysis and probabilistic
methods such as bootstrapping (Table 1).

The first and the second dimensions cover the dependency of our
estimates on assumptions on future emissions and socioeconomic
development. We here span a broad range of different emission

futures by accounting for three RCPs32 and account for dependencies
regarding future population and economic development by two dif-
ferent SSPs34.

With the third uncertainty dimension, we capture the impact of
normative assumptions on how the global society weighs future
compared to present TC damages. These are expressed by discount
rates ρ + ηg that are adjusted by the economic growth rate g of the
considered country45. In order to cover a broad range of discounting
assumptions, we assess three standard choices for the rate of pure
time preference ρ and the consumption elasticity of marginal utility
η in the literature (as in the standard calibration of Nordhaus’s DICE
model46, in the Stern Review47, and as used by Ricke et al.40). Increasing
ρ reduces the relativeweight withwhich society rates future compared
to present damages while increasing η enhances the willingness of
society to further down-weight futuredamages if they foster economic
and thus consumption growth today.

The fourth, fifth and sixth dimensions cover structural modeling
uncertainties that occur along each of the different scenario combi-
nations, i.e. uncertaintydimensions 1–3. The fourthdimension consists
of uncertainties regarding the historical growth response of countries
to TCs which is captured by bootstrapping. With the fifth dimension,
we cover uncertainties regarding the changes of TC impacts (e.g., with
respect to their location, timing, intensity, and frequency distributions
of landfall) under future greenhouse gas (GHG) emissions. To this end,
we make use of the statistical TC emulator introduced in ref. 31 that
generates probabilistic time series of TCs based on the output from
four different global climate models. We use the emulator to generate
100 probabilistic time series of TCs with landfall for each ocean basin
where TCs occur and separately for each of the four underlying global
climatemodels. These simulations are performed for each of the three
RCPs and a “no further climate change" baseline scenario. The sixth
dimension captures uncertainties regarding the response of global
mean temperature to the emission of an additional ton of CO2 over the
course of 100 years48.

Uncertainty dimensions 4–6 are fully propagated throughout the
modeling chain to account for compounding uncertainties, and results
are averaged only at the very end of themodeling chain and separately
for each of the RCP-SSP-discounting scenario combinations.

Discounted annual damage by tropical cyclones
To evaluate how TCs will affect TC-prone countries under global
warming, we here estimate the DAD over the period 2010–2100 as the

Table 1 | The six compounding uncertainty dimensions (UD) covered in the projections of tropical cyclone (TC) damages

Method Uncertainty dimension (UD) Coverage

Scenario analysis Future greenhouse gas emissions (UD1) A “no further climate change” baseline scenario and 3 representative concentration path-
ways (RCPs)32: RCP2.6, a Paris-compatible strong mitigation scenario where global GHG
emissions already peak in 2020, RCP6.0, a “business-as-usual” scenariowith peak emissions
in 2080, and RCP8.5, a strong emission scenario where emissions continuously increase
until 2100.

Socioeconomic development (UD2) 2 Shared Socioeconomic Pathways (SSPs34): SSP2, amiddle-of-the-road scenariowith regard
to economic and population growth, and SSP5, a strong fossil-fuel-based economic growth
scenario with comparably low population growth.

Normative assumptions on discounting (UD3) 3 scenarios on how society weighs future compared to present TC damages. Choices of
growth adjusted discount rate ρ + ηg, where ρ, η and g denote the rate of pure time pre-
ference, the consumption elasticity of marginal utility, and the country-specific growth rate,
respectively, comprise the standard calibration of Nordhaus’s DICE model46 (ρ = 1.5%, η =
1.45), the discounting assumed in the Stern review47 (ρ = 0.1%, η = 1.01), and the main spe-
cification by Ricke et al.40 (ρ = 2%, η = 1.5).

Probabilistic analysis Historical growth response of countries to
TCs (UD4)

1200 bootstraps per country generated with a maximum entropy bootstrap method43

respecting the spatial dependence structure of the original panel data.

Response of TC impacts to future greenhouse
gas emissions (UD5)

TC impact emulator31 employed to generate 400 probabilistic time series of TCs with land-
fall, i.e., 100 time series for each of the 4 underlying global climate models.

Response of temperature to a greenhouse gas
emission pulse (UD6)

For each of the 4 underlying global climatemodels, and each of 15 carbon-cyclemodels, the
response of global mean temperature to an additional emission pulse over the course of 100
years48, as required in the SCC calculation.
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discounted difference of the national GDP trajectories with and with-
out additional warming. We use the “no further climate change”
baseline scenario as a reference to compare additional effects of global
warming to present levels (Methods). To this end, we first calculate the
wind field along each synthetic TC track and superimpose it with
gridded population projections of the SSPs, to obtain time series of
national shares of affected people. We choose 2010 as the start year
ensuring that all projections start from the same initial population
distributions and GDP levels. For each RCP-SSP-combination, TC rea-
lization, and bootstrap, we then calculate the resulting time series of
national shares of affected people (e.g., see Fig. S4a, b for the USA
under SSP2 and SSP5, respectively). Assuming that TCs in the future
have the same long-term impacts on economic growth as in the his-
torical period, we employ the empirical growth model to translate the
shares of affected people into deviations of the national GDP pathways
as provided by the SSPs (by construction, climate impacts are not
accounted for in the SSPs33). Propagating all uncertainty dimensions to
the very end, this amounts to 2,880,000perturbedGDP time series for
each of the 41 TC-affected countries (e.g., see Fig. S4e, f for the USA
under SSP2 andSSP5, respectively). In the following,wewill refer to the
combination of RCP6.0-SSP2 and Ricke’s discounting choice (cf.
Table 1) as the main specification.

The global sum of the DAD is obtained by summing the DADs
across all countries. The median global DAD averaged over the future
period 2010–2100 and across uncertainty dimensions 4 and 5 (cf.
Table 1) is positive across all RCP-SSP-discounting scenarios and ran-
ges from 0.18% of global GDP in 2021 for the main specification up to
1.13% for RCP8.5-SSP5 and Stern’s discounting choice (Fig. 2a and
Tbl. S1). Discounting represents the primary source of uncertainty
(uncertainty dimension 3 in Table 1); across all six RCP-SSP combina-
tions, the median average global DAD for the lowest discount rate
(Stern) is by a factor four higher than for the highest discount rate
(Ricke). Uncertaintieswith regard to changes of the predictor (national
shares of affected people) along the RCP pathways relative to the “no
further climate change”-baseline scenario for each of the four GCMs
(uncertainty dimension 5 in Table 1) are the 2nd largest source of
uncertainty, followed by uncertainties with regard to the historical
growth response to TC strikes (uncertainty dimension 4 in Table 1).
Due to the effect of discounting, the variation of DAD across the 91
years of the averaging period (2010–2100) is comparably low and
converges after 2070 (Figs. 2a and S14).

In absolute terms, themedian average DADper-capita (DADpc) of
the sixmost strongly exposed high-income countries, ranging fromUS
$ 170 (USA) to 2046 (Taiwan), is substantially higher than for the Phi-
lippines (US$ 139) andMauritius (US$ 216) as the most affected lower-
middle-income country and upper-middle-income country, respec-
tively (Fig. 2b and Table S2). However, this difference between the
income groups shrinks when DAD are measured relative to 2019
Average Household Income (AHI). For instance, the relative DADpc of
the upper-middle-income island states of Mauritius (0.71% of AHI) and
Jamaica (0.33% of AHI) aswell as of the lower-middle-income countries
of the Philippines (0.93%ofAHI) andVietnam (0.29%ofAHI) are higher
than for the USA (0.21% of AHI). This corresponds to 1.22, 3.39, 1.07
days of income lost per year for an average household in Jamaica, the
Philippines, and Vietnam compared to 0.82 days of income lost per
year for an average U.S. household. The DADpc strongly increase for
lower values of the discount rate. For instance, the days of income lost
per year for an average household in the Philippines increase from3.39
to 12.21 under RCP6.0-SSP2 and Stern’s low choice of the discount rate
(Fig. S13).

Country-level temperature-dependent damage functions
Climate integrated assessment models that are used to calculate
optimal mitigation pathways in the presence of climate damages
typically lack a detailed climate model to keep computational

expenses manageable. Instead, they employ reduced form relations37,
or simple climatemodels (e.g., MAGICC49) to calculate the response of
GMT to GHG emissions. Temperature damage functions are then used
to translate warming levels into economic damages, which allows to
weigh the costs of mitigation measures with the avoided damages
along endogenously calculated, non-standard (i.e., non-RCP) emission
pathways. These functions are usually highly aggregated and lack the
ability to resolve climate extremes and their impacts rigorously50. By
contrast, we here derive event-based, country-level temperature-
dependent damage functions for TCs that account for the persistence
of damages in the economic system, and employ them to assess the
contribution of TCs to the SCC.

A priori, it is not certainwhether TC-induced growth losses can be
expressed as time-independent functions of GMT for two main rea-
sons. First, while GMT is closely related to other variables, such as
boundary layer moisture content or sea level rise, changes in the fre-
quency and intensity of TCs with landfall also depend upon changes in
other meteorological variables such as atmospheric circulation chan-
ges (e.g. shear winds)11. This could render damages dependent upon
the warming trajectories and thus the underlying RCP scenarios. On
the other hand, changes in socioeconomic variables such as popula-
tion development differ between the SSP scenarios, and this could
result in an SSP dependence of damages. We use F-tests to test for
structural dependencies of the relationship between GMT and TC-
induced growth rate changes upon the underlying RCP and SSP sce-
narios (Methods). We find that the relationship is independent of the
SSP scenarios at the 10% level of significance. This may be surprising at
first because for different SSPs the TCs with landfall affect rather dif-
ferent national populations. However, the within-country population
distributions are so similar that the national shares of affected people
(the damage predictors) are very similar for both SSPs (cf. Fig. S4a, b
for the USA under SSP2 and SSP5, respectively); for 90% (95%) of the
national shares of people exposed for a specific RCP-year-country
combination, the difference between the SSPs is less than 5% (10%). By
contrast, the relationship depends (weakly) upon the RCPs, globally
(Fig. 3a) as well as at the country-level (Figs. S14 and S15). We account
for these dependencies as random effects in our regression analysis
using a mixed-effects modeling approach (Methods) (see Fig. 3a for a
visualization on the global level, and Figs. S14 and S15 for the country-
level regressions). The comparably weak RCP dependence is inherited
from the weak dependence of the national shares of affected people
upon the RCPs (cf. Fig. S4c, d for the example of the USA under SSP2
and SSP5, respectively).

For 37 out of the 41 TC-affected countries considered, we find
growth losses to robustly increase with GMT (Fig. 3b, confidence
intervals established from uncertainty dimensions 4 and 5, Methods).
We find similar shares of significantly negatively affected countries
across all four income groups (high-income countries 91% (10 out of
11), upper-middle-income countries 85% (11 out of 13), lower-middle-
income countries 93% (14 out of 15), and low-income countries 100% (2
out of 2)). This clearly illustrates that growth losses do not depend on
the development level but rather on country-specific characteristics.
Thus, also growth in high-income countries is negatively affected by
TCs suggesting that, even in this country group, historically imple-
mented adaptation measures may not suffice to compensate for cli-
mate change-induced loss increases in the future.

Tropical cyclone-induced social cost of carbon
We next employ the temperature-dependent damage functions to
estimate the SCC induced by TCs. To this end, we use an approach
introduced by Ricke et al.40 which evaluates the difference in future
GDPper–capita projections under climate damagewith andwithout an
additional emission pulse (Methods). This allows us to estimate the
SCC at the country-level as well as globally, where the global SCC is
defined as the sum of the country-level contributions. To estimate the
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SCC, Ricke et al.40 use the statistical relationship between per-capita
GDP growth and population-weighted annualmean temperatures over
land derived by Burke et al.41. For consistency reasons and to avoid
double counting, we here combine Burke’s temperature terms with
terms measuring the TC impacts in a common regression framework

(Methods). Calculating the SCC once with and once without TC
impacts and subtracting the latter from the former allows us to esti-
mate the absolute TC-induced SCC (TC-SCC) as well as the relative
increase in SCC due to TCs. For our main specification and without TC
impacts, we find a median global SCC of US$/tCO2 173 (2005 constant

Fig. 2 | Discounted annual damage by tropical cyclones. a Upper panel: Median
global discounted annual damage (DAD) from tropical cyclone impacts averaged
over the period 2010−2100 for three Representative Concentration Pathways
(RCP2.6, 6.0, 8.5), two Shared Socioeconomic Pathways (SSP2 and SSP5), and three
different values of the growth adjusted discount rates used in the Stern review47, for
the standard calibration of Nordhaus’s DICE model46, and by Ricke et al.40 (color
code, Table 1) in TrillionUS$ (left y-axis) and relative to globalworld product (GWP,
right y-axis). Black horizontal lines, andbounds of boxes indicatemedian losses and
66% confidence interval (17–83%) accounting for uncertainty dimensions (UDs) 4
and 5 (n = 120, 000 realizations (Table 1)). Lower panel: Quantification of uncer-
tainties for the main specification (RCP6.0-SSP2, and Ricke’s discounting choice).
The uncertainty drivers listed on the y-axis are allowed to vary, all other dimensions
of uncertainties are averagedout (Table 1). Each vertical line is a point estimate. Red

lines, and bounds of shaded boxes denote themedian and 66% confidence interval
(17–83%) across each of the listed sources of uncertainty, respectively. b Median
country-level per-capita DAD averaged over the period 2010–2100 for the 20most
impacted countries and the main specification (RCP6.0-SSP2, and Ricke’s dis-
counting choice). Black whiskers indicate the 66% confidence interval (17–83%)
accounting for the uncertainty dimensions 4 and 5 (n = 120, 000 realizations per
country (Table 1)). c Median average per-capita DAD for the main specification
relative to 2019 average household income (left y-axis); note log-scale on x-axis.
The right y-axis shows median per-capita DAD in terms of days of average house-
hold income lost. The quadrants classify countries by above (high) and below (low)
median income and per-capita DADacross the exposed countries forwhich income
data is available. See supplementary Tbl. S2 for country codes in b and c.
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US$) (66% confidence interval (CI): US$/tCO2 108–266) (Tbls. S4 and
S5). When accounting for TCs, median SCC increases substantially by
22% to US$/tCO2 212 (138–318). Not surprisingly, the global SCC is
highest for the strongest emission scenario RCP8.5 for both SSP sce-
narios (e.g., US$/tCO2 361 (222–588) vs. US$/tCO2 212 (138–318) for the
main specification). As for the DAD, we find that the discount rate has
the largest impact on the SCC estimates across all six RCP-SSP scenario
combinations; for the lowest discount rate (Stern) the global SCC
(including TC effects and for SSP2-RCP6.0) is US$/tCO2 1654
(1122–2361), more than seven times higher than for the highest dis-
count rate (our main specification).

The TC-SCC of a country is determined by its exposure and eco-
nomic vulnerability to TCs (as described by the damage functions) but
also by its economic output. Since the latter is closely linked to the
country’s GHG emissions51, only strongly affected large emitters have
notable TC-induced increases in SCC (Fig. 4b). In absolute terms, the
USAperceives the largest increase inmedian SCC throughTCs fromUS
$/tCO2 13 (66% CI: US$/tCO2 3–26) to 20 (8–35), representing 17.7% of
the median global TC-SCC, followed by Japan (from US$/tCO2 1 (0–2)
to 8 (5–12), 17.6% of global median TC-SCC), Taiwan (from US$/tCO2 2
(2–3) to 8 (5–12), 14.4% of global median TC-SCC), China (from US

$/tCO2 8 (3–16) to 14 (7–23), 14.4%of globalmedianTC-SCC), and India
(from US$/tCO2 43 (30–64) to 47 (33–70), 11.3% of global median TC-
SCC). While median country-level TC-SCC is moderate (e.g., US$/tCO2

6.64 for the USA), it is subject to relatively large uncertainties, and
there are high tail risks (Fig. 4b). For instance, the 66% CI (established
from uncertainty dimensions 4–6) for the USA spans from US$/tCO2

4.34 to 9.79 (Fig. 4c).

Discussion
We combine process-based modeling of the population exposure to
TCs with an empirical growth model into a transparent, tractable, and
openly accessible framework for assessing the future socioeconomic
impacts of these events.We apply the framework to TCsbut it couldbe
extended to other categories of extreme weather events for which
event-based projections of impact indicators are available. These are,
for instance, provided by impact model inter-comparison projects52.

With DAD and TC-SCC, we employ two complementarymetrics to
quantify the additional burdens that climate change imposes on
national economies and societies through TC impacts. For both
metrics, we show the importance of empirically constraining the per-
sistence of growth losses in the economic system and accounting for

Fig. 3 | Temperature-dependent damage functions for tropical cyclone induced
growth losses. a Visualization of the quasi-universal scaling of global (country-
averaged) tropical cyclone-induced growth losses with global mean temperature
(GMT) change (relative to pre-industrial levels) across Representative Concentra-
tion Pathways (RCPs) 2.6 (blue), 6.0 (orange), and 8.5 (red). Large ellipses and
markers denote the one-standard-deviation confidence range and the 66% con-
fidence range of annual relative growth losses for each RCP across uncertainty
dimensions 2, 4, and 5 (n=240, 000 realizations (Table 1)). The lines and shaded
areas illustrate the result of the mixed-effects model fit: The black line is the fixed
effect shared by all RCPs while the colored lines include the RCP-specific random
effects. Shaded areas indicate 66% confidence intervals. Since the average across
countries is unweighted, the figure provides only a visualization of the relative RCP

and SSP independence of the damage functions; for quantitative estimates refer to
country-level damage functions (Figs. S14 and S15 and b). b Country-level growth
rate changes per degree of GMT change for high-income, upper-middle-income,
lower-middle-income, and low-income countries (World Bank’s 2024 income clas-
sification scale (https://datahelpdesk.worldbank.org/knowledgebase/articles/
906519)). Black horizontal lines and bounds of boxes indicate median losses and
66% confidence intervals as obtained from uncertainty dimensions 4 and 5
(n = 120, 000 realizations per country (Table 1)), respectively, and red and gray
colors denote statistically significant and non-significant results, respectively.
Coefficients of country-level damage functions are provided in Tbl. S3. Parameters:
8 lag years and Ricke’s discounting choice (main specification).
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them in the estimates of TC damages (Figs. S5–S11). Our DAD analysis
reveals that differences in income among countries must not be
neglected when estimating and comparing the adaptation challenges
of countries. In per-capita terms, absolute DADs are highest for
strongly exposed high-income countries such as Taiwan, Japan, and
the USA. However, when DAD is measured relative to average house-
hold income, the damages for the strongly exposed, upper-middle-
income island states of Mauritius and Jamaica but also for the lower-
middle-income countries of the Philippines and Vietnam become
comparable to those of the USA. For an average household, these
range from one to more than 10 days of income lost per year, strongly
depending upon assumptions on discounting (cf. Fig. S13a). Since low-
and middle-income countries often have less financial means to sup-
port their domestic population and invest in reconstruction efforts in
the disaster aftermath53, our estimates suggest that, in relative terms,
TC-prone low- and middle-income countries could face even larger

adaptation challenges than their high-income counterparts. Further,
our DAD analysis likely underestimates the economic implications for
lower-income populations that are often more exposed to – and need
longer to recover from – TC strikes54.

There is a large number of SCC estimates in the literature. A
recent meta-analysis including 207 studies andmore than 5,000 SCC
estimates finds that median SCC estimates have quadrupled over the
last decade from US$/tCO2 48 in 2007–2012 to US$/tCO2 328 in
2018–2022 for Ricke’s choice of the rate of pure time preference
(ρ = 2%, our main specification)55. This increase reflects our growing
knowledge on climate impacts. Our preferred estimate is with US
$/tCO2 212 (66% CI: US$/tCO2 138–318) somewhat lower than the
median estimate of the meta-analysis for 2018–2022. This is not
surprising since we only resolve the impacts from annual tempera-
tures and TCs, explicitly. While our approach may still account
implicitly for other impact channels such as health impacts56, several

Fig. 4 | Tropical cyclone-induced social cost of carbon. a Global median social
cost of carbon (SCC) for the period 2010–2100 with and without TC effects, for
three Representative Concentration Pathways (RCP2.6, 6.0, 8.5), two Shared
Socioeconomic Pathways (SSPs 2 and 5), and three different values of the growth-
adjusted discount rates used in the Stern review47, for the standard calibration of
Nordhaus’s DICE model46, and by Ricke et al.40 (color code, Table 1). Error bars
indicate the 66% confidence interval (17–83%) accounting for the uncertainty
dimensions 4–6 (n = 7, 200, 000 realizations (Table 1)).bMedian country-level SCC

with and without TC effects. Error bars indicate the 66% confidence interval
(17–83%) accounting for the uncertainty dimensions 4–6 (n = 7, 200, 000 realiza-
tions per country (Table 1)). c Probability distributions of the country-level TC-SCC
across uncertainty dimensions 4–6 for Ricke’s choice of the discount rate
(n = 7, 200, 000 realizations per country (Table 1)). For these countries, 100%of the
TC-SCC values are positive. Parameters: 8 lags, RCP6.0-SSP2, and Ricke’s dis-
counting choice (main specification), except in a.
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other channels are neglected completely. For instance, we do not
account for climate change impacts on natural capital57, and we do
not value the risk of catastrophic events resulting e.g. from the
transgression of climate tipping points58,59. Our SCC estimates can
most directly be compared to the estimate of Ricke et al. 40 since we
use their methodology to derive the SCC. They report a somewhat
higher median SCC of US$/tCO2 417 (95% CI: US$/tCO2 161–732). The
main reason is that our estimate for the temperature effects differs –
though not significantly at 5% level – from the estimate by Burke
et al.41 on which Ricke et al.40 base their SCC estimates. Most studies
entering the meta-analysis do not explicitly account for TC impacts,
with the exception of studies based on the IAM FUND15,60. For
instance, as one of the older estimates accounted for in the meta-
analysis, the FUND-based study of Narita et al.15 reports a comparably
low overall SCC of US$/tCO2 2.5 (ρ = 1%). The authors estimate TCs to
contribute only about 1% to the overall SCC. The relatively small
contribution of TCs to the overall SCC may result from two factors.
First, the use of a TC damage function that assumes a simple scaling
of damages with GMT instead of estimating future damages from
synthetic TC tracks as done in more recent studies by Mendelsohn
et al.35 and Bakkensen et al.17 as well as in this study. Second, Narita
et al.15 do not account for the persistence of TC damages in the
economic system. Further, a number of studies entering the meta-
analysis account for TC contributions to the SCC indirectly through
damages to other sectors as for instance agriculture61. Further, sev-
eral SCC estimates are based on the damage function used in
Nordhaus’s DICE model37. It is obtained from a meta-analysis of
impact studies and adds a 25% adjustment to account for various
categories of damages that are difficult to monetize such as extreme
weather events but also biodiversity loss, ocean acidification, and
catastrophic events. The substantial increase in SCC by 22.2% at the
global level and by 44.4% in TC-affected countries that we observe
when explicitly accounting for TC impacts and their persistence in
the economic system, suggests that a more explicit representation of
TCs could drive up previous SCC estimates that do not, or only
indirectly, account for TC impacts. An inclusion of TC impacts in
other assessment frameworks may be facilitated by the tempera-
ture damage functions presented in this study.

In our study, we assume that countries’ growth response to future
TCs mimics their historical response. This may result in an over-
estimation of damages when future adaptation measures reduce the
vulnerability of countries to TCs, or in an underestimation of damages
in case of maladaptation. For instance, previous empirical works did
notfindevidenceof adaptation toTCs in theUSA16,29. Furthermore, our
damage estimates are based solely on the wind fields of the storms,
and we neglect TC-related rainfall17 and storm surge62 as drivers of TC
damage. Since the storm-surge risk increaseswith rising sea levels, and
also TC rainfall is projected to intensify under global warming11,63, our
damage projections should be considered as a lower bound of the
overall expected damage from TCs.

Our modeling approach lacks the flexibility of fully-fledged cli-
mate integrated assessment modeling frameworks64; climate damages
in termsofDADandSCCcanbe calculated along standard climate- and
socio-economic scenarios but the framework does not allow us to
endogenously model mitigation responses to climate damages (e.g.,
investment in renewable energies, carbon taxation, etc.) aswell as their
impact on global warming and on the socioeconomic development of
countries. However, by deriving empirical country-level temperature
dependent-damage functions accounting for the persistence of
damages in the economic system, we pave the way for the integrated
assessment modeling community to perform such fully integrated
analyses.

Further, it is critical to keep in mind that these estimates only
comprise the contributions of TCs, which affect a limited set of
countries. Other major categories of extreme weather events such as

floods and droughts cause direct damages that are comparable to TC
damages globally (annual economic losses of US$ 37.8bn and 8.5bn
averaged over the last decade, compared to US$ 51.5bn for TCs,
according to ref. 1) and also reduce the economic growth of the
affected countries in the long term2,65. Thus, their contributions to i)
the global SCC and ii) the SCCs of major emitters such as China, the
USA, and India – the 1st, 2nd, 3rd largest emitters – that are not only
prone to TCs but also to fluvial floods or droughts may be comparable
to those of TCs. Our study suggests that the TC damages can be rather
substantial already, driving up the country-level SCCofChina, theUSA,
and India by 68%, 53%, and 9%, respectively. Since DAD and SCC esti-
mates are key for decision- and policymakers at national and interna-
tional levels charged with weighing the costs of mitigation and
adaptationmeasures with climate change impacts and empower them
to soundly design mitigation policies such as carbon taxation
schemes37, our findings underline the importance of adequately
accounting for the contributions of all major categories of extreme
weather events in future damage estimates.

Methods
Economic Data
For the historical period, we derive national economic growth rates for
the period 1981–2015 from a harmonized data set of national time
series of annual (constant 2005 US$) purchasing power parity-
adjusted (PPP) per-capita GDP (GDPpc) as provided by the Institute
for Health Metrics and Evaluation of the University of Washington66.
For the future projections, we employ the national GDPpc projections
as provided in the IIASA Basic Elements SSP database (https://tntcat.
iiasa.ac.at/SspDb/) as part of the OECD Env-Growth model in constant
2005US$ (PPP). Since theGDPpcprojections of the SSPs are only given
in five-year time steps, we interpolate them to annual resolution using
cubic splines. For the comparison of temperature-dependent TC
impacts on growth (cf. Fig. 3b), countries are grouped by the World
Bank’s 2024 income classification scale (https://datahelpdesk.
worldbank.org/knowledgebase/articles/906519) into high-income
(2022 per–capita gross national income (GNIpc) US$≥13, 846), upper-
middle-income (US$4, 466≤GNIpc≤US$13, 845)), lower-middle-income
(US$1, 136≤GNIpc≤US$4, 465), and low-income countries (GNIp-
c≤US$1, 135).

To compare estimates of the social cost of carbon (SCC) in the
literature with our own estimates, we use the time series of GDP
deflators for the USA provided by the World Bank (https://data.
worldbank.org/indicator/NY.GDP.DEFL.ZS?locations=US) to express
all SCC estimates in constant 2005 US$.

Tropical cyclone affected population
We consider the annual time series of the share of people exposed to
TCs over the study period 1950–2015 provided as part of the Tropical
Cyclone Exposure Database (TCE-DAT67). The share of TC-exposed
people is estimated based on the wind footprint of each storm by
summing the population of all grid-cells experiencing maximum (1-
minute sustained) wind speeds of at least 34 knots. TCE-DAT uses
population data from the HYDEv3.2.1 database68 remapped to annual
resolution and to the spatial resolution of the wind fields (6 arc-min-
utes ≈ 11 km at the equator) to derive the annual shares of national
populations exposed to TCs; we consider the yearly sum of people
exposed to TCs across all events.

For the TC projections, we use the TC track emulator of ref. 31. It
regresses frequency and intensity statistics of 614,400 synthetic TCs
with landfall from the Inter-Sectoral Impact Model Intercomparison
Project52,69 (ISIMIP) with regard to GMT and Equatorial Southern
Oscillation Index (ESOI) in the TC basins and sub-basins East Pacific,
North Atlantic, North Indian, South Indian East, South Indian West,
West Pacific North, West Pacific South, South Pacific West, and South
Pacific East over the period 1861–2100 according to four CMIP5-GCMs
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(HadGEM2-ES, MIROC5, IPSL-CM5A-LR and GFDL-ESM2M) participat-
ing in ISIMIP2b52 and the RCPs 2.6, 6.0, and 8.5.

For each GCM-RCP combination and (sub-)basin, we generate 100
probabilistic time series of TC tracks for the period 1980–2100. In
total, this amounts to 1200 artificial TC time series for each ocean
basin. We contrast the TCs and their impacts for the different RCP-SSP
combinations with a “no further climate change” baseline scenario.
According to HadCRUT5 data70, GMT for the period 2005–2020 ran-
ged between 0.8 and 1.3 °C above its level for the pre-industrial period
1850–1900 (including the boundaries of 95% confidence intervals). In
order to allow for larger probabilistic variability in ourmodel, we use a
slightly larger range of between 0.5 °C and 1.5 °C. For each GCM-RCP-
region combination, we then compute the mean frequency and
intensity of landfalling TCs in years where the global mean tempera-
ture fallswithin this interval.With that value of frequency and intensity
held fixed over 1980–2100 we again generate 100 probabilistic
realizations31.

The impact assessment tool CLIMADA71 is used to generate wind
footprints for each TC track. The number of people exposed to these
1-minute sustained winds of at least 34 knots is aggregated by
country and year. The population exposure for the future period is
generated by extending the historical HYDEv3.2.1 population data
set68 for each SSP over the period 2010–210072. The data is down-
scaled to 300-arcsec from the original 450-arcsec resolution and
linearly merged to the historical data starting from 2005. Since the
physical impacts have been calibrated on a TC basin level, the
number of people per country affected by the simulated TCs exhibits
considerable bias when compared to the numbers in TCE-DAT over
the observational period 1950–2015 (see above). Therefore, we
multiply the simulated time series of affected people per country by
a correction factor so that the simulated average over 1980–2015
agrees with the respective historical country average according to
TCE-DAT.

Countries included in the analysis
Our analysis is applied to the set of 166 countries used by Burke et al.41

and Ricke et al.40, and an additional 8 TC-affected regions and coun-
tries for which economic data was available (Barbados, Hong Kong,
Jamaica, St. Lucia, Myanmar, New Caledonia, Tonga, and Taiwan). In
total, we identify 41 of the 174 countries to be affected by TCs in the
historical period 1981–2015.

Country-level average temperature time series
Our source of historical temperature data is the GSWP3-W5E5 histor-
ical reconstruction included in ISIMIP3a73 (https://doi.org/10.48364/
ISIMIP.982724.1), which is a back-extension of W5E5 v2.074 data from
1979-2019 to 1901-2019 using the Global Soil Wetness Project phase 3
(GSWP3) dataset75. To represent temperature effects in our panel
model, we aggregate the 0.5 degree grid cell estimates to the country-
year level,weighting by the annual population density according to the
HYDEv3.3-based data for 1950–2020 provided within ISIMIP3a73

(https://doi.org/10.48364/ISIMIP.822480.2) and using the fractional
country mask that is provided as part of ISIMIP3a (https://doi.org/10.
48364/ISIMIP.635131.2).

For the computationof SCCover the future period 2025–2100,we
use the population-weighted data along GCMs and RCPs provided as
part of the code repository of an earlier study on country-level SCC by
Ricke et al.40. The data is available for all four GCMs considered in this
study (HadGEM2-ES, MIROC5, IPSL-CM5A-LR and GFDL-ESM2M), and
for three RCPs (RCP4.5, RCP6.0, and RCP8.5) for the period
2006–2105. For our analysis of RCP2.6, we use the RCP4.5 data
since Ricke et al.40 do not provide population weighted temperature
data for RCP2.6. Furthermore, we bias-correct the temperature series
relative to the historical ISIMIP3a data (see above), by shifting
according to the difference in averages over the years 2006-2020.

Global mean temperature time series
For the calibration of theTCemulatorweuseglobalmean temperature
time series from CMIP5 according to four different GCMs (HadGEM2-
ES, MIROC5, IPSL-CM5A-LR and GFDL-ESM2M), and three RCPs
(RCP2.6, RCP6.0, and RCP8.5). A 21-year runningmean smoothing and
normalization relative to piControl are applied31. The same global
mean temperature time series are used for the estimation of
temperature-dependent TC damage functions and of the TC-related
social cost of carbon (see below). All steps are applied to the GCM-
specific time series first and aggregation is applied as late as possible.

Regression approach
To estimate the national GDPpc growth responses over the period
1981–2015, we use a three-way fixed effects panel model,

gi,t = γi + δt + θ
0
i t +θ

1
i t

2 +α0Ti,t +α
1T2

i,t +
XL
l =0

βlPi,t�l + ϵi,t : ð1Þ

Here, gi,t � lnðyi,tÞ � lnðyi,t�1Þ denotes the per–capita GDP growth
rate of country i at time t that is calculated from the difference of the
logarithms of the GDPpc, yi,t, at time t and t − 1. Further, γi, δt, θ

0
i , θ

1
i are

country and time fixed-effects and country-specific time trends,
respectively, and ϵi,t denotes the error term. Following Burke et al.41,
the global non-linear effect of temperature is expressed as the quad-
ratic function α0Ti,t +α

1T2
i,t of the population-weighted average tem-

perature indicator Ti,t for country i at time t; the coefficients α0 and α1

describe the average growth response across all countries. Finally, the
sum

PL
l =0 βlPi,t�l describes the cumulative growth response of coun-

try i to the national shares of people exposed to strong TC winds, Pi,t−l
in the year t − l, for l∈ [[0,…, L]] lag years, where L denotes the max-
imum number of lag-years; the coefficients βl describe the average
growth response across all countries. We apply an ordinary least
squares regression approach, and find that the results agree with a
robust linear regression approach2,76.

We implement a bootstrapping strategy to account for uncer-
tainties related to the economic growth regression (Eq. (1)). As TCs can
affect more than one country3,4, our panel data may be spatially
dependent. This is why we use a maximum entropy method43 to con-
struct 1200 bootstraps (b) respecting the dependence structure of the
original panel data.

Considering the p-values (computed across 1200 bootstraps) of
the coefficients βl, l =0,…, L for lag numbers between L =0 and L = 15,
we find that all coefficients for 7 ≤l ≤13 except l = 8 and l = 11 are non-
significant at the 5% level of significance. Since higher lag numbers
come with increasingly large uncertainty (Fig. S2), we choose L = 8 lag
years as main specification.

To test the robustness of our regression approach, we study dif-
ferent versions of the regression model of Eq. (1) and compare the
estimated temperature impact to the regression results of Burke
et al.41. To this end, we use the same structure of the fixed effects and
the same temperature indicators as Burke et al. but base our regres-
sions on updated per-capita GDP and population-weighted tempera-
ture time series for a larger set of countries.We compare our preferred
model that included TC effects to i) simpler versions of the model not
accounting for TC effects or temperature effects and ii) Burke et al.’s
regression for the period 1981–2015 (used throughout this study) as
well as for the period 1961–2010 used by Burke et al. We find that the
temperature effects estimated with the different models are not sig-
nificantly different from the effects reported by Burke et al. (5% sig-
nificance level, p≥0.09). Further, by omitting the TC impact terms, we
find that these do not affect the temperature coefficients at the 10%
level of significance (p≥0.94). Vice versa, no significant change in TC
effects at the 10% level of significance (p≥0.87) is foundwhen omitting
the temperature effect in our model.
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Projection of discounted annual damages. For each of the 41 TC-
affected countries, i, three different Representative Concentration
Pathways (RCPs) (e∈ {RCP2.6, 6.0, and 8.5}) and one “no further cli-
mate change” baseline scenario (bl), two Shared Socioeconomic
Pathways (SSPs) (s∈ {SSP2 and SSP5}), four bias-corrected CMIP5-
GCMs (m∈ { HadGEM2-ES, MIROC5, IPSL-CM5A-LR, and GFDL-
ESM2M})52, and 100 probabilistic TC time series, r, for each RCP-SSP-
GCM scenario combinations, we project a time series of TC-induced
changes to the national GDPpc growth rates over the period
t∈ [[2010, 2100]],

ϕe=bl,s,m,r,b,l
i,t �

Xl

l0 =0

βb,l
l0 P

e=bl,s,m,r,b
i,t�l0

: ð2Þ

For each country, we obtain 3,801,600 RCP/baseline(e/bl)-SSP(s)-
GCM(m)-TC time series(r)-bootstrap(b) scenario combinations. Fur-
ther, to assess the impact of the persistence of growth losses, the
growth rate changes are calculated for l = 8 lag years.

From these growth rate changes, we calculate the perturbed
national GDPpc pathways for each of the SSPs as

ye=bl,s,m,r,b,l
i,t � ye=bl,s,m,r,b,l

i,t�1 eg
s
i,t +ϕ

e=bl,s,m,r,b,l
i,t ,

for t 2 ½½2010, . . . ,2100�� and ye=bl,s,m,r,b,l
i,2010 = ysi,2010,

ð3Þ

where ye=bl,s,m,r,b,l
i,2010 denotes the initial national GDP of country i for the

year 2010, and gs
i,t � lnðysi,tÞ � lnðysi,t�1Þ is the country i’s GDP growth

rate at year t as derived from SSP scenario s, respectively.
For each scenario combination and maximum lag time, the DAD

of country i are then defined as the discounted difference between the
GDP of the “no further climate change” (bl) scenario and the corre-
sponding scenarios for the different RCPs,

DADe,s,m,r,b,l
i,t � ybl,s,m,r,b,l

i,t � ye,s,m,r,b,l
i,t

� �Yt

τ = 2010
e�rbli,τ ,

for t 2 ½½2010, . . . ,2100��,
ð4Þ

where rbli,τ =ρ+ηg
bl
i,t denotes the growth-adjusted discount rate with

the rate of time preference ρ and the consumption elasticity of
marginal utility η, relative to the per-capita GDP growth rate gbl

i,t at year
t as derived from the baseline scenario bl.

Estimation of temperature-dependent damage functions
We derive temperature-dependent damage functions by linearly
regressing the growth rate changes Δϕe,s,m,r,b,l

i,t � ϕe,s,m,r,b,l
i,t � ϕbl,s,m,r,b,l

i,t
relative to the baseline with the change in GMT in year t, ΔTe,m

t , with
regard to pre-industrial levels, using the mixed-effects model

Δϕe,s,m,r,b,l
i,t � ðγr,b,li + γe,r,b,li Þ+ ðωr,b,l

i +ωe,r,b,l
i ÞΔTe,m

t + ϵr,b,li , ð5Þ

where the fixed effects parameters γr,b,li and ωr,b,l
i are shared by all

RCPs, while the random effects parameters γe,r,b,li , and ωe,r,b,l
i follow a

bivariate distribution with mean zero to account for distributional
differences between the RCPs. Note that the fit is performed across all
GCM-SSP scenarios combinations which is why these coefficients are
GCM- and SSP-independent. In Fig. 3b and in the SCC computations
(below), only the fixed effects parameters γr,b,li and ωr,b,l

i are used.
To test for structural dependencies of the TC induced growth

losses upon SSP andRCP scenarios,we run twoOLS regressions, where
the first regression includes a coefficient that does not depend on the
SSPs, and the second regression includes a coefficient that does not
depend on the RCPs,

Δϕe,s,m,r,b,l
i,t � ðγr,b,li + γe,r,b,li Þ+ ðωr,b,l

i +ωe,r,b,l
i ÞΔTe,m

t + ϵe,r,b,li , ð6aÞ

Δϕe,s,m,r,b,l
i,t � ðγr,b,li + γs,r,b,li Þ+ ðωr,b,l

i +ωs,r,b,l
i ÞΔTe,m

t + ϵs,r,b,li : ð6bÞ

Structural dependence tests
We then test for structural breaks in the intercept and slope coeffi-
cients across SSPs and RCPs by running F-tests for the hypotheses
γs,r,b,li =0,ωs,r,b,l

i =0, and γe,r,b,li =0,ωe,r,b,l
i =0, respectively.Wefind that

the hypotheses γe,r,b,li =0 and ωe,r,b,l
i =0 have to be rejected at the 5%

level of significance for between 58.5% and 86.5% of the samples across
uncertainty dimensions 5 and 6 (r and b), depending on the country i.
Thus, the relationship between the exogenous and endogenous vari-
ables cannot be explained by the RCP-independent coefficients γr,b,li
and ωr,b,l

i alone, and we therefore account for the structural depen-
dence on RCPs by including the random variables γe,r,b,li and ωe,r,b,l

i . By
contrast, the hypotheses γs,r,b,li =0 and ωs,r,b,l

i =0 cannot be rejected at
the 10% level of significance (p≥0.69) for any country i and for any of
the samples across uncertainty dimensions 5 and 6 (r and b), which is
the reason why we omit these variables in the regression of Eq. (5).

Calculation of the social cost of carbon from tropical cyclones
To compute the SCC, we follow the approach byRicke et al.40. The SCC
is the additional damage incurred by an additional emission pulse, for
which we chose 1 gigatonne of carbon (GtC) in 2025. The corre-
sponding temperature response to the pulse is approximated using
the coupled carbon-climate convolution integral approach from
ref. 48, according to 15 carbon-cycle models combined with the four
GCMs thatwe used in the TC projections (HadGEM2-ES,MIROC5, IPSL-
CM5A-LR and GFDL-ESM2M). Empirically estimated temperature
effects are used to project the temperature-induced changes in the
national per-capita GDP pathways, as given by the SSPs for each RCP-
GCMcombinationuntil 2100,with andwithout the additional emission
pulse in 2025.

To account for the direct effects of temperature on the national
level, we follow Ricke et al.40 by using the increase in the empirically
estimated aggregate temperature effect α0Ti,t +α

1T2
i,t relative to 2025,

where Ti,t is the national population-weighted annual mean tempera-
ture for country i in year t. However, while Ricke et al.40 use the coef-
ficients from ref. 41, we use our own estimates of α0 and α1 (Eq. (1)). To
project the TC-induced changes driven by global mean temperature
change, we add the full TC-realizations-bootstrap ensemble of TC
damage functions (Eq. (5)) to the aforementioned temperature effects.

The additional effect of the pulse for country i and for a given
climate change scenario (cc) is then given by

Dpulse
i,t �

� ycc+pulsei,t �ycci,t

� �
pi,t

1GtC if t ≤ 2100,

Dpulse
i,2100 else

8<
: ð7Þ

with pi,t denoting the population of country i. The time horizon for the
SCC calculation is 2200, and we assume constant additional effects
Dpulse
i,t after 2100. The country-level SCC is finally calculated as the net

present value of the additional damage from the pulse, applying
growth-adjusted discounting as described above,

SCCi,2025 �
X2200

t = 2025

Dpulse
i,t

Yt

τ = 2025
e�rcci,τ : ð8Þ

The per-capita GDP growth rate gcc
i,t � lnðycci,t Þ � lnðycci,t�1Þ used in

the discount rate rcci,τ = ρ+ηg
cc
i,τ is derived from the per-capita GDP

pathway without the additional emission pulse. For years after 2100,
the growth rate gcc

i,t � maxðgcc
i,2100,0Þ is assumed tobe constantwith the

value of the year 2100 fixed, with negative growth rates truncated to 0
(as in ref. 48). Note that, to be consistent with the calculation of the
DAD,wehere slightly deviate fromRicke’s implementation48 where the
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discrete time definition of discount rates is used. Summing over all
countries then yields the global SCC.

Further, to calculate the SCC without the explicit contribution of
TCs, we repeat the same procedure omitting the temperature-
dependent damage function for TCs, and only using the empirically
estimated aggregate temperature-dependent damage function. The
TC-induced SCC (TC-SCC) is then defined as the difference between
the SCC with and without the contribution of TCs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Machine-readable source data for all figures, supplementary figures,
and supplementary tables are provided with this paper as CSV files.
TheGDP, population, temperature, and tropical cyclone (TC) exposure
data sets that support the findings of this study are available from
https://doi.org/10.5281/zenodo.8063450. National annual time series
of historical per-capita GDP (GDPpc) are openly provided by the
Institute for Health Metrics and Evaluation of the University of
Washington66. The national GDPpc projections are provided by the
IIASA Basic Elements SSP database (https://tntcat.iiasa.ac.at/SspDb/) as
part of the OECD Env-Growth model in constant 2005 US$ (PPP). The
World Bank’s 2024 income classification scale is openly accessible
through (https://datahelpdesk.worldbank.org/knowledgebase/
articles/906519). The source of historical temperature data is the
GSWP3-W5E5 historical reconstruction (https://doi.org/10.48364/
ISIMIP.982724.1) which are weighted by annual, HYDEv3.3-based
population densities (https://doi.org/10.48364/ISIMIP.822480.2) and
using the fractional country mask (https://doi.org/10.48364/ISIMIP.
635131.2) included in ISIMIP3a73. The historical TC exposure data is
available from the Tropical Cyclone Exposure Database (TCE-DAT)67

using population data from theHYDEv3.2.1 database68. The population
projections according to the SSPs used for the projections of affected
people are openly available from ref. 72. The TC track simulations that
were used to generate the probabilistic future TC exposure data sets
are available for scientific purposes only and upon request from
WindRiskTech (info@windrisktech.com). The TC emulator addition-
ally employs daily temperature data from four CMIP5 GCMs (Had-
GEM2-ES, MIROC5, IPSL-CM5A-LR and GFDL-ESM2M) and three RCPs
(RCP4.5, RCP6.0, and RCP8.5) for the future period 2006–2105 as
provided within ISIMIP2b and openly accessible through the ISIMIP
data portal (https://data.isimip.org/search/tree/ISIMIP3a/tree/
ISIMIP2b/InputData/climate/atmosphere/). The temperature level for
the ”no further climate change" baseline scenario is based on the
HadCRUT570 global mean temperature time series that is openly
accessible at theMetOfficeHadleyCentre (https://www.metoffice.gov.
uk/hadobs/hadcrut5/data/current/download.html). For the SCC ana-
lysis, population-weighted temperature data along the four CMIP5
GCMs and three RCPs are provided as part of the code repositories
of Ricke et al.40 (https://github.com/country-level-scc/cscc-paper-
2018) and Burke et al.41 (https://purl.stanford.edu/wb587wt4560).
The country shapes in Figs. 1a and S12b are available in the public
domain from the Natural Earth project website (https://www.
naturalearthdata.com/downloads/110m-cultural-vectors/110m-admin-
0-countries/). The per–capita income in Fig. 2c is openly accessible as
part of the World Inequality Database77 (https://wid.world/bulk_
download/wid_all_data.zip). Source data are provided with this paper.

Code availability
Themodel to generate the probabilistic TC tracks from climate model
outputs is intellectual property of WindRiskTech (info@win-
drisktech.com) and cannot be shared publicly. All remaining code that
was used i) for the regression analyses, ii) the generation of the future

tropical cyclone (TC) exposure indicators, and iii) the calculation of
damage estimates, and iv) to analyze the data and produce the figures
was implemented in Python 3.9 (https://www.python.org/) with CLI-
MADA 3.3.3 (https://zenodo.org/record/7691855) and statsmodels
0.13.5 (https://www.statsmodels.org/), and is openly available from
https://doi.org/10.5281/zenodo.8056520.
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