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Abstract
Venus today is inhospitable at the surface, its average temperature of 750 K being incompat-
ible to the existence of life as we know it. However, the potential for past surface habitability
and upper atmosphere (cloud) habitability at the present day is hotly debated, as the ongoing
discussion regarding a possible phosphine signature coming from the clouds shows. We re-
view current understanding about the evolution of Venus with special attention to scenarios
where the planet may have been capable of hosting microbial life. We compare the possibil-
ity of past habitability on Venus to the case of Earth by reviewing the various hypotheses put
forth concerning the origin of habitable conditions and the emergence and evolution of plate
tectonics on both planets. Life emerged on Earth during the Hadean when the planet was
dominated by higher mantle temperatures (by about 200 ◦C), an uncertain tectonic regime
that likely included squishy lid/plume-lid and plate tectonics, and proto continents. Despite
the lack of well-preserved crust dating from the Hadean and Paleoarchean, we attempt to re-
view current understanding of the environmental conditions during this critical period based
on zircon crystals and geochemical signatures from this period, as well as studies of younger,
relatively well-preserved rocks from the Paleoarchean. For these early, primitive life forms,
the tectonic regime was not critical but it became an important means of nutrient recycling,
with possible consequences on the global environment in the long-term, that was essential
to the continuation of habitability and the evolution of life. For early Venus, the question
of stable surface water is closely related to tectonics. We discuss potential transitions be-
tween stagnant lid and (episodic) tectonics with crustal recycling, as well as consequences
for volatile cycling between Venus’ interior and atmosphere. In particular, we review in-
sights into Venus’ early climate and examine critical questions about early rotation speed,
reflective clouds, and silicate weathering, and summarize implications for Venus’ long-term
habitability. Finally, the state of knowledge of the Venusian clouds and the proposed detec-
tion of phosphine is covered.

1 Introduction

With an average temperature of ∼ 750 K, today the surface of Venus is far from environ-
mental conditions suitable for life as we know it. However, billions of years ago, when the
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Sun was much fainter (Sagan and Mullen 1972; Hart 1979; Gough 1981; Claire et al. 2012),
Venus was located in the middle of the classical habitable zone around our sun (Kasting
1993; Kopparapu et al. 2013), thus fueling speculations about the early habitability of the
planet (Pollack 1971; Grinspoon and Bullock 2007; Way et al. 2016). Important precondi-
tions for habitability at the surface of Venus include a temperature range allowing the exis-
tence of liquid water; surface geochemistry with available chemical energy and appropriate
elemental and molecular constituents, such as active water/rock interfaces; and protection
from lethal solar radiation. The latter could have been provided by liquid water, as well as
by a large reflective cloud cover resulting from the presence of liquid water. Surface ther-
mochemical conditions would have ultimately been controlled by Venus’ tectonic activity,
although different models suggest different scenarios. Venus’ convection regime may have
changed over the course of the planet’s history and at least some models suggest that Venus
could have maintained temperate surface conditions until as recently as 0.7 Ga (Way et al.
2016). Lastly, although the early Sun was fainter, Venus’ more sunward position means that
solar incident insolation during its early history was still 40% higher than for present-day
Earth (Lammer et al. 2008). Even if the overall radiation environment at the surface (as
determined by absorption in Venus’ early atmosphere) was clement, it may have affected
conditions for early life potentially inhabiting water on exposed landmasses or subsea envi-
ronments, such as hydrothermal vents. Increasing solar luminosity, continuous degassing of
CO2 from Venus’ mantle into the atmosphere, or large-scale volcanic eruptions (Way et al.
2022) may have brought an end to a potential early habitable period.

In order to gain insight into whether these preconditions existed in the early history of
Venus, we address the mechanisms relevant to Earth’s early planetary and biological evolu-
tion in Sect. 2. The main challenge with this approach is the loss of the earliest records of
Earth’s ancient surface due to tectonic recycling. Understanding of the early environmental
conditions on Earth can be approached through a combination of modelling, inherited geo-
chemical signatures in younger rocks, and comparison with well-preserved, younger crustal
rocks formed about 1 billion years (Gyr) after solidification of the planet. We will also elab-
orate on tectonic processes and interior-atmosphere volatile exchange relevant to the evolu-
tion of Venus and a potential early habitable period in Sect. 3. Based on these constraints,
the climate throughout Venus’ history from general circulation models will be discussed in
Sect. 4.

Speculation on present-day habitability is primarily focused on Venus’ cloud aerosols.
Although larger reservoirs of water are likely to be dissolved in the mantle and as atmo-
spheric vapor, cloud droplets are the only known place where liquid water is found on Venus.
This liquid water is dissolved in sulfuric acid, the aerosols’ primary constituent. Section 5
discusses what is known about the requirements for Venus cloud habitability by comparison
with Earth’s aerobiosphere, as well as discussion of suggested Venusian biosignatures, such
as UV absorption and the controversial report of phosphine detection. We conclude with an
evaluation of mission requirements necessary to improve our constraints on Venus’ past and
present habitability in Sect. 6.

2 Early Earth History

2.1 Water on the Earth

The history of initial habitability on any planet is first and foremost the history of water,
although long-lived habitability is also controlled by tectonics. Temperature and pressure, as
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well as the various gaseous species that comprise the atmosphere, determine the possibility
of liquid water at the surface. A large part of the conditions that govern the onset (or lack
thereof) of a habitable era is therefore set by the composition of the atmosphere and its
interaction with factors, such as planetary characteristics, solar energy input, or material
delivery.

Recent investigation of calcium-aluminium-rich inclusions (CAIs) in some of the most
primitive meteorites suggests the admixture of a significant amount of interstellar water dur-
ing the early evolution of the protosolar cloud. This, in turn, implies very early formation
of planetary reservoirs of volatile elements (Aléon et al. 2022; cf. Grossman and Larimer
1974). Thus, early volatile-containing materials in the Solar System would have contributed
to the building blocks (pebbles, e.g. Morbidelli et al. 2012; Raymond 2021; Johansen et al.
2021 and/or planetesimals, Chambers and Wetherill 1998; Levison et al. 2015; Burkhardt
et al. 2021) of the inner rocky planets. Some of the early water (and other volatiles) would
have been degassed and lost during the Moon forming impact (Benz et al. 1986; Canup
2004) with a Mars-sized planet (named Theia cf. Halliday 2000) that occurred approxi-
mately 4.51 Ga (Barboni et al. 2017). Although (Connelly and Bizzarro 2016), also using Pb
isotope data, suggest slighter younger dates between 4.426–4.417 Ga. Recent calculations
suggest that all of Earth’s water and other volatiles may have been delivered by volatile-rich
carbonaceous chondrites, initially formed outside the orbit of Jupiter but displaced inwards
by the planet’s growth and migration (Kleine et al. 2020). However, timing of the accre-
tion of the volatiles to Earth is still an active area of research (Avice et al. 2022; Salvador
et al. 2023, this journal). Note that Marty (2012) suggests that the isotope signatures of ter-
restrial H, N, Ne and Ar may be the result of mixing between two end-members of solar
and chondritic compositions, with the N and H isotopic compositions suggesting a primitive
meteoritic origin.

Liquid water is critical to magmatic processes on the Earth, including partial melting of
the mantle and crustal recycling. Indeed, water is essential for the production of significant
amounts of granitic melts formed by melting of pre-existing crustal rocks (Campbell and
Taylor 1983; Jacob et al. 2021; Turcotte and Schubert 2002; Korenaga 2018). Although non-
hydrous fractionation will form feldspathoids, as testified by the lunar anorthosites (Norman
et al. 2003). These granitic melts, in turn, formed the early, buoyant, less dense granitoid
rocks that were the cores of early continents. Thus, evidence of any of these phenomena can
be used as proxies for the presence of liquid water.

Physical evidence for the existence of early granitoid crust, however, is restricted to:
(1) zircon crystals formed by crustal fractionation during the Hadean (4.5–4.0 Ga) and
Eoarchean (4.0–3.6 Ga) that were eroded from the initial crustal rocks and then sedimented.
These ancient zircons have re-emerged in Palaeoarchean (3.5–3.3 Ga) rocks in Western Aus-
tralia (Wilde et al. 2001; Mojzsis et al. 2001). (2) Small enclaves of granitoid rocks from this
period still exist and are occasionally associated with metamorphosed sediments (metased-
iments), such as the 4.3 (O’Neil et al. 2008) to 3.8 (Cates and Mojzsis 2007) Nuvvuagittuq
Supracrustal Belt and the 4.02 Ga Acasta Gneiss (Bowring and Williams 1999) in Canada,
the 3.7–3.8 Ga Isua terrane in West Greenland (Moorbath et al. 1973), and the 3.5–3.2 Ga
greenstone belts of the Pilbara in W. Australia (Nelson et al. 1999) and Barberton in South
Africa (Lowe and Byerly 1999b). Finally, (3) inherited uranium-lead and hafnium isotope
signatures in the reworked zircon crystals provide a certain amount of information pertaining
to the pre-existing Hadean crust (Mulder et al. 2021).

Oxygen isotopic signatures preserved in zircon crystals, and dated at up to 4.4 Ga (Wilde
et al. 2001; Mojzsis et al. 2001; Valley et al. 2014) (but possibly younger in age, Whitehouse
et al. 2017) have been interpreted to suggest the exposure of the crust from which the crystals
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formed via hydrothermal processing, implying the presence of water recycled into the crust
from the surface of the Earth by 4.4 Ga. Indeed, recent combined oxygen and silicon isotope
measurements of zircons from the Hadean support the existence of significant quantities of
siliceous sediments during the Hadean (Trail et al. 2018).

Another proxy for the presence of water is the existence of sediments; they imply ero-
sion by and/or deposition in a body of water. Sediments are associated with the most an-
cient terranes preserved, the 4.3–3.8 Ga Nuvvuagittuq (Canada) and the 3.7–3.8 Ga Isua
(West Greenland) supracrustal terranes, the latter of which includes also metamorphosed pil-
low basalts, undeniable structures produced under water. Further evidence of hydrosphere-
crustal interactions comes from extremely high δ18O values of up to +9� measured in
metamorphic zircons formed about 3.5 Ga by reworking of metamorphic crust in the ca.
3.86 Ga, Eoarchean Saglek Block (North Atlantic Craton) (Vezinet et al. 2019).

2.2 Interior and Tectonic Processes on Earth

2.2.1 Brief Overview

The interior and tectonic processes on the early Earth had important implications for the
building of a habitable planet (e.g. Schubert et al. 1989; Korenaga 2012; Höning et al.
2019a). Indeed, our present-day Solar System provides a perfect correlation between the
occurrence of plate tectonics and planetary habitability, although with a sample size of one.
A possible reason for this is the increased exchanges between the interior and the atmo-
sphere of planets with plate tectonics, compared, for example with stagnant lid convection
(Foley and Smye 2018; Höning et al. 2019b; Rolf et al. 2022; Gillmann et al. 2022, this jour-
nal). It has also long been suggested that plate tectonics and the presence of surface liquid
water were entwined (Campbell and Taylor 1983, for example) and favoured volatile cycles,
and possibly stabilizing feedback process for surface conditions. Moreover, while Venus
(and Mars) appear to be operating under stagnant-lid-like convection today, it is possible
that their convection regime changed over their past respective histories (e.g. Sleep 1994;
Gillmann and Tackley 2014; Smrekar et al. 2018).

In a review of the evolution of continental crust and the onset of plate tectonics,
Hawkesworth et al. (2020) note the paucity of early crustal preservation and reiterate the
fact that inferences based on the few preserved remnants, represent only a part of the geo-
logical history of this early time. This fact is all the more important because it is apparent
that tectonic signatures varied in time and place, and that a form of subduction may have
been catalysed, at least temporarily, by impacts and mantle plumes, as well as by plate
tectonics (Gillmann et al. 2016; O’Neill et al. 2017; Gerya et al. 2015a). A recent study
of Paleoarchean zircons ages recording submantle δ18O relates their production to impact
induced crustal recycling (Johnson et al. 2022).

The timing of the onset of plate tectonics is still debated and ranges from ca. 4 Ga to 1 Ga
(as reviewed by Lammer et al. 2018; Dehant et al. 2019; Korenaga 2021). Most estimates
place the transition from an earlier convection regime (possibly from a more stagnant state,
or already a plume-induced proto-plate tectonics, see also Fig. 1) between 3 and 4 Ga, with
the process taking place gradually at different places and at different times. Prior to about
3.0 Ga, xenon isotopes suggest little recycling of volatiles in the crust (Péron and Moreira
2018). However, the recent review by Korenaga (2021) hypothesises an early start to plate
tectonics during the Hadean, as soon as there was water at the surface of the planet. The
existence of plate tectonics has numerous implications: firstly that the crust was sufficiently
rigid as to allow crustal breakup under stress caused by vigorous mantle convection, as well
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Fig. 1 Comparison of two styles of tectonics, lid and plate tectonics during the Archean epoch and modern-
style Wilson plate tectonics (after Hawkesworth et al. 2020)

Fig. 2 Overview of changes in
crustal growth, crustal thickness,
crustal reworking, lithospheric
stabilisation and the formation of
supercontinents due to lateral
accretion, the appearance of
dykes swarms indicating rigid
crust, changes in the oxygen
isotope composition reflecting
increasing continental sediment
incorporated into the mantle/crust
with time, and the appearance of
blueschists indicating high
temperature metamorphism, all
signs of and influenced by the
emergence of plate tectonics
(after Hawkesworth et al. 2020)

as to allow the intrusion of dyke swarms (Cawood et al. 2018), and secondly, that it was
dense enough (i.e. mafic in composition) to subduct (Van Kranendonk 2010; Hawkesworth
et al. 2009; Cawood et al. 2013). The paired metamorphic zones so typical of convergent
tectonics, and recognised by Th/Nb ratios, suggest that magmas, both related to subduction
(suites of high Th/Nb magmas) and not related to subduction (low Th/Nb magmas), were
concomitant in different locations of the planet (Hawkesworth et al. 2020).

In parallel to the initiation of plate tectonics, there was a change in the composition of
juvenile continental crust from mafic to intermediate andesitic compositions (Dhuime et al.
2015), the latter characterising the upper continental crust (Chowdhury et al. 2017; Per-
chuk et al. 2018). Increasing crustal thickness and more acidic compositions of the granitic
cores of the continents led to landmasses with higher relief, which influenced erosion and
sedimentation, and hence the composition of the oceans and the atmospheres.

Major continental amalgamation to form super continents started at least by 2.8 Ga
(Evans 2013). Rates of continental reworking (estimated from Hf isotope ratios, Belousova
and Kostitsyn 2010; Dhuime et al. 2012) and destruction linked to tectonic processes started
increasing from about 3.0 Ga, an indication of efficient recycling of the older, less buoyant,
mafic continental crust. There was also a change in the global oxygen isotope ratios in zir-
cons indicating incorporation of eroded sediments and, therefore, the presence of exposed
landmasses (Valley et al. 2005; Spencer et al. 2014). Figure 2 compares the evolution of
crustal growth and thickness with factors such as lithospheric stabilisation, change in style
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of metamorphism, as well as dyke swarm frequency. Korenaga (2018) has compiled a list of
published models for continental growth through Earth’s history which underlines the wide
range of estimates for the initiation of plate tectonics from the Hadean to the Archean.

Continental landmass is an important source of phosphorus, one of the rate limiting nutri-
ents for biomass development. On the early Earth, relatively low weathering rates of exposed
land masses (because of their low relief) led to a relatively low influx of P in the form of
apatite (Hao et al. 2020). New experimental and analytical work suggests that phosphate
(HPO2−

4 ) in the form of apatite (insoluble) can be reduced to phosphite (HPO2−
3 ) by con-

current oxidation of Fe2+. Phosphite is much more soluble and therefore would have been
available for biomass development.

2.2.2 Evidence for Interior Processes and Tectonics, the Results of Modelling Studies

Recently, tectono-magmatic processes on pre-Phanerozoic Earth have been the subject of
growing numerical geodynamic modelling efforts (e.g. Gerya 2022, and references therein).
The resulting holistic modelling- and observation-based view of the global Precambrian
tectono-magmatic evolution that has emerged (Gerya 2014; Rey et al. 2014; Bercovici and
Ricard 2014; Rozel et al. 2017; Sobolev and Brown 2019; Gerya 2019; Hawkesworth et al.
2020; Gerya 2022) is briefly summarized below.

As envisaged in these models, Hadean-Archean plutonic squishy-lid/plume-lid/lid-and-
plate tectonics before about 3 Ga were characterised by mantle potential temperatures
250–200 K higher than present day, which resulted in the widespread development of
mantle-derived magmatism and rheologically-weak crust (Richter 1985; Gerya 2014; Rozel
et al. 2017; Hawkesworth et al. 2020, see Figs. 1 and 2). Models suggest that the global
tectono-magmatic style was dominated by plume- and drip-induced tectono-magmatic pro-
cesses under conditions of an internally deformable (squishy, non-stagnant, non-rigid) litho-
spheric lid that is often compared to conditions on present-day Venus (e.g. Van Kranen-
donk 2010; Gerya et al. 2015b; Rozel et al. 2017; Harris and Bédard 2014; Hansen 2018).
In this hypothesised pre-plate tectonics regime, both proto-oceanic and proto-continental
lithospheres were formed by a combination of several tectono-magmatic differentiation pro-
cesses (e.g. Sizova et al. 2015; Capitanio et al. 2020). Lid evolution was driven by episodic
tectono-magmatic activity (e.g. Moore and Webb 2013; Johnson et al. 2014; Piccolo et al.
2019, 2020) controlling crustal and lithospheric growth and removal with a periodicity of
∼ 100 Myr (Sizova et al. 2015; Fischer and Gerya 2016a), which is comparable to the
geological-geochemical record from some major Archean greenstone belts, e.g. East Pil-
bara in Western Australia and Kaapvaal in South Africa (cf. discussions in Fischer and
Gerya 2016a, and references therein). Thermal regimes of crustal reworking produced by
this non-plate tectonic environment are also broadly consistent with the metamorphic record
(cf. discussions in Capitanio et al. 2019, and references therein). (Ultra)-slow rifting and
oceanic spreading with intense decompression melting and thick mafic crust were capable
of developing in the absence of subduction (e.g. Sizova et al. 2015; Capitanio et al. 2019,
2020). Due to the elevated mantle potential temperature (e.g., Herzberg et al. 2010), (ul-
tra)slow spreading is associated with intense mantle decompression melting leading to thick
mafic crust formation (e.g., Sizova et al. 2015) and thereby to high heat fluxes at ridges. In
addition, heat fluxes were also higher in the continental crust, which was much hotter than
present day due to widespread intrusions of mantle-derived magma (e.g., Sizova et al. 2015;
Rozel et al. 2017; Piccolo et al. 2019). Importantly, the modern-style global mosaic of rigid
plates separated by narrow, rheologically weak, plate boundaries did not exist in this pre-
plate tectonics period (Bercovici and Ricard 2014). Voluminous melting of the upper mantle
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caused the formation of both cold lithospheric and hot sub-lithospheric, highly depleted,
proto-cratonic mantles with lowered density and increased viscosity (e.g. Sizova et al. 2015;
Capitanio et al. 2020; Perchuk et al. 2020, 2021). Note that this scenario is in direct contrast
to the scenario proposed by Korenaga (2021), in which the Hadean was characterised by a
vigorous plate tectonic regime and recycling of the earlier, thinner crust. This regime then
slowed down during the Archean as a result of increasing mantle temperatures and therefore
thicker crust that would have been more difficult to subduct.

Subsequently, during the period of protracted Archean-Proterozoic transitional tectonics
between about 3 Ga and 0.75 Ga, notable secular cooling of the mantle potential temperature
occurred (to 200–100 K above present day). As a result, squishy-lid/plume-lid/lid-and-plate
tectonics may have gradually evolved towards the modern plate tectonics regime by com-
bining elements of these two contrasting global styles in both space and time (e.g. Fischer
and Gerya 2016b; Chowdhury et al. 2017, 2020; Sobolev and Brown 2019; Perchuk et al.
2018, 2019, 2020). The transitional tectonic regime was controlled by gradual stabilization
of rheologically-strong continental and oceanic plate interiors (e.g. Sizova et al. 2010; Fis-
cher and Gerya 2016a). Plume-induced subduction was likely common in the beginning,
and triggered the onset of this transitional tectonic regime (Gerya et al. 2015a). Due to
the hot mantle temperature and weak lithospheric plates subjected to bending-induced seg-
mentation near trenches (Gerya et al. 2021), shallow slab break-off would have been very
frequent, causing intermittent rather than continued subduction (e.g. van Hunen and van den
Berg 2008; Perchuk et al. 2019, 2020; Gerya et al. 2021).

Elements of squishy-lid/plume-lid/lid-and-plate tectonics were also locally present and
controlled continued development of granite-greenstone belts in (proto)continental domains
(Fischer and Gerya 2016b). As noted above, different elements of modern plate tecton-
ics likely emerged at different geological times and oceanic subduction likely became
widespread earlier than modern-style (cold) continental collision (e.g. Sizova et al. 2010,
2014; Perchuk et al. 2018). Delamination of the mantle lithosphere in long-lived accre-
tionary orogens controlled gradual changes of continental crust composition from mafic to
more felsic components with related rising of the continents due to efficient recycling of
lower continental, mafic crust and tectono-magmatic reworking and thickening of more fel-
sic upper continental crust (Chowdhury et al. 2017; Perchuk et al. 2018). The intermittent
subduction was likely initially inefficient in creating large volumes of silicic continental
crust and, associated with massive decompression melting of the mantle, resulted in the for-
mation of oceanic plateau-basalts (Perchuk et al. 2019). The presence of low-density, highly
depleted, hot, ductile mantle under oceanic plates contributed to the formation of chemi-
cally layered cratonic keels through a viscous emplacement mechanism driven by oceanic
subduction (Perchuk et al. 2020). This peculiar mechanism of cratonic growth deactivated
after about 2 Ga due to a decrease in mantle temperature (Perchuk et al. 2020).

Finally, the establishment of modern plate tectonics after about 0.75 Ga followed cool-
ing of mantle potential temperatures to less than 100 K above present day values. This
process was attained gradually by a combination of four interrelated factors (Bercovici and
Ricard 2014; Gerya 2014; Gerya et al. 2015b; Sobolev and Brown 2019; Gerya et al. 2021):
(1) cooling and strengthening of the oceanic lithosphere that stabilized continued long-lived
subduction, (2) emergence of a global mosaic of rigid plates divided by strongly localized,
long-lived, rheologically-weak boundaries, (3) stabilisation and cooling of thick, rheologi-
cally strong continental lithospheres and the rise of the continents above the sea level, and
(4) the growing intensity of surface erosion providing rheologically weak sediments de-
posited in the oceans that increasingly lubricated subduction in trenches. The transition to
modern plate tectonics followed a long period of reduced tectono-magmatic activity – the
boring billion, 1.7 to 0.75 Ga (Sobolev and Brown 2019).
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Fig. 3 Evolution of the
composition of the Earth’s
atmosphere through geological
time (Catling and Zahnle 2020)

2.2.3 Establishment of the Conditions for the Emergence of Life

Understanding the internal, dynamic processes of the early Earth is certainly essential for
appreciating the building of habitable conditions on a global scale. However, the emergence
of life and its early evolution were events that occurred on local scales, although perhaps
combining the results of different prebiotic reactions occurring in different microenviron-
ments (Stüeken et al. 2013). In this section we will review our present understanding of the
environmental conditions reigning on early Earth that were of immediate importance for the
emergence of life.

The primary requirement for establishing an environment conducive to the emergence of
life is the presence of liquid water. We noted above various proxies indicating liquid water
on the Hadean-Eoarchean Earth. One of the main constraints for liquid water at the surface
is the composition and partial pressure of the atmosphere (Table 1 in Catling and Zahnle
2020, and references therein). After the Moon-forming impact about 4.5 Ga (e.g. Barboni
et al. 2017) that effectively vaporised the surface of the Earth as well as the impactor, the Si-
rich vapor recondensed and a thick CO2 plus water greenhouse atmosphere formed (Zahnle
et al. 2015; Sleep et al. 2014; Sossi et al. 2020). Removal of much of the CO2 though crustal
recycling during the Hadean would have resulted in an atmosphere containing approximately
1 bar CO2 atmosphere and temperatures permitting oceans to form (at ∼ 500 K, Zahnle et al.
2015; Sleep et al. 2014).

In contrast to Sleep et al. (2014), Catling and Zahnle (2020) conclude that the early
atmosphere could not have been very thick and that it was compensated by the presence of
greenhouse gases (Fig. 3). These interpretations are based on geochemical investigations of
nitrogen contained in fluid inclusions in quartz crystals of Paleoarchean age (Marty et al.
2013; Avice et al. 2018) and on physical phenomena, such as the sizes of gas bubbles in
submarine lavas of similar age indicating hydrostatic pressures of not more than 0.5 bars
(Som et al. 2012).

To date, we have no hard and fast evidence of when oceans formed but have listed the dif-
ferent proxies in Sect. 2.1, which suggest an early appearance of water (Catling and Zahnle
2020). Indeed, the Hadean Earth would have been more of an ocean planet and its primitive
continents being characterised by submerged plateaus with emergent volcanic edifices and
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their surrounding land masses, similar to those characteristic of the Paleoarchean, as we will
see below.

2.2.4 Early Habitable Environments

There are only a few exposed locations where Paleoarchean terranes are well-preserved
(namely the ∼ 3.5–3.3 Ga Barberton, South Africa, and Pilbara, Australia, Greenstone
Belts), most of which are subaqueous deposits. Indeed, until about 3.2 Ga, very little sub-
aerial material from this time period exists. There are reports of quartzites and quartz-biotite
schists from the Isua and Nuvvuagittuq terranes that are interpreted to be the metamorphosed
remnants of sandstone and conglomerate protoliths (Bolhar et al. 2005; Cates and Mojzsis
2007; O’Neil et al. 2011), respectively, as well as some horizons of pebble conglomerates
and sands attesting to deposition in a terrestrial setting in the 3.48 Ga Hooggenoeg Forma-
tion. Subaerial deposits are far more common in the younger, < 3.2 Ga Moodies Group in
the Barberton Greenstone Belt (Lowe and Byerly 1999b,a; Heubeck 2009; Hofmann et al.
1999), while subaerial spring deposits associated with a caldera have been described in the
3.48 Ga Dresser Formation in the Pilbara (Djokic et al. 2021). All the preserved subaque-
ous sedimentary deposits in the Barberton and Pilbara Greenstone Belts formed at relatively
shallow water depths in depositional basins on top of the plateau-like protocontinents (i.e. at
water depths ranging from littoral to below wave base, which could have been some tens to
a few 100s m) (Lowe and Byerly 1999b). Nijman et al. (2017) compared the Paleoarchean
depositional basins to collapse basins on Venus or Mars, forming on softened crust atop
mantle plumes, although it has been argued that the early Earth’s crust was not thick enough
to support such a tectonic situation (comment by an anonymous reviewer). Nevertheless,
the thickness of the Archean Earth’s crust is modelled to have been greater than that of the
present day owing to hotter mantle temperatures and magmas (Hawkesworth et al. 2020).
The group of van Kranendonk (Djokic et al. 2021) proposes an alternative caldera-like sce-
nario for at least some of the shallow basins. Although we have geochemical evidence for
the existence of open ocean via a positive Eu anomaly reflecting a global, background hy-
drothermal signature (Jacobsen and Pimentel-Klose 1988; Hofmann and Wilson 2007; Hof-
mann and Harris 2008; Hickman-Lewis et al. 2020b), there is no morphological preservation
of deep oceanic crust, which was probably removed (together with much of the early proto-
continental crust) by a combination of tectonic overturn and possibly the high rate of impacts
on the Hadean Earth (Melosh and Vickery 1989; Abramov et al. 2013; Kemp et al. 2010;
Kamber 2015; Griffin et al. 2014; Maher and Stevenson 1988).

The early basins and emergent landmasses likely hosted a variety of habitable environ-
ments including subaqueous, littoral (i.e. tidal therefore partially subaerial), subaerial and
hydrothermal settings (note, however, that hydrothermal settings were ubiquitous). These
sedimentary environmental settings are attested by sedimentary structures, pillow lavas and
geochemical signatures. Various proxies are used to infer the environmental conditions. Esti-
mates of water temperatures on the early Earth from oxygen, silicon, and hydrogen isotopic
signatures preserved in chert sediments are wide-ranging, from a cool 26 ◦C (Hren et al.
2009; Blake et al. 2010) to ∼ 50 ◦C and up to ∼ 70 ◦C (Robert and Chaussidon 2006; Van
den Boorn et al. 2010; Marin-Carbonne et al. 2012; Tartèse et al. 2017). The latter studies
especially noted the strong influence of the early Earth’s abundant hydrothermal activity on
the temperature signatures, as evidenced also by the aforementioned REE signatures (posi-
tive Eu and Y anomalies, and Y/Ho ratio Hofmann and Harris 2008; Hickman-Lewis et al.
2020b). It should be borne in mind that the sediments analysed were formed at the interface
between the relatively shallow column of water and above warm or hot rock that could be
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easily heated; this may not have been the case in the “deep” ocean, and we do not know how
deep the Earth’s oceans were outside the shallow plateau areas. However, in the scenario
where there was not much exposed continental landmass, the average ocean depths would
have been about 2 km. The pH of the early oceans would have been variable, with alka-
line conditions enhanced by aqueous alteration of the predominantly ultramafic and mafic
crust (Kempe and Degens 1985; García-Ruiz et al. 2020), while more acidic conditions were
the consequence of boiling and hydrogen-rich hydrothermal fluids as well as the CO2-rich
atmosphere (Morse and Mackenzie 1998; Catling and Zahnle 2020). Intermediate values
were estimated by Friend et al. (2008), who interpreted circum-neutral pH from geochem-
ical analyses of Eoarchean rocks from West Greenland. On a local scale, variations in pH
could have been readily maintained around hydrothermal vents, where exiting fluids of a
certain pH mix with seawater of different pH, or where the pH is changed by interaction
with adjacent rock/sediment materials, e.g. acidic fluids flowing through mafic or ultramafic
rocks and sediments becomes initially alkaline before returning to and slightly acidic pH if
that is the ambient condition (Dass et al. 2018; Westall et al. 2018). Estimations of salinity
for the early oceans vary, but fluid inclusion studies suggest that they range from present
day values to about double these values (Marty et al. 2018; see also Knauth 2011; Catling
and Zahnle 2020). These estimations will be relevant for the shallow water basins on top
of the submerged protocontinents but environmental conditions in the open ocean may have
differed.

While all environmental parameters indicate an anaerobic early Earth, extremely small
amounts of oxygen would have formed locally by EUV photodissociation of water vapour in
the atmosphere and at the surface of the seawater (Kasting et al. 1979). Oxygenated species
could have resulted also from dissociation of boiling, pressurised hydrothermal fluids as
they exited vents in shallow waters (pers. comm. C. Ramboz, 2009). Note also that the early
oceans were more enriched in the transition metals essential for Earth-like life (Fe, V, Ni, As
and Co) than today, owing to leaching of the early ultramafic and mafic rocks characteristic
of the early volcanic crust (Hickman-Lewis et al. 2020a). Indeed, the early oceans could be
considered iron-rich environments.

2.3 Early Life on Earth

2.3.1 Scenarios for the Emergence of Life

There is strong evidence for diversified life forms comprising chemotrophic and pho-
totrophic microorganisms already in the Paleoarchean (3.6 to 3.2 Ga) based on morpho-
logical structures, as well as geochemical and organic biosignatures (Hofmann et al. 1999;
Hassenkam et al. 2017; Djokic et al. 2017; Hickman-Lewis and Westall 2021). This suggests
that life must have emerged during the Hadean. Or, if life appeared very rapidly (and we have
no idea how long it took for life to emerge) at the latest, in the very early Eoarchean. Mi-
crobial fossils have been interpreted from the 4.28–3.8 Ga Nuvvuagittuq rocks of Canada
(Dodd et al. 2017; Papineau et al. 2022), where jaspilite deposits probably represent hy-
drothermal chemical sediments. Relatively large filaments (about 16.5 µm in diameter and
up to 1000s of µm in length) were hypothesised to be of microbial origin. Associated mul-
tiple sulfur isotopes are consistent with a microbial signature. However, Greer et al. (2020)
and Lan et al. (2022) suggested that these and other Fe-rich microbial filaments in the highly
metamorphosed, Nuvvuagittuq rocks are abiotic mineral features. Microbial life is strongly
associated with hydrothermal deposits in later Paleoarchean sediments 3.33 Ga (Westall
et al. 2015; Hickman-Lewis et al. 2020b), and confirmation of such traces in more ancient
deposits is actively being sought.
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There are many scenarios suggested for the emergence of life on Earth, including hy-
drothermal environments undersea (Baross and Hoffman 1985; Russell and Hall 1997; Mar-
tin and Russell 2003) and on land (Damer and Deamer 2020; Van Kranendonk et al. 2021);
associated with impact craters (Sasselov et al. 2020); pumice rafts (Brasier et al. 2011); deep
seated faults (Schreiber et al. 2012); and mixing of chemical precursors produced in com-
binations of these and other environments (Stüeken et al. 2013). Each of the scenarios has
relative merits and some disadvantages, as reviewed by Westall et al. (2018). We will briefly
summarise the different scenarios below.

An important point in addressing the scenarios for the origin of life is that the envi-
ronmental requirements for this are not necessarily the same as those for flourishing, more
evolved life forms. This will become evident also later in this chapter during the discussion
of possible life forms in the clouds of Venus today. For life as we know it, based on organic
carbon molecules and liquid water, the basic ingredients include the six essential elements,
C, H, O, N, P, S, as well as transition metals (especially Fe), liquid water, an energy source
(e.g., chemical, photonic, heat), and a suitable geological context. According to our current
understanding of prebiotic chemistry processes, life as we know it could not emerge in an
environment with free oxygen, thus anaerobic conditions are also important. According to
some researchers (Pascal et al. 2013; Pross and Pascal 2013), the initial energy for push-
ing prebiotic reactions past the required activation level needs to be very high and can only
be provided by UV radiation. Conversely, the complex compounds necessary for biological
functions, such as peptides, information transferring molecules (RNA, DNA), or the lipids
of cell membranes (Kminek and Bada 2006; Reisz et al. 2014), would rapidly break down
under UV radiation. Others (Adam 2007; Adam et al. 2018) have hypothesized that beach
sands enriched in uranium could have provided the radiation necessary for activating pre-
biotic processes. Although the existence of uranium placer deposits during the Hadean is
highly unlikely owing to the small quantities of uranium in the early terrestrial rocks and the
limited availability of oxygenated environments for leaching and concentrating it out of the
rocks. If correct, the necessity of UV radiation for early prebiotic reactions would place se-
rious constraints on where life could have emerged, i.e. life could only have emerged where
there was exposed land and not, for example, on an ice covered ocean planet.

Another important condition for the emergence of life is the presence of natural gradients:
in temperature, pH, ionic concentrations, water and osmotic potential, and energy (Westall
et al. 2018). Gradients drive the diffusion of essential components for prebiotic chemistry
and primitive metabolisms, via hydrothermal fluids, seawater, pore waters (in porous mate-
rials), river water, or (impact) lakes. As one commonly hypothesized requirement for life is
compartmentalization, chemical constituents would have needed to be transferred into and
out of the micro-scale compartments (e.g., pores in rocks and minerals, naturally-forming
gels, vesicles, or micelles) in which prebiotic reactions would have taken place. In terms
of the emergence of life, three key factors are critical: (1) the concentration of the various
molecular building blocks of life, (2) their stabilisation and structural conformation, and
(3) chemical evolution (as summarised from previous works by Westall et al. 2018).

In a manner that is a priori counter intuitive for non-prebiotic chemists, there are stages
during prebiotic reactions when water is a hindrance. This is when it is necessary to concen-
trate the ingredients of life. Darwin’s dilute, warm little pond will not work. Concentration
allows basic prebiotic molecules to interact sufficiently with each other to create additional,
more complex conformations. For example, Russell and Hall (1997), Russell (2021), Martin
et al. (2008) view the reactive mineral-rich walls of pores in deep sea hydrothermal vents
as a likely location for concentration and condensation of organic molecules. Porous silica
gel was suggested by Westall et al. (2018) and Dass et al. (2018) because of its ubiquity
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Fig. 4 Model for the emergence
of cellular life in porous
hydrothermal vent systems (after
Martin and Russell 2003)

in the early terrestrial oceans, and its association with hydrothermal environments. Organic
molecules chelate to the surface of the pores in the gel, which is permeable, letting through
nutrients, molecules and enabling gradients. Other researchers prefer wetting-drying cycles
that imply exposure of the organic molecules to the early atmosphere, either in a beach en-
vironment (Deamer 1997), or on land (Damer and Deamer 2020; Marshall 2020; Sasselov
et al. 2020).

Deep sea hydrothermal vents were suggested as a suitable location for the origin of life
by Baross and Hoffman (1985). This idea was further developed in great detail by Russell
and various colleagues since the mid 1990s. Russell et al. (2010) noted the particular im-
portance of alkaline vents for the emergence of life (Fig. 4). These were environments from
which metal-rich fluids and small organic molecules formed during serpentinising reactions
in the crust, including hydrogen, methane, minor formate, and ammonia, as well as calcium
and traces of acetate, molybdenum and tungsten. Chemiosmotic energy would have been
provided by proton and redox gradients across the porous vent walls. According to this hy-
pothesis, prebiotic chemical reactions in the porous, reactive mineral constructs of the vents
would concentrate molecules, helping them to form new structures and combinations. Even-
tually, all the constituents of life, except cell membranes, would be found within the pores,
thus forming the first living entities (i.e. non membrane-bound cells). Finally membranes
would form around the edges of the pores to enclose the proteins and RNA molecules, al-
lowing the protocells to be expulsed into the ocean. In this scenario, UV radiation is not
necessary to surmount the activation energy barrier.
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Fig. 5 Hypothetical emergence of life in subaerial hydrothermal springs. After Damer and Deamer (2020)

In support of the deep-sea hydrothermal vent scenario, Ménez et al. (2018) note that
serpentinite-bearing hydrothermal environments requiring exhumation of mantle rocks to
the surface are common for (ultra)slow spreading mid-ocean ridges and/or oceanic rifts.
Such tectonic settings require lithospheric extension and were likely present since very early
stages of lithospheric evolution and crustal differentiation (e.g. Sizova et al. 2015). Models
show that their existence does not require global plate tectonics and/or subduction and can
associate with several other styles of mantle convection and surface dynamics such as ridge-
only convection or plutonic squishy lid that might be common styles for young Venus/Earth-
sized terrestrial planets (Rozel et al. 2017; Sizova et al. 2015; Lourenço et al. 2018).

In a variant on the deep-sea hydrothermal scenario and based on their studies of well-
preserved hydrothermal sediments from the Paleoarchean, Westall et al. (2018) suggested
that volcanic sediments in the vicinity of hydrothermal vents may have hosted prebiotic
reactions leading to the emergence of life. The scenario is very similar in principal to that
of Russell (a porous medium comprised of reactive minerals), with the exception of the
inclusion of porous silica gel, as noted above, a ubiquitous by-product of the early silica-
rich seawater. The presence of these sediments around hydrothermal effluent extends the
available environments for the emergence of life. Moreover, such environments existed at
all water depths, from tidally-influenced littoral environments down to the deep sea. In this
case, if UV radiation were an essential factor in prebiotic reactions, shallow water systems
in the tidal zone would offer exposure to UV radiation, as well as protection of the more
complex molecules under water and within the subaqueous sediments.

Another popular scenario suggests subaerial hydrothermal environments for the emer-
gence of life. This is largely because of the findings that (1) UV radiation can contribute to
the neoformation of prebiotic molecules (Pascal et al. 2013; Pross and Pascal 2013), (2) hy-
drophobic conditions are necessary at certain stages of prebiotic reactions to concentrate
molecules (Damer and Deamer 2020; Deamer 1997; Marshall 2020; Sasselov et al. 2020),
and (3) subaerial vents have been interpreted in ancient Paleoarchean terranes (Van Kra-
nendonk et al. 2021). Hydrothermal vents on land (Fig. 5) would have provided a suitable
environment for prebiotic processes as they are exposed to UV radiation, when necessary,
as well as protected by water. The porous sediments and vent walls would have served the
same function as hypothesized in the deep-sea vent scenario, mini-reactors localizing and
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supporting the prebiotic chemical reactions. Fully-formed microbial cells would have been
transported to the oceans by rivers (UV avoidance being a necessity in this scenario). One
could also envisage the transport of microbes attached to each other or to dust particles in
small clumps that can travel significant distances through the air. In this scenario, despite
exposure to UV and desiccation, cells in the interior of the clump will remain shielded and
wet for a certain time even though cells on the surface of the clump die (Madronich et al.
2018). This scenario works on the Earth today but the higher UV flux on the early Earth
may have been a considerable constraint.

The common denominator in the most popular of the above origin-of-life scenarios is
hydrothermal environments, either undersea or on land. Here, the contact of hot water with
reactive mineral surfaces would have provided the chemical energy for prebiotic reactions.
The early volcanic rocks were more ultramafic than today, comprising predominantly iron
and magnesium-rich basalts and komatiites. There would have been the possibility of ex-
posure to UV radiation in beach environments, shallow water vents, or subaerial vents, at
significant moments (if it was indeed essential). The mineral surfaces, perhaps assisted by
the presence of ubiquitous silica gel, would have facilitated increasing molecular concen-
tration, conformation and complexity in mineral and silica pores. The necessary gradients
would have been provided by the through flow of fluids and nutrients from the vent efflu-
ent to the immediately surrounding environment (including sediments) and protocells would
have formed.

We have only considered here in detail a few of the wide variety of environments sug-
gested for the emergence of life, but we noted above some of the other hypotheses. However,
we may never know exactly where life originated. It is clear that there were numerous pos-
sibilities for prebiotic chemistry in different scenarios. It is possible that important compo-
nents of living cells were formed in different types of environments and eventually concen-
trated together in one location. Although certain prebiotic chemists do not endorse this idea,
considering that the processes leading to life needed to have occurred in one location (N.
Lane, pers. comm„ 2022). It is also possible that life emerged in more than one place dur-
ing the course of the Hadean, possibly even under different scenarios in different times and
places. Large impacts or other more localized environmental changes could have wiped out
life in some regions while in others it continued to flourish. Given the biochemical, genetic,
and other evidence we have today that all modern life shares a common ancestor (Weiss
et al. 2018, and references therein), eventually, the early world ocean must have been domi-
nated by one form of life, presumably the metabolically most effective, using the molecular
machinery that we know today.

2.3.2 Scenarios for the Emergence of Life and the Problem of Prebiotic Chemistry in
the Laboratory

The origin of life has traditionally been addressed through experiments in prebiotic chem-
istry in carefully controlled laboratory conditions. This has led to a significant amount of
confusion in the origins of life community because the realities of the early terrestrial en-
vironment were, and are still, rarely taken into account. A prime example of this situation
is the stabilisation of ribose (sugar), one of the essential ingredients of RNA. The element
boron has been suggested to have been critical to the stabilisation of the sugar (Benner et al.
2010; Scorei 2012). Boron is a constituent of tourmaline, a mineral present in the sediments
of Eoarchean terranes and was certainly present on the Hadean Earth (Grew et al. 2011) but
some researchers have suggested its presence as boron salts on exposed landmasses, thereby
inferring that life could have emerged in subaerial rivers (Benner et al. 2010). Another so-
lution for the stabilisation of ribose hypothesises is exposure to ice. Szostak (2016) invokes
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seasonal changes in a subaerial hydrothermal setting (similar to Yellowstone), whereby tem-
perature changes could have induced a temporally icy setting. Trinks et al. (2005) suggest
sea ice as an important setting for prebiotic chemistry in terms of concentration of organic
molecules and for providing optimal conditions for the early replication of nucleic acids.
Support for this scenario was based on models suggesting that the early Earth had a cold
start (Catling and Zahnle 2020). They are predicated on the lower luminosity of the Sun
and the necessity of either high partial pressure for a CO2 atmosphere or a large amount of
greenhouse gases, such as CH4 (Sagan and Mullen 1972).

Is such a scenario realistic? While there is no evidence during the Archean of glacial
conditions (beaches were bathed by tidal waves and hosted evaporite mineral precipitation),
heat flow from the mantle during the Hadean is modelled to have been lower than during
the Archean (Ruiz 2017; Korenaga 2018). Radiogenic heating of the mantle continued up
to about 3.0–2.5 Ga when it reached a maximum (1500–1600 ◦C compared with 1350 ◦C
today) and then decreased thereafter (Herzberg et al. 2010). Although Foley et al. (2014)
propose mantle temperatures more than 2000 ◦C for post magma ocean times.

The aforementioned examples underlines two important points regarding the origin of
life on Earth. In the first place, the difficulties in interpreting early habitable environmental
conditions are based on the relatively distorted prism of the relatively rare occurrences of
metamorphosed and altered rocks from the Eoarchean. Secondly, the fact that experiments
in prebiotic chemistry often do not take into account realistic early Earth scenarios. There is
also the point that, while life on Earth may have emerged in one particular environment (or
several), this does not mean that life on another terrestrial planet, such as Venus, could not
have originated in an alternative scenario.

2.3.3 Evidence for Early Life

After life on Earth became established, the variety of environments on the early Earth seem
to have provided a plethora of habitats, each characterised by different and, likely, time-
variable characteristics. Given the anaerobic conditions prevailing on the early Earth and
the negative effects of oxygen on modelled prebiotic chemistry, early terrestrial organ-
isms had to have inhabited anaerobic environments. The earliest ecosystems would have
supported chemoautotrophs, i.e. microorganisms obtaining their energy from oxidation of
organic substances, such as methyl compounds (chemoorganotrophs), or inorganic sub-
stances, such as ferrous iron, hydrogen sulfide, elemental sulfur, thiosulfate, or ammonia
(i.e. chemolithotrophs). These were the key substrates or electron donors that were immedi-
ately available to support life on the early Earth. Heterotrophs, or organisms that depend on
carbon for their nutrient supply (by consuming them, their debris, or their waste products),
may have emerged as early as the first autotrophs.

Organisms that developed the ability to use sunlight as a more powerful and effective
source of energy, i.e. phototrophs, emerged after the chemotrophs. Initially (3.8 to 3.5 Ga),
phototrophs may have used hydrogen and/or sulfur as a reductant. A decrease in the avail-
ability of these compounds in Earth’s atmosphere, possibly related to the global production
of methane by the early biosphere (methanogenesis), may have led to the development of
ferrous iron-based phototrophy at or before 3.0 Ga (Olson 2006). The efficiency of even
these early forms of photosynthesis, combined with the abundant availability of sunlight,
appears to have conferred an immense metabolic advantage to the phototrophs; they were
already relatively widespread by about 3.5 Ga (Noffke et al. 2013; Hickman-Lewis et al.
2018a), which indicates their relatively rapid evolution and spread (i.e. biomass) in environ-
ments with sufficient insolation. Liu et al. (2020) considers this an additional point in favour
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of an origin of life during the Hadean and not after the (now) controversial Late Heavy
Bombardment (LHB) of 3.9 Ga. Given the implication for the timing of the origin of life it
is important to understand why the LHB is currently out of favor. The hypothesised LHB
was originally tied to dating of the returned lunar samples by Turner and Cadogan (1975)
and Tera et al. (1973) that showed a preponderance of ca. 3.96 Ga ages that they hypothe-
sised could have been produced by a “lunar cataclysm”. Modelling has shown that such an
event could have been created by instability in the orbits of the giant planets, particularly
Jupiter (Walsh et al. 2011; Deienno et al. 2016). Recent analysis of lunar impact glass ages
(Zellner 2017) demonstrates the unlikeliness of a late bombardment peak. Observations of
a binary Jupiter Trojan (Nesvorný 2018), coupled with studies based on cratering statistics,
geochronological databases tied to closure temperature, and resolved ages using orbital dy-
namics and thermal modeling (Mojzsis et al. 2019; Clement et al. 2019), show that any giant
planet instability would have occurred before about 4.45 Ga.

We noted above purported microbial fossils associated with hydrothermal activity from
the 3.8 Ga Nuvvuagittuq Supracrustal terrane (Dodd et al. 2017; Papineau et al. 2022) that
have since been reinterpreted as of abiotic origin (McMahon 2019; Greer et al. 2020; Lan
et al. 2022). Furthermore, while organic molecules in garnets from the 3.7 Ga Isua Green-
stone Belt may be remnants of microbial life (Hassenkam et al. 2017), purported microbial
stromatolites described from the same rocks (Nutman et al. 2016, 2019) are apparently of
abiotic origin (Allwood et al. 2018; Zawaski et al. 2020). Nevertheless, by 3.5 Ga, the Bar-
berton and Pilbara Greenstone Belts, the two main locations with well-preserved crustal
rocks, document abundant evidence of microbial life. Most readily visible are small, dom-
ical stromatolites ∼several cm in height occurring in shallow water environments in the
Pilbara (Hofmann et al. 1999; Allwood et al. 2006), that represent the macroscopic evidence
of phototrophic microbial mat formation. However, most phototrophic biofilms and mats
from the Paleoarchean in Barberton and the Pilbara are represented by tabular mats (Byerly
et al. 1986; Westall et al. 2011a, 2006a; Noffke et al. 2013; Hickman-Lewis et al. 2018b).
Evidently, these phototrophic biosignatures occur in very shallow water environments, the
organisms relying on access to sunlight to obtain their energy.

The shallow water environment, together with warm seawater, would have led to rel-
atively high salt concentrations. Westall et al. (2006a) describe microcrystalline, silica-
pseudomorphed evaporate mineral sequences in 3.33 Ga coastal sediments in the Barberton
Greenstone Belt, South Africa, while (Lowe and Byerly 1999a) document an horizon of
nacholite crystals in 3.42 Ga sediments from Barberton (Knauth 2011). Thus, given the
abundant evidence for microbial life in these shallow water environments, it must have
been at least partially halophilic (Westall et al. 2015; Hickman-Lewis and Westall 2021).
Moreover, the volcanic sedimentary environment with its associated hydrothermal activity,
hosted chemotrophic life, including chemolithotrophs, as well as chemoorganotrophs, the
latter in the direct vicinity of hydrothermal vents (Westall et al. 2006b, 2011b; Hickman-
Lewis et al. 2020a). Colonies inhabiting hydrothermal environments would have comprised
thermophiles and probably hyperthermophiles.

(Hickman-Lewis and Westall 2021) review the widespread distribution of early life in
the Barberton Greenstone Belt through the Archean (3.5–2.6 Ga), showing how its nature
and distribution throughout this early period of Earth’s history were controlled by both the
gradual evolution of the environment, as well as the rise of oxygenic phototrophs at about
3.0 Ga. Figure 6 illustrates a variety of early biogenic remains from the Paleoarchean Bar-
berton Greenstone Belt (South Africa) and Strelley Pool Chert (Pilbara Greenstone Belt,
Australia) sediments, including macroscopic stromatolites from the 3.43 Ga Strelley Pool
(Fig. 6A, B) (e.g. Hofmann et al. 1999; Allwood et al. 2006), tufted tabular stromatolites
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Fig. 6 Early terrestrial microorganisms. (A, B) 3.44 Ga old stromatolites from the Pilbara, Australia in plan
view and cross section. (C) Tabular phototrophic mats from the 3.472 Ga old Middle Marker Formation,
Barberton, South Africa. (D) Layers of carbonaceous clots representing chemotrophic colonies in the vicinity
of hydrothermal vents

from the 3.72 Ga Middle Marker Horizon, Barberton (Hickman-Lewis et al. 2018a), and
clotted probable chemolithic microbial colonies from the 3.33 Ga Josefsdal Chert, Barber-
ton (Hickman-Lewis et al. 2020a).

3 Tectono-Magmatic Processes on Venus vs. Hadean-Archean Earth

3.1 Tectonics

High surface temperatures that prevail on present-day Venus may strongly affect the inte-
rior and the surface (Phillips et al. 2001; Noack et al. 2012; Gillmann and Tackley 2014).
Extensive outgassing and a greenhouse effect such as the one observed on Venus directly
affect surface mobilization (horizontal velocity and inclusion of the lithosphere in the con-
vective cell). Several studies that coupled 1D, 2D and 3D interior dynamics models with at-
mospheric evolution models have investigated the effects of an evolving atmosphere formed
through mantle degassing of H2O and CO2 (Noack et al. 2012; Gillmann and Tackley 2014).
However, the feedback between the atmosphere and the mantle can be quite complex. Some
models, in which digitized atmospheric temperature values from a non-grey (wavelength-
dependent) radiative-convective atmospheric model by Bullock and Grinspoon (2001) were
used, suggest that high surface temperatures lead to surface mobilization (Noack et al. 2012).
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Higher surface temperatures translate into lower surface viscosity, reducing the viscosity
contrast between the surface and the mantle, and allowing the surface layer to be mobilized
by mantle convection.

On the other hand, models that consider plastic yielding of the lithosphere and couple
the interior evolution to a grey atmosphere (thermal opacity uses a single value, independent
of wavelength), find that a high surface temperature stops surface recycling and promotes a
stagnant-lid regime (Gillmann and Tackley 2014). Instead, a lower surface temperature will
lead to higher viscosities and higher convective stresses that, in turn, may promote plastic
yielding and surface mobilization (Lenardic et al. 2008). Venus may have experienced lower
surface temperatures during its early thermal history, due to the efficient removal of water by
escape processes (Gillmann and Tackley 2014). During this time more moderate conditions
may have existed at its surface and allowed the sequestration of atmospheric CO2, preventing
its accumulation in the atmosphere. Global circulation models even suggest that a temperate
Venus could have been maintained under habitable surface conditions until as recently as
0.7 Ga (Way et al. 2016). The difference between the results from numerical models is
mostly due to the various rheologies and mechanisms considered, and may indicate possible
competition between multiple processes on real planets. As such, there may be a sweet
spot when rheology remains stiff enough for the lid to break and convective stress to be
transmitted to the lid, but soft enough to allow vigorous convection and prevent the lid
from growing too static. Additionally, the specifics of the regime may depend on the history
of the planet (for instance Weller et al. 2015; Weller and Kiefer 2020) and in particular
the transition between the magma ocean solidification and the solid mantle convection (see
Salvador et al. 2017, 2023). This topic is discussed further in (Gillmann et al. 2022; Rolf
et al. 2022, this journal).

The exact style of resurfacing on Venus is still debated (Rolf et al. 2022, this journal).
Different scenarios that have been discussed in various studies (Armann and Tackley 2012;
Gillmann and Tackley 2014; Karlsson et al. 2020; Lourenço et al. 2020) could have operated
at various times throughout Venus’ history: (1) stagnant lid: the surface was continuously
renewed by volcanic activity without any kind of surface mobilization (Armann and Tack-
ley 2012; Gillmann and Tackley 2014; Karlsson et al. 2020); (2) episodic lid: at periods
plate tectonic like surface mobilization takes place with more quiescent periods in between
(Armann and Tackley 2012; Gillmann and Tackley 2014; Uppalapati et al. 2020); (3) plu-
tonic squishy lid (Lourenço et al. 2020): recycling of the lithosphere by eclogitic dripping
and delamination, with strong plates separated by hot magmatic intrusions. These scenarios
are different in terms of the efficiency of volatile recycling, which, in turn, has important
implications for mantle dynamics and thermochemical history. In addition to this, the exact
convection regime is probably not static and could have changed throughout the history of
Venus (Gillmann and Tackley 2014; Weller et al. 2015; Weller and Kiefer 2020).

Understanding the tectonic regime throughout Venus’ history is important as it is closely
linked to its volatile history. First, outgassing, and thus the atmosphere thickness and bulk
composition, are directly governed by the mantle dynamics and volatile release by volcan-
ism. More detailed overviews of the mantle based outgassing processes are proposed in
Rolf et al. (2022) and Gillmann et al. (2022), respectively. It has therefore been postulated
that one could infer the tectonic style of a planet based on its volatile history and atmo-
sphere characteristics. In particular, Venus’ 40Ar measurements have been used to suggest
that the planet only outgassed 10 to 34% of its total 40Ar inventory (Kaula 1999; O’Rourke
and Korenaga 2015; Namiki and Solomon 1998; Volkov and Frenkel 1993), compared to
Earth’s 50%. That would imply Venus outgassing was limited during most of its evolution
or was only important during its early history (when 40Ar had not formed yet). Therefore
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such measurements argue against an Earth-like tectonic regime for all but primitive Venus at
least. One should note that the thick CO2 atmosphere and large N2 inventory could point to-
ward strong outgassing at some point in the history of Venus; this question is not yet solved.
It has been suggested that such a period may have been very ancient, possibly dating back to
the magma ocean phase (Gaillard et al. 2022) or the Late Accretion (Gillmann et al. 2020).
CO2 could also have been released by different processes depending on surface conditions
(Höning et al. 2021).

Planetary tectonics also ties into the possibility of a carbonate-silicate cycle and thereby
on the potential of long-term habitability. On Earth, the climate is stabilized as CO2, out-
gassed at mid-ocean ridges and other volcanic units, is consumed by silicate weathering
processes, precipitated as carbonates on the seafloor, and recycled back into the mantle at
subduction zones (Walker et al. 1981; Kasting and Catling 2003). The land fraction is an
important parameter in this cycle, since silicate weathering is particularly efficient on land
that is emerged over sea-level. Higher rates of seafloor weathering at mid-ocean ridges can
partly compensate for a smaller land fraction (e.g., Foley 2015), but the global mean surface
temperature would nevertheless be expected to be higher if most of the planet’s surface is
covered by oceans.

In the stagnant lid scenario, recycling of volatiles is the least efficient because the thick
static lid is not part of the convection. Water, carbonates (if formed during moderate atmo-
spheric conditions), and sulfates may have never been recycled into the mantle. The observed
tessera terrains, that represent around 8% of the crust on Venus, have been suggested to re-
semble continental crust on the Earth (Gilmore et al. 2015). If so, they may be difficult to
form in this scenario, as their formation would require some kind of crustal recycling in the
presence of water. However, models (Karlsson et al. 2020) have not yet been able to simulate
their behaviour satisfactorily. While delamination of the lower crust may take place in this
scenario, if the crust grows thicker than the basalt to eclogite transition depth (Sizova et al.
2015; Fischer and Gerya 2016a, e.g.,), water recycling remains unlikely. On Earth, felsic
material can form without water. However, such a mechanism would struggle to produce
enough felsic material to account for the total volume of present-day Venus tesserae (Sm-
rekar et al. 2018, and references therein). Future missions may place a constraint on how
much of the tessera terrains can actually be considered felsic.

Volatile recycling would be efficient during plate tectonic periods in the episodic lid sce-
nario, while in the plutonic squishy lid case, the efficiency would presumably be lower than
in the episodic case but still notably higher (Sizova et al. 2015; Fischer and Gerya 2016a,
e.g.,) than in the stagnant lid scenario. Volatiles that are introduced back into the mantle
would have major consequences for mantle dynamics and subsequent magmatic evolution.
Recycled crust will become negatively buoyant when undergoing the phase transition from
basalt to eclogite. The recycled crust is rich in incompatible elements, such as heat producing
elements and volatiles, which can significantly affect subsequent melting of the mantle. The
subducted crustal material will refertilize the mantle and promote partial melting, both by in-
creasing the amount of heat producing elements in the mantle and recycling of volatiles that
would locally decrease the melting temperature. In addition to decreasing the local solidus,
recycled volatiles will also decrease the viscosity of the mantle material, thus affecting the
interior dynamics and the cooling behavior of the mantle, and consequently the subsequent
outgassing.

Constraints on the style of recycling on Venus may be derived from the inferred crustal
thickness, and variations in the crustal age and geoid (Kiefer and Hager 1991; Armann and
Tackley 2012; King 2018). The episodic lid models and the plutonic squishy lid, with a low
reference mantle viscosity and a low eruption rate, seem to produce a crustal thickness that
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is closer to the inferred crustal thickness of Venus compared to stagnant lid cases (Rolf et al.
2018; Lourenço et al. 2020). Surface age variations indicated by Venus’ cratering record
may be easier to reconcile with the episodic lid scenario (Uppalapati et al. 2020) and the
long wavelength of the gravity spectrum can be matched well if the last resurfacing event
ended a few hundred Myr ago (Rolf et al. 2018). Whether these observations are consistent
with the plutonic squishy lid regime remains to be tested in future models. It should be noted
again, however, that the stagnant lid, episodic lid, and plutonic squishy lid scenarios are not
mutually exclusive, but may have been active at different times during Venus’ history, as
seems to have been the case on early Earth. Additionally, they constitute a continuum of
behaviours rather than distinct, clear-cut end-members. Finally, local variations are to be
expected, and different crust deformation processes could occur at different locations of the
surface of Venus at a given time (see Rolf et al. 2022). Thus, recycling of volatiles may have
significantly changed during the thermal evolution of Venus, and its present-day state is the
result of complex feedback mechanisms between the interior, surface and atmosphere (Gill-
mann et al. 2022). Future work assessing volatile exchange associated with changes in the
tectonic regime throughout Venus’ history is necessary in order to advance our knowledge
of stable surface water in the past.

3.2 Outgassing

Outgassing is an important source of secondary volatiles for the atmosphere of a terrestrial-
type planet. It therefore directly affects surface conditions and the surface habitability of a
planet. Broadly speaking, three processes can lead to significant outgassing and affects on
the atmosphere (including the fluid envelope) in the long term: (i) magma ocean solidifica-
tion, (ii) collision with impactors, especially large ones at an early stage, and (iii) volcanism.

Magma ocean evolution, solidification, outgassing and its consequences on the atmo-
sphere and surface conditions on rocky planets, in particular on Venus, are discussed in
detail in Salvador et al. (2023, this journal). After accretion and the capture of a possible
primordial hydrogen atmosphere, it is the source of the early volatiles and a secondary at-
mosphere. It is generally understood that CO2 outgasses early and in large quantities, while
water should be released near the end of the magma ocean phase, if at all (Salvador et al.
2017). It has been proposed that a freezing magma ocean could retain a large portion of
its water (Solomatova and Caracas 2021). Outgassing from magma oceans is an active re-
search topic, and it has been highlighted that the actual species outgassed to form this early
secondary atmosphere could heavily depend on the magma ocean’s redox state (e.g. Licht-
enberg et al. 2021; Gaillard et al. 2022) It has been suggested that this phase could already
set the planet on an habitable or uninhabitable evolutionary path, depending on the duration
of the magma ocean, and ability of the planet to cool down fast enough to allow liquid water
to condense on its surface (Gillmann et al. 2009; Lebrun et al. 2013; Hamano et al. 2013;
Salvador et al. 2017; Turbet et al. 2021) before it is lost to space.

Large impacts and their consequences are discussed in Gillmann et al. (2022), Salvador
et al. (2023, this journal). The velocity and mass of impactors means that large amounts
of kinetic energy are transferred to the planet as thermal energy during a collisional event.
For bodies that are large enough (or fast enough), that is, above a few tens of kilometers
in radius, impacts can cause large-scale melting of the crust and the mantle of the planet.
They may create magma ponds/seas, and lead to the release of volatiles into the atmosphere
(e.g. for Venus, Gillmann et al. 2016). Such events are more frequent and important during
early evolution, especially during the accretion phase and are accompanied by the additional
release of volatiles contained in the impactors (Sakuraba et al. 2019; Gillmann et al. 2020;
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Sakuraba et al. 2021). Volatile release by impactors can substantially modify the compo-
sition of the atmosphere and the state of the surface. If the impactor is large enough there
could be implications for habitability ranging from the short term (earthquakes, tsunamis,
storms, lava ponds/oceans) to the long term (increased greenhouse effect, increase in CO2

concentrations).
Volcanic outgassing is discussed in Gillmann et al. (2022, this journal). Its causes are

explained in Rolf et al. (2022, this journal) and include partial melting of the mantle due to
local pressure-temperature conditions exceeding the local solidus of the mantle material. Its
surface expressions are addressed in Smerkar et al. (2022, this journal) and Herrick et al.
(2022, this journal). For Venus, recent volcanic production can be roughly estimated, but
with large uncertainties. Observation of the surface and atmosphere can provide some con-
straints for modelling efforts, but recent volcanic production rates are debated. They could
be very low, � 1 km3, in agreement with the minimal effect of volcanism on randomly dis-
tributed impact craters (Basilevsky and Head 1997; Schaber et al. 1992); moderately lower
than on Earth (∼ 1 km3/yr) (Head et al. 1991; Phillips et al. 1992); or similar (∼ 10 km3/yr;
Fegley and Prinn 1989; Bullock and Grinspoon 2001) to Earth’s production rates (e.g. Byrne
and Krishnamoorthy 2021). Long-term numerical modelling of mantle dynamics offers a
reasonable solution for estimating a range of possible outgassing rates from volcanic pro-
duction, keeping in mind the lack of hard constraints on values before 1 Ga, or on the state
of Venus’ mantle. However, little evidence exists for volatile concentration in Venus’ lava,
leading to further uncertainties, as volatile output strongly depends on the redox state (oxy-
gen fugacity) of the mantle. In addition, it has been suggested that the high surface pressure
in the Venusian atmosphere could suppress water outgassing compared to CO2 (Gaillard and
Scaillet 2014). It is currently debated if the present-day atmosphere is geologically (<1Ga)
recent (as suggested by Way and Del Genio 2020) or a fossil atmosphere (Head et al. 2021).

Extrapolating Venus’ outgassing rates back in time is subject to even greater uncertain-
ties since the tectonic regime may have changed (discussed in Rolf et al. 2022, this journal).
Magmatic outgassing is a consequence of partial melting of hot, uprising mantle material.
The shallower the depth to which the mantle material rises, the smaller the lithostatic pres-
sure and therefore the lower the solidus temperature. A thick, insulating lid on top of the
mantle would usually create a barrier to hot, uprising plumes and therefore a relatively small
melting region (O’Neill et al. 2014). In contrast, on planets with plate tectonics, the melting
region beneath mid-ocean ridges is extended close to the surface. On Earth, this mechanism
causes a basaltic crust production rate of at least ∼ 19 km3/yr (Cogné and Humler 2006).
An additional effect associated with plate tectonics is the subduction of water. In subduction
zones at depths of 100–200 km, subducted hydrous minerals become unstable and release
their water (Rüpke et al. 2004; Stern 2011). Since water reduces the solidus temperature
of the surrounding rock, partial melt is produced that rises to the surface, which is also ac-
companied by outgassing. Altogether, the tectonic regime has a tremendous effect on the
outgassing rate. If early Venus possessed plate tectonics, its outgassing rate would likely
have been much higher than it is today. The nature of outgassed species is also important for
surface conditions. It has been highlighted that the mantle redox state (the mantle oxygen
fugacity) could greatly affect the speciation in the atmosphere, with oxidised mantles (such
as the Earth’s) leading to the outgassing of CO2 and water. On the other hand, a reduced
mantle could rather favor CO or H2 (e.g. Kasting et al. 1993a; Gaillard et al. 2021; Frost and
McCammon 2008; Hirschmann 2012).

On Venus, not only is CO2 the major current component of the atmosphere, but it is also
responsible in large part for the high surface temperatures. Large rates of CO2 outgassing can
inhibit global glaciation due to this species’ role as a greenhouse gas. This is particularly im-
portant if a carbonate-silicate cycle is active on the planet, where silicate weathering serves
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as a sink to atmospheric CO2 (e.g., Kadoya and Tajika 2014). On the other hand, high rates
of CO2 degassing can enhance the greenhouse effect and ultimately lead to the evaporation
of water. Whereas an active carbonate silicate cycle would balance high rates of outgassing
to some extent, recycling of CO2 into the mantle on planets without plate tectonics is rare
(e.g., Foley and Smye 2018; Höning et al. 2019b). The solar flux that Venus receives to-
day, and has received in its history, is substantially higher than that the present-day Earth
receives, and the threshold towards surface water evaporation is the most relevant bottleneck
to Venus’ habitability (see also Gillmann et al. 2022, this journal). Small outgassing rates
during Venus’ early evolution, in combination with an active carbonate-silicate cycle, would
increase the likelihood of an early, habitable Venus, while significant early outgassing would
go against habitable conditions.

On Earth, water is a major component of volcanic outgassing (on the order of 1%). It is
possible that Venus is much drier, due to loss during the magma ocean phase and the inability
to condense water early on (Gillmann et al. 2009; Hamano et al. 2013), or that high surface
pressure stifles water outgassing (Gaillard and Scaillet 2014), but the planet’s current state
and modelling seem consistent with marginal water outgassing during recent history at least
(Gillmann and Tackley 2014). Beyond its availability for a possible liquid layer, water also
affects surface conditions by being a strong greenhouse gas and, despite its low abundance
in Venus’ current atmosphere, is the second highest contributor to high surface temperatures
on the planet.

Initial analysis by the Pioneer Venus Large Probe Neutral Mass Spectrometer (PV-
LNMS) indicated the possible presence of CH4 (Donahue and Hodges 1992). It was specu-
lated that CH4 was likely not well mixed in the atmosphere, given the measured variations
in abundance. Later analysis of the same data by the same team indicated that the detection
was unlikely (Donahue and Hodges 1993) and was due to contamination from terrestrial
CH4 brought along in the instrument and hence “was generated by a reaction between an
unidentified highly deuterated atmospheric constituent and a poorly deuterated instrumental
contaminant.” However, the instrumental contaminant has never been identified and hence
the detection of CH4 in the Venusian atmosphere remains an open question.

3.3 D/H Ratio

Venus’ atmosphere today contains only about 30 ppm H2O (Fegley 2014, and refs. therein).
The first in-situ D/H measurement by the PV-LNMS demonstrated a ratio ∼ 150 times that
of Earth (Donahue et al. 1982). Upper atmosphere measurements of D/H by Venus Express
(Fedorova et al. 2008) documented much higher values, which are inconsistent with those of
Donahue et al. (1982). Fedorova et al. (2008) attributed these differences to “a lower photo-
dissociation of HDO and/or a lower escape rate of D atoms versus H atoms.” Ground based
measurements do not always concord with both space and in-situ measurement, although
in some cases they are consistent (Matsui et al. 2012). Various measurements have been
suggested to imply a vertical variation of HDO/H2O (see Marcq et al. 2018, and references
therein) at odds with current chemical models. Despite these discrepancies, the general view
is that hydrogen in Venus’ atmosphere has a D/H much higher than any other reservoirs of
hydrogen in the solar system, which implies that Venus lost hydrogen to space. This may
indicate that after an early wet, possibly habitable, time (Donahue et al. 1982; Way and
Del Genio 2020), water dissociated and the hydrogen was removed from the atmosphere to
space. Dissociation of water molecules and the escape of hydrogen probably had a strong
influence on the entire geodynamical history of the planet (Baines et al. 2013)

However, while recent studies propose scenarios for the evolution of the D/H of Earth’s
water (Pahlevan et al. 2019; Kurokawa et al. 2018), estimating the amount of water lost from
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Venus over the last 4.5 Gyr remains extremely challenging for several reasons. Firstly, the
history of hydrogen escape cannot be easily re-constructed since it depends on numerous
factors (solar irradiation history, atmospheric composition and vertical structure, regime of
escape etc.). Secondly, the starting D/H ratio for hydrogen in the Venus atmosphere remains
unknown. An important contribution from solar gases would imply a low starting D/H ratio,
while contributions from comets could have increased this ratio up to 4–5 times that of
Earth (Altwegg et al. 2015). New investigations of the elemental and isotopic composition
of noble gases in the Venus atmosphere, especially of xenon, would help shed further light
on the history of hydrogen (and water) escape from Venus (see Avice and Marty 2020 and
Avice et al. 2022, this journal).

4 The Origin and Persistence of Habitability on Venus

4.1 Climate History

The initial stages of Venus’ habitable state are more shrouded in mystery than those of
Earth’s. We begin our analysis of Venusian habitability with the longevity of the post-
accretion magma ocean. Early work by Hamano et al. (2013) and Lebrun et al. (2013)
showed that, if the time needed for the crystallization of Venus’ magma ocean is ∼ 100
million years or longer, there is the risk of dissociation and loss of its primordial H2O steam
atmosphere: the hydrogen, as well as some of the oxygen, escapes during this time while
any leftover oxygen is absorbed into the magma ocean. After the cooling and crystallization
of the magma ocean, the planet (denoted by Hamano as a Type II world) may inherit a thick
CO2 dominated atmosphere not that different from what we observe today on Venus. In
this scenario, the D/H ratio measured by Donahue et al. (1982) is a possible remnant of the
primordial CO2+Steam(H2O) dominated atmosphere. In an alternative scenario for Venus
(which Hamano et al. termed a Type I world), the magma ocean crystallization takes place
over ∼ 1 million years (similar to that of Earth: Katyal et al. 2020; Nikolaou et al. 2019).
This scenario avoids the loss of the steam atmosphere, which may then condense out onto
the surface, possibly allowing for a period of habitability of undetermined length.

More recent work by Turbet et al. (2021) has expanded the 1-D models of Hamano
et al. (2013), Lebrun et al. (2013) to a 3-D GCM where cloud effects can be modeled and
their importance quantified. The Turbet et al. (2021) models of steam+CO2 and steam+N2

atmospheres demonstrate that there are little to no day side clouds at the substellar point
to shield the planet from high solar insolation (as will be seen in the cold-start cases be-
low). Their model also demonstrates the presence of high clouds at the polar and night side,
which are effective at trapping outgoing infrared radiation preventing the cooling of the
planet. The Turbet study supports the Type-II outcome modeled in Hamano et al. (2013),
where the magma ocean steam atmosphere is never able to condense out on the surface, and
once again the H2 escapes and most of the oxygen is absorbed by the magma ocean. One
major shortcoming in all of the models above is the inability to provide better constraints
on exactly what the constituents were of the outgassed magma ocean atmosphere, which
presently is an active area of research (e.g. Bower et al. 2022; Gaillard et al. 2022). Along-
side these unknowns can be added the inability to constrain the albedo (Salvador et al. 2017,
2023), which would again influence whether Venus becomes a Type I or Type II world.
The lack of definitive evidence for one scenario or the other implies that the question of the
existence of Venus’ past habitability remains open. More details on magma ocean and atmo-
spheric evolution is provided in Salvador et al. (2023, this journal). One method of testing
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which hypothesis for Venus’ evolution is correct is by examining data from the upcoming
DAVINCI mission (Garvin et al. 2022), which should provide better constraints on when
Venus lost its water and the timescale over which it happened by examining a number of
noble gas isotopes (see Avice et al. 2022, this journal). Another more indirect method would
be possible by looking at exoplanet demographics – if we observe planets in the Venus Zone
(Kane et al. 2014) that have temperate conditions then at least we know it is possible. See
Way et al. (2023, this journal) for how exoplanet research may inform Venus’ history.

To date, very little work has been done to examine how Venus (or the Earth for that
matter) moves from a post-magma ocean state to a period of habitability with moderate
surface temperatures and oceans, despite this transition being a cornerstone of the onset
of habitability. As mentioned above, the first step would be to provide better constraints
on exactly what the constituents were of the magma ocean atmosphere (e.g. Bower et al.
2022; Gaillard et al. 2022). One also needs to account for large impacts occurring in the
first few hundred million years of the planet’s evolution (see Salvador et al. 2023; Gillmann
et al. 2022, this journal), which could have major consequences on the atmospheric mass
and composition, as large amounts of water, CO2, N2, and other species could be delivered
or removed (e.g. Schlichting and Mukhopadhyay 2018; Gillmann et al. 2020). Thus, it is
unlikely that surface conditions would remain consistent throughout that early time. Some
works have attempted to examine the first 100s of million years (e.g. Harrison 2020), as
described above, but many unknowns still remain.

There is another problem for those interested in Venus’ habitability: How could Venus
ever have been habitable like early (or modern) Earth when Venus at 4.5 Ga received ∼ 1.5
times the incident solar flux that Earth receives today? Most studies resulting in temperate
conditions have been made assuming a cold start in the post-magma ocean phase, which
hypothesizes that the early magma ocean cooled quickly (a few million years) and that wa-
ter was able to condense out on the surface (Hamano Type I discussed above). The first to
successfully model such temperate conditions in the Pre-Fortunian (Hiesinger and Tanaka
2020) was Pollack (1971), who used a 1-D radiative convective non-grey model. He pre-
sented two options at 4.5 Ga when the solar luminosity was ∼ 30% lower than today. The
first was an early Venus with a 50% cloud cover – the motivation for 50% was that he be-
lieved modern Earth has roughly this amount (modern measurements indicate 70 ± 10%;
Holdaway and Yang 2016) – and in that scenario early Venus had temperatures (depending
upon the atmosphere assumed) ranging from ∼ 320–500 K. The second choice was a 100%
cloud cover model, yet the motivation for such a model was not disclosed. In this scenario
Pollack discovered that the planet could host moderate surface temperatures below 300 K.
Pollack also demonstrated that, even at today’s insolation (∼ 1.9 times Earth’s), the surface
temperature could have remained below 300 K. This 100% cloud cover assumption was the
basis for all subsequent Venus habitability studies (e.g. Grinspoon and Bullock 2007) yet
no mechanism for producing 100% cloud cover mechanism was ever provided. It would
not be until the exoplanet work of Yang et al. (2014) that such a mechanism was discovered.
Yang et al. (2014) used the NCAR CAM General Circulation Model (GCM)1 and discovered
that, for slowly rotating planetary atmospheres, an expanded Hadley cell would provide the
100% cloud cover at the subsolar point. Modern Earth actually contains three Hadley cells
in the north and three in the south. The reason Earth does not have a single Hadley cell in
each hemisphere is because its ‘fast’ rotation generates a strong Coriolis force deflecting
the north-south overturning cells. In a slowly rotating world, the Coriolis force is very weak
and hence a single north and south Hadley cell is present. Subsequent Venus-focused work

1https://www.cesm.ucar.edu/models/atm-cam/.

https://www.cesm.ucar.edu/models/atm-cam/
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by Way et al. (2016), using the ROCKE-3D (Way et al. 2017) GCM with a fully coupled
dynamic ocean, confirmed Yang’s work which utilzied a simplified single mixed-layer/slab
ocean without any horizontal heat transport. Later ROCKE-3D GCM work by Way et al.
(2018) utilized both fully coupled dynamic oceans and mixed-layer/slab oceans to confirm
Yang’s general conclusions over a large range of rotation rates and insolation. The fact that
two independent GCMs observe the same behavior is encouraging, but cannot be considered
conclusive until these effects are observed in exoplanetary systems in the future. However,
these models require at least some surface water. Some tens of cm in soil would be sufficient
according to more recent work in Way and Del Genio 2020. Whether or not water was able
to condense on the surface at all after the magma ocean phase depends on the atmosphere at
this time whose composition is a matter of on-going debate as mentioned above (e.g. Bower
et al. 2022). It should be noted that we have no constraints on what early Venus’ rotation rate
was, but an early slow rotation rate can be achieved via a number of mechanisms including
solid body tidal dissipation (e.g. MacDonald 1964; Goldreich and Peale 1966; Way and Del
Genio 2020), Core-Mantle friction (Goldreich and Peale 1970; Correia and Laskar 2001;
Correia et al. 2003; Correia and Laskar 2003), and oceanic tidal dissipation (Green et al.
2019). The possible role of impactors in Venus’ rotational evolution goes back at least to the
work of McCord (1968), although no detailed hydrodynamical simulations have ever been
performed to examine the impactor parameters and lack of an observable moon as we have
for Earth. Our moon is likely the remnant of an impactor (e.g. Benz et al. 1986; Canup 2004;
Lock and Stewart 2017), see section on Archean Earth above. Moreover, given the youthful
age (200–750 Myr) of the surface of Venus (e.g. McKinnon et al. 1997; Bottke et al. 2016),
there is little chance of observing cratered remains of any such ancient impactors. If such
an impactor did collide with the planet in Venus’ past, it may be possible to detect it iso-
topically if it was sufficiently different from the bulk composition of Venus, but measuring
this would be challenging. To paraphrase Way and Del Genio (2020) “it is clear that Brasser
et al. (2016) and Mojzsis et al. (2019) prefer the hypothesis that the Earth’s late veneer was
mainly delivered by a single Charon- or Ceres-sized impactor. For that reason, if a larger
object was involved in the late evolution of Venus’ spin or obliquity, it may be possible to
detect its geochemical fingerprints in a future in situ mission.” Thus, all discussions of the
habitability of Venus over any time scale discussed herein assumes that the planet was ro-
tating slowly enough to generate ∼ 100% cloud cover at the subsolar point and extending
across most of the sunlit hemisphere of the planet (see Fig. 7).

It should be noted that the persistence of Venus’ habitability was originally predicated
upon the notion that the faint young Sun’s increase in brightness through time (e.g. Gough
1981; Claire et al. 2012) would take some hundreds of million years to subsequently increase
surface temperatures, driving the planet into a runaway greenhouse. Regardless, some form
of volatile cycling would be required to keep the planet’s climate stable over geological time
(Höning et al. 2021; Krissansen-Totton et al. 2021; Gillmann et al. 2022; Way et al. 2023,
this journal), as for Earth, normally through some form of weathering (e.g. Walker et al.
1981; Kasting and Catling 2003; Krissansen-Totton et al. 2018; Höning 2020; Graham and
Pierrehumbert 2020). At the same time, the work of Yang et al. (2014), Way and Del Genio
(2020) has definitively shown that, if the cloud albedo feedback for slowly rotating worlds
is correct, then increases in solar insolation through time cannot be the deciding factor in the
evolution of Venus from a temperate planet to a hothouse as long as volatile cycling takes
place.

From this broad overview of the possible conditions at the onset, persistence, and loss of
habitability, it appears that the question of transitioning from one state or era to another is
a major challenge that will need to be addressed by future models. The period toward the
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Fig. 7 Generated from General Circulation Model simulation 33 in Way and Del Genio (2020). This is a
1 bar N2 Dominated atmosphere including 400 ppmv CO2 and 1 ppmv CH4. The sidereal rotation rate is
the same as modern Venus (−243 × Earth). Insolation is set to the value that Venus received 715 Ma (1.7 ×
Modern Earth or 2358.9 W/m2). This is a snapshot of 1/12 of a Venusian solar year. Left: percentage total
cloud cover. The black star represents the location of the subsolar point. Right: surface temperature map.
Note that the highest temperature regions (dark red) are located near the subsolar point and on the southern
landmass, while the coldest regions are on the anti-solar continental landmasses (blue). The fully coupled
dynamic ocean, which includes horizontal heat transport, keeps the oceans warm (red/orange colors) even in
the anti-solar regions of the simulation

end of the magma ocean phase has been highlighted as an important criterion for subsequent
evolution and needs to be studied more intensely before any definitive conclusions can be
drawn. In the same way, much more work needs to be done to explore how a planet may go
from a temperate to a moist and then a runaway greenhouse state (e.g. Kasting 1988), and
3D GCMs will be needed (e.g. Boukrouche et al. 2021).

4.2 Linking Possible Past Habitable States to Present-Day Observations

Present-day Venus looks nothing like what habitable models suggest Venus could have been
like in the past. Therefore, we should first attempt to understand how the planet could have
radically changed from an hypothesized temperate climate with a relatively thin atmosphere
to the dense hothouse we observe today. Then, we take a look at what signs of a previous
habitable time interval or of the stages required to bring Venus to its present state could be
observable today.

The evolution of Venus from an hypothetical habitable time interval to the present-day
must bring its atmosphere to the current inventory of major species (11 · 1018 kg of N2,
1016 kg of H2O and 4.69 · 1020 kg of CO2). It must also remove any molecular oxygen.
Ideally, it would also bring the D/H ratio to its present value (Donahue et al. 1982), but due
to uncertainties in the loss mechanisms, and varying isotopic ratios for the volcanic and me-
teoritic sources, this is challenging (Grinspoon 1987, 1992; Gurwell 1995). Likewise, the
stable isotope ratios of noble gases have been suggested to derive from early hydrodynamic
escape but cannot be modelled by a unique self-consistent scenario due to the lack of con-
straints on early atmospheric conditions, structure and composition, as well as solar energy
input (see Avice et al. 2022, this journal).

Nitrogen evolution has long been assumed to be relatively straightforward once the
magma ocean crystallized, since, in the absence of fixation by living organisms, it was not
expected to be part of complex cycles (e.g. Stüeken et al. 2016). However, the understand-
ing of the nitrogen cycle, even on Earth, is much less advanced than that of CO2 (Stüeken
et al. 2020). On Earth (Marty and Dauphas 2003), it is thought to be approximately in bal-
ance between sources (half volcanic outgassing and half oxidative weathering) and the sink
(burial with a touch of subducted flux). In the past, though, nitrogen fluxes are likely to have
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significantly changed (Goldblatt 2018). This possibly affected surface pressure, despite vari-
ations that are much lower than those expected on Venus for CO2, for instance. Some rea-
sons behind these variations include possible volcanic production changes with time (from
mantle conditions and composition evolution), and changes in the composition of the atmo-
sphere (e.g. presence/absence of oxygen) (e.g. Som et al. 2016; Catling and Zahnle 2020),
leading to changes in the chemical reactions between the atmosphere and the surface (i.e.
weathering). For example, some results suggest maximum atmosphere pressures of about
0.5 bar on Earth (probably much less), 2.7 Gyr ago, using barometric calculations from fos-
silized raindrops and gas bubbles in basaltic lava (Som et al. 2012, 2016). However, the past
N2 abundance in the atmosphere is still poorly constrained and generally thought to have
possibly varied by a factor 2–3 relative to present-day (Goldblatt et al. 2009; Johnson and
Goldblatt 2015; Goldblatt 2018). In such a scenario, considerable build-up of nitrogen in
the atmosphere of Earth over its history may be expected. What this could mean for Venus
is still uncertain, given the differences between the two planets, the lack of data relative to
Venus’ past and the dependence of the nitrogen fluxes on surface conditions. Comparing
the nitrogen abundances on the two planets, one should also consider that some nitrogen is
stored in Earth’s continental crust. Still, a better understanding of the nitrogen exchanges
applied to Venus will provide valuable insight on the planet’s evolution.

The greater abundance of nitrogen in Venus’ atmosphere compared to Earth’s (4 ·1018 kg)
could imply it has escaped even less than on Earth and was thus protected from losses (Lam-
mer et al. 2018), despite the fact that the 40Ar value suggests that Venus’ mantle is less
degassed than Earth’s. Some early temperate Venus models use an atmospheric nitrogen
content similar to Earth’s (e.g. Way et al. 2016). While it is likely that, by the end of the
magma ocean phase, the primordial nitrogen-based species would have been trapped by the
hot surface and removed from the atmosphere, collisions with large impactors would have
delivered additional nitrogen over the first few hundred million years. Gillmann et al. (2020)
proposed that about 5 · 1018 kg N2 could have been brought to the atmosphere this way, de-
spite this number being highly dependent on impactor vaporization and composition. The
rest (about half) of the present-day inventory of N2 could realistically be released into the at-
mosphere over the following 4 Gyr by volcanic activity, but actual fluxes depend on volcanic
production rates, mantle composition and surface conditions (Gillmann et al. 2020; Gaillard
and Scaillet 2014), as well as burial fluxes, which are all poorly constrained. Confirmation
of the volatile composition of the lava and the volcanic plumes could help refine these esti-
mates and better assess the feasibility of long term outgassing of the current nitrogen content
of Venus’ atmosphere.

CO2 evolution is a more complex issue, since it can interact more easily with the surface.
The main question is how it was possible to evolve from very low CO2 abundances, in a
temperate atmosphere, to a full-fledged atmosphere with 88 bar CO2. Volcanic outgassing
has been proposed to be responsible for Venus’ atmospheric CO2 inventory (see Gillmann
et al. 2022, this journal), despite the possible high surface pressure (Gaillard and Scaillet
2014). This implies that, if CO2 is available for outgassing (i.e. present in the mantle and
transferred into the melt; see Gillmann et al. 2022 this journal), it will be released into
the atmosphere. However, it has been shown that, with Earth-like outgassing (Earth-like
composition of the gases released into the atmosphere during a volcanic eruption, indicating
probable Earth-like oxidation of the Venusian mantle), at least the equivalent of ∼ 10 global
resurfacing events is needed to build up Venus’ CO2 atmosphere (Lopez et al. 1998). More
recent work (Head et al. 2021), estimates that the number of equivalent global resurfacing
events needed to obtain the amount of CO2 in the present atmosphere of Venus is about
100. This would indicate that most of the present-day atmosphere would have originated
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from the period before the present geological record, which is in line with the interpretation
of 40Ar in the atmosphere of Venus that suggests that the bulk of the outgassing occurred
rather early during its evolution. Numerical modeling of the mantle of Venus (e.g. Armann
and Tackley 2012; Gillmann and Tackley 2014) also implies that global volcanic events are
unlikely to occur with such a high frequency due to the massive internal heat dissipation
they cause. The mantle requires time for heat to accumulate again before a new event is
triggered. Therefore, volcanism is unlikely to have been the cause for the full atmosphere
build up, or even for more than a fraction of the build-up. It does not preclude volcanism
from triggering a transition, though (e.g. Way et al. 2022). Instead, whatever outgassing was
due to volcanism took place on the long term, but without allowing us to be more specific
about a precise age for a possible transition.

Weller and Kiefer (2021) present an alternative picture of how Venus’ atmosphere could
go from a very low CO2 abundance to 20–60 bar. Weller and Kiefer (2021) demonstrate that
a significant fraction of the present-day atmosphere can be produced with a single overturn
(early hot planet, about 5 bar CO2 per overturn), no overturns, or multiple overturns (later
cold planet). Interestingly, these overturns do not need to be global and can occur on geolog-
ically short timescales. Weller et al. (2022) also suggests that a significant portion of Venus’
atmosphere present-day N2 and CO2 inventory could be best produced under an early plate
tectonics regime and may be reached without initial magma ocean contribution.

An alternative solution that has been suggested is that a global volcanic event, possibly
akin to Earth-like Large Igneous Provinces (LIPs), could have both outgassed CO2 from
mantle reservoirs and destabilized carbon crustal reservoirs (such as carbonates and other
carbon rich sediments, see Retallack et al. 2006; Svensen et al. 2009; Ganino and Arndt
2009; Nabelek et al. 2014), leading to the accumulation of CO2 in the atmosphere on a short
timescale (Way and Del Genio 2020; Krissansen-Totton et al. 2021; Höning et al. 2021; Way
et al. 2022) at an undefined date. Such a mechanism and its feasibility are rather difficult to
assess in the absence of observation. While Earth has experienced several LIPs during its
evolution, no trace of CO2 partial pressure increase on the order of tens of bars has been
recorded (Schaller et al. 2011, for an example of estimate in the order of tens of thousands
ppm CO2). However, such events have been associated with dramatic climate change and
global extinction events (e.g. Wignall 2001), making them important enough to affect life on
a global scale and planetary habitability. They could possibly trigger a climate transition by
overwhelming any volatile cycling in effect hence driving the planet into a moist and then
runaway greenhouse (Way and Del Genio 2020; Way et al. 2022).

The remaining issue with this habitable scenario can simply be stated as “where is the
oxygen?” If there were once substantial surface reservoirs of water on the surface of Venus
and they were driven into the atmosphere as the planet warmed up, then why does the atmo-
sphere not contain many bars of oxygen? In essence, as a planet enters the moist greenhouse
state, water is transported into the stratosphere. Over time this water is photodissociated, the
hydrogen can escape via diffusion and the oxygen should be left over (Kasting 1988). Stud-
ies have shown that it is difficult for oxygen to escape in substantial quantities in the present
day Venusian atmosphere (e.g. Persson et al. 2020) where the H+:O+ ratio is ∼ 2:1 over the
solar cycle (e.g. Barabash et al. 2007; Persson et al. 2018). Assuming Venus’ atmosphere
has not changed over geological time, Persson et al. (2020) demonstrated that it would have
lost between 0.02–0.6 meters of a global equivalent layer of water over the past 3.9 billion
years via atmospheric escape. Additionally, non-thermal escape is a slow, ongoing process
that declines with time, as the solar extreme UV input decreases. This implies that it takes
a long time to remove any significant amount of oxygen from Venus’ atmosphere. In turn,
if atmospheric escape alone is considered, progressive loss after an early habitable time bil-
lions of years ago would be favored. In fact, it has been speculated that exoplanetary worlds
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with multiple bars of oxygen may indicate a former temperate period with oceans (Luger
and Barnes 2015; Wordsworth and Pierrehumbert 2013). It has been suggested that surface
interaction and oxidation could have been a major sink of oxygen during the magma ocean
phase (Kasting et al. 1993b; Gillmann et al. 2009), but this can be an efficient way to sup-
press oxygen accumulation only until the magma ocean solidifies.

Way and Del Genio (2020) speculated that the resurfacing we see on Venus today could
have been the means to sequester the leftover oxygen. Gillmann et al. (2020) have simulated
ongoing oxidation of the fresh, solid, basaltic crust and found it able to extract oxygen from
the atmosphere at a maximum rate slightly higher than atmospheric escape, at most. Pieters
et al. (1986), Lécuyer et al. (2000) have calculated that a hypothetical equivalent layer of
approximately 50 km of hematite would be necessary to account for the oxidation of the
content of an Earth ocean on Venus. More recent work by Warren and Kite (2021) has
suggested that, for this hypothesis to be valid volcanic ash produced by explosive volcanism
needs to be oxidized. In their model oxidation efficiency was increased by the larger free
surface of the material (they therefore assume a 100% oxidation efficiency). However, such
a mechanism still requires layers of kilometers to tens of kilometers of oxidized material to
be emplaced onto the surface of the planet. This hypothesis also needs to consider that only
very limited pyroclastic activity has been identified on Venus today (Campbell and Clark
2006; Ghail and Wilson 2015; Grosfils et al. 2000, 2011; Keddie and Head 1995; McGill
2000), as explosive volcanism requires volatile contents > 3–5 wt%, several wt% higher
than typical Earth magmas (< 1 wt%) (Head et al. 2021). As a result, it is possible that such
a mechanism might have actually played a role in the more distant past of Venus, rather than
relatively recently. Again, better understanding of the nature and composition of the surface
layers of Venus would be a tremendous help to understanding its history. Gillmann et al.
(2022, this journal) expands on this topic and surface-atmosphere interaction.

Section 2 describes what to look for in the atmosphere today (D/H and noble gases, see
Avice et al. 2022 this journal, for more details on noble gases) and what to look for on the
surface in terms of felsic materials (similar to material from Earth’s continents, formed at
subduction factories) that may have a connection to surface water-rock interactions. On the
other hand, if tesserae prove to be mainly basaltic, they formed without the need for liquid
water, which would support a dryer evolution at least at the time they were formed.

5 Present-Day Habitability

5.1 The Clouds of Venus

The question of Venus’ present-day habitability has been discussed for decades (Morowitz
and Sagan 1967; Cockell 1999; Grinspoon and Bullock 2007). As covered in prior sections,
it is often reasoned that if conditions on early Venus were similar to conditions on early Earth
during the period in which Earth life arose – carbon molecules, surface water and rock-water
interactions, and N, P, S, and transition metals, as well as suitable surface geology, volcan-
ism and hydrothermal activity – this indicates the potential for an Earth-like biochemistry
to have arisen on early Venus. However, modern-day Venus’ surface is too hot for liquid
water to be present, which rules out such biochemical reactions. Speculative alternative bio-
chemistries compatible with the modern Venus surface have been proposed, such as the use
of supercritical carbon dioxide as a polar solvent (Budisa and Schulze-Makuch 2014); the
possibility for water-based life to have retreated to underground high-pressure water refugia
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Fig. 8 The calculated temperature, pressure, and pH prevailing in Venus cloud aerosols in the height range
45–70 km from the surface (solid lines) and respective observed limits for terrestrial life (dashed lines and
solid fill). The limits of terrestrial organisms may or may not reflect the possibilities for Venus

has also been discussed (Schulze-Makuch and Irwin 2002). However, the only liquid wa-
ter known to exist today on Venus is that dissolved within its sulphuric acid clouds. There
has therefore been a great deal of interest in the potential for present-day habitability of the
Venus cloud aerosols, and whether such a habitat could have existed contemporaneously
with surface water for long enough for life to have made the transition.

Figure 8 shows the calculated temperature, pressure, and pH in the middle Venus atmo-
sphere (Grinspoon and Bullock 2007; Dartnell et al. 2015), juxtaposed with the respective
observed limits for terrestrial life. The resulting discussion of a potential ‘habitable range’,
and its relation to the limits of terrestrial cloud- and airborne microorganisms, is the subject
of the following section. Future missions may help to constrain additional major variables
affecting habitability in this altitude range, such as water availability and better constraining
ultraviolet radiation flux (e.g. Mogul et al. 2021b).

5.2 Life in the Clouds

Earth’s biosphere is a dynamic system of organisms and their interactions with the physical
environment, including both transient and enduring habitats as well as short-term transport
pathways (wind, rain) and long-term dormant refugia (polar ice, the deep subsurface). It in-
cludes a significant atmospheric component, the aerobiosphere. Tropospheric cloud water –
the warmest and wettest airborne habitat – carries between 103 and 105 viable cells per mL
(Amato et al. 2007), some of which is metabolically active (Amato et al. 2017). In addi-
tion to liquid cloud water, viable microbes are transported both regionally and globally as
dust (Schuerger et al. 2018), ranging from 101 to 106 cells per cubic meter of air (Bowers
et al. 2011; Burrows et al. 2009). These viable, dry bioaerosols extend throughout the tropo-
sphere and into the stratosphere (Bryan et al. 2019). However, most and possibly all of these
desiccated microbes are inactive. Airborne microbial reproduction has not yet been directly
observed in the field, although there have been indirect laboratory demonstrations (e.g. Sat-
tler et al. 2001); this is likely in part because microbes in the field do not stay airborne for
very long compared to typical generation times (Gentry et al. 2021).

At its most abstract, the requirements needed to support life (as we know it) were summa-
rized by Hoehler (2007) as: a solvent (water); nutrients (C, H, N, O, P, S, and trace elements
like Fe); energy for primary producers (autotrophs, chemical or photonic); and a stable en-
vironment (temperature, pH, radiation, etc.). The limits of habitability are often reasoned by
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analogy to therefore be the limits of life with respect to these requirements; the limits for the
emergence of life are not fully understood, but may be different from or more constrained
than established life which has had time to adapt and diversify, as noted above in Sect. 2.3.

By these metrics, hypothetical life in Venusian aerosols may be within the bounds of
temperature, pressure, and pH (Grinspoon and Bullock 2007; Nicholson et al. 2010); radi-
ation (Schulze-Makuch and Irwin 2002; Dartnell et al. 2015; Mogul et al. 2021b); C, H, N,
O, and S, with some evidence for P (Limaye et al. 2021; Milojevic et al. 2021; Mogul et al.
2021a); and energy sources (photonic and/or oxidation-reduction potential, Limaye et al.
2018; Mogul et al. 2021b). Seager et al. (2020) argue that because the pH scale becomes
highly compressed at extreme acid (or base) concentrations, the Hammett acidity function
(H0) is a more representative metric for the Venus aerosols’ acid activity. H0 for Venus’
aerosols is poorly constrained. It has been estimated from as low as −11 (Seager et al. 2020)
based on the current understanding of bulk aerosol composition, to ≥ −1.5 by Mogul et al.
(2021b) with favorable assumptions regarding trace aerosol composition, the latter of which
has some support in recent modeling by Rimmer et al. (2021) speculating the presence of
ammonium or other hydroxide salts; however, even under the most favorable conditions, the
results are at or below the acidity of any known Earth habitat, a substantial challenge for the
hypothesis of an Earth-like biochemistry. The previously discussed alternative biochemistry
hypotheses, such as a theoretical biochemistry based on sulphuric acid as a polar solvent
instead of water, are not sufficiently detailed to be constrained in the same way.

An airborne ecosystem faces the additional unique requirement that its organisms must
be able to stay aloft long enough to reproduce in a suitable, microbial-scale environment.
Otherwise, the aerobiosphere will eventually settle out to extinction (if the planetary sur-
face is uninhabitable, as with Venus), or be limited to transportation of a continual flux of
organisms from the surface (as appears to be the case on Earth). A stable microbial aer-
obiosphere – using the term ‘microbe’ generally, without implied similarity to terrestrial
microbiology – therefore has much stricter constraints than initially apparent. Microbes in a
long-lived aerobiosphere (i.e., an atmospheric habitat) cannot rely on the common survival
strategy of dormancy, i.e., ‘waiting it out’ to grow and reproduce during brief influxes of
water, light, heat, etc. as is observed in microbes from Earth’s deserts, poles, and other ex-
treme environments. In effect, the ‘soft’ constraints of surviving versus thriving (activity,
growth, and reproduction) become converted to hard habitability constraints when assessing
potential atmospheric habitability, and are further related to the typical particle residence
time determined by the large- and small-scale atmospheric dynamics.

On Earth, residence time for liquid water cloud particles, the most clement airborne mi-
croenvironment, ranges from hours to days; this is roughly on order with typical microbial
generation times for common surface soil- or water-dwelling microbes. Smaller and lighter
particles in drier and colder parts of Earth’s atmosphere, such stratospheric aerosols, may be
resident for as much as a few years; however, extremophilic microbes observed capable of
withstanding similar conditions in other terrestrial habitats reproduce far more slowly, with
an example of a 60-day mean generation time reported for Siberian permafrost at −10 ◦C
(Bakermans et al. 2003). Another survival strategy often found in extremophilic environ-
ments with highly dynamic conditions – for example, a desert which might receive all of
its rainfall on one or two days a year – is adaptation to long periods of dormancy followed
by brief periods of repair and growth (e.g., Friedmann et al. 1993). Microbes have been
observed to survive decades and perhaps far longer of complete desiccation, freezing, or
other extreme conditions in the field (see Schulze-Makuch et al. 2018; Lowenstein et al.
2011; Knowlton et al. 2013 and references therein), but it should be emphasized that they do
not reproduce during these periods and thus this phenomenon does not necessarily extend
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Fig. 9 Life cycle within a notional aerobiosphere. [a] Microbes (green) accumulate enough nutrients (brown)
in a warm, wet cloud to divide. [b] Loss with precipitation. [c] Encounter with drier region; some transition
to desiccated, inactive forms. [d] Dry forms accumulate damage, e.g., radiation. [e] Encounter with high-
humidity region; some rehydrate and repair. [f] Survivors grow, potentially exhausting available nutrients.
[g] Wet/dry cycles may repeat, depending on cloud dynamics. [h] Nutrients (e.g., surface minerals), energy,
and wet periods become sufficient to allow division, beginning the cycle anew

the criteria for long-term aerobiosphere habitability. This is an important point: on Earth,
airborne life has so far been observed to originate within at most a few generations from
surface habitats.

Our knowledge of the microenvironments and typical residence times of Venus cloud
droplets is limited, though they are likely longer-lasting than Earth’s clouds. Seager et al.
(2020) implemented a model that suggests coagulation rates constrain 3 µm-diameter cloud
aerosols to 6 months aloft; Grinspoon and Bullock (2007) note that Hadley circulation may
impose an overall 70–90 day upper bound.

Conditions favorable to metabolic activity and reproduction must also have sufficient
continuity. A generalization of the constraints that shape Earth’s aerobiosphere is shown in
Fig. 9: cloud formation, precipitation, particle trajectories, cycles of dehydration and rehy-
dration, and nutrient and radiation flux, among others. The hydrated periods of metabolic
activity must align with the availability of nutrients and energy to allow growth to reproduce
before the particle containing the microbe(s) rains or settles below the surface, or habitable
altitude range.

Given the above, the most significant question for the potential present-day habitability
of Venus’ clouds is whether sufficient water exists in the cloud aerosols to allow occasional
microbial growth. Both Seager et al. (2020) and Hallsworth et al. (2021a) estimate the water
activity (aw) as ≤ 0.004, far below the microbial activity limit of ∼ 0.6. Limaye et al. (2021)
calculated a higher but still prohibitive estimate of 0.02; as with calculations of H0 above, the
speculative models of Mogul et al. (2021b) and Rimmer et al. (2021) could allow currently
unmeasured trace aerosol constituents to raise this to within known limits.

Understanding the habitability of Venus’ clouds will require both future missions and
modeling, with close coordination between experts in atmospheric dynamics, aerosol prop-
erties, cloud microphysics, and aerobiology. Key parameters to constrain include detailed
measurements of Venus’ aerosol composition, including trace constituents that could be nu-
trients or provide acid neutralization; typical residence times for particles with microbe-like
properties in the Venusian atmosphere; and typical generation times for potential Earth ana-
logue microorganisms, especially primary producers able to survive repeated desiccation
and high acidity.
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Fig. 10 Notional particles potentially to be encountered in the Venus cloud decks, inspired by terrestrial
atmospheric sampling, to guide future instrument and analysis selection: (1) complex shapes with fluorescent
properties, (2) particulate aggregates of sulfates and related compounds, (3) unidentified group of complex
shapes adhered to an aerosol particle, (4) objects that resemble Earth bacteria or archaea, and (5) volcanic ash
particles

Given the importance of microenvironments within cloud droplets to habitability, it is
relevant to note several lines of evidence pointing to the existence of multiple cloud aerosol
constituents beyond sulphuric acid and water: (1) UV absorption in the upper clouds of
Venus is caused by an as-yet-unidentified “unknown UV absorber”; (2) VEx/VMC imager’s
analysis of the phase functions of light reflected from the upper clouds show more variation
in refractive index than can be explained by H2SO4:H2O mixtures alone; (3) particulates are
observed to exist at altitudes below the main cloud base, where temperatures are too high for
H2SO4:H2O droplets to persist in liquid form; (4) X-ray Fluorescence analysis of collected
droplets conducted from Venera and Vega descent probes found evidence of iron, chlorine
and phosphorus in cloud droplets; and (5) the recent reanalysis of the Pioneer Venus LNMS
data by Mogul et al. (2021a) which may provide further evidence for phosphorus in the cloud
layer. The latter two results have not yet been reconciled with other in situ measurements
and therefore remain something of an enigma (see review in Titov et al. 2018). The identifi-
cation of cloud particle composition, down to the trace level, is clearly of great importance
for assessing the present day habitability of the cloud deck (Fig. 10). In this respect, new in-
vestigations including measurement of the abundance and isotope ratios of volatile elements
would likely shed light on the past and present dynamics of the cloud region of the Venus
atmosphere (Avice et al. 2022).

5.3 Suggested Venusian Biosignatures

Interest in the habitability of Venus’ clouds is furthered by several currently unexplained
observations of the Venusian atmosphere that bear some similarities to known terrestrial
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biosignatures; if the clouds can be shown to bear equivalent similarities to the corresponding
terrestrial habitats, the case for dedicated life detection investigation strengthens, and vice
versa.

The Venus cloud layers have significant spectral absorption features not currently ex-
plained by what is known about the bulk aerosol composition, most notably in the UV
but also at some longer wavelengths. Limaye et al. (2018) and Mogul et al. (2021b) sug-
gested that this could be caused by phototrophy and/or ‘sunscreen’ pigments similar to
carotenoids – in other words, analogous to the green ‘color’ of Earth resulting from the
global presence of chlorophyll.

There are also discontinuities or unexplained variances in atmospheric sulfur and other
chemical cycling (Bierson and Zhang 2020; Shao et al. 2020). Spacek and Benner (2021)
suggested that these result from the presence of organic carbon, while Limaye et al. (2018)
suggested that redox-based metabolic processes could play a role.

Recently, there have been controversial claims for the presence of a biosignature, the
molecule phosphine (PH3), in Venusian clouds. We summarize the controversy below. In
September of 2020, Greaves et al. (2021b) published an analysis of JCMT (James Clerk
Maxwell Telescope) and ALMA (Atacama Large Millimeter Array) spectra of the Venusian
atmosphere that demonstrated that phosphine (PH3) may have been detected. At the same
time another paper by Bains et al. (2021), with many of the same authors as in the Greaves
et al. (2021b) work, was submitted to arXiv with the title “Phosphine on Venus Cannot be
Explained by Conventional Processes.”

Subsequently a series of papers were submitted (posted to arXiv) and eventually pub-
lished that put into question the veracity of the original JCMT and ALMA observations
(e.g. Snellen et al. 2020; Thompson 2021; Villanueva et al. 2021; Akins et al. 2021; Lin-
cowski et al. 2021). Additional papers placed upper limits via other space and ground based
measurements that further questioned the PH3 detection (Encrenaz et al. 2020; Trompet
et al. 2021). Greaves et al. (2021a,c,d) offered a response to such criticisms, and more back-
and-forth rebuttals continue in the literature today. At the same time another paper may have
offered support to the Greaves et al. (2021b) ground based observations (Mogul et al. 2021a)
by looking at in-situ archival data from the Pioneer Venus Large Probe Neutral Mass Spec-
trometer (PV-LNMS). Subsequently, a few papers have been published that look into the
possible origins of PH3 in planetary atmospheres in addition to the Bains 2020 paper (e.g.
Bains et al. 2019a,b, 2021; Sousa-Silva et al. 2020; Omran et al. 2021; Cockell et al. 2021;
Truong and Lunine 2021; Limaye et al. 2021) and whether factors, such as water activity,
pH, etc. play a role in PH3 production (e.g. Hallsworth et al. 2021a; Rimmer et al. 2021).
Other work has considered the effects of Cosmic Rays on PH3 production, but found it dif-
ficult to produce as much as 20 ppb (McTaggart 2022). While there is yet no consensus on
the detection of phosphine in the atmosphere of Venus, its potential discovery has initiated
many efforts including a mission to search for life in the clouds of Venus (Seager et al.
2021). This demonstrates that detection of potential biosignatures in planetary atmospheres
is a high priority goal for investigations targeting Venus and its exoplanet cousins.

5.4 The Venus Life Equation

Izenberg et al. (2021) proposed a general framework for assessing the probability of extant
life on modern-day Venus. This ‘Venus Life Equation’ breaks down the qualitative factors
affecting the probability of the origination of life (O), the robustness (size and diversity)
of the supportable biosphere (R), and whether habitable conditions could have persisted
continuously between the origin of life and the current day (C). The factors supporting a high
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value for O by analogy between early Venus and Earth are discussed above. R, by contrast,
is very low for the atmospheric habitat hypothesis, as a result of both limited substrate (the
total liquid volume of Venus’ aerosols is at least five orders of magnitude less than, say,
Earth’s surface and ground water) and the typical low biodiversity of ecosystems highly
constrained by water availability. The value C is affected by both the potential for global
extinction events, such as asteroid strikes and coronal mass ejections, and overall planetary
climate history, as affected by volcanism, stellar evolution, and many other factors. The
former is relatively similar for Venus and Earth; the latter depends primarily on the water
history of Venus as discussed above. The Venus Life Equation thus suggests a non-zero
value for the probability of extant Venusian life. It also confirms that continuity (spatial and
temporal) of conditions amenable to life is one of the most important unknowns that can
be quantitatively constrained by direct in situ observation, through robust improvement of
understanding of atmospheric zones and geologic/hydrologic history.

This latter point is of particular importance where the Venusian aerosols are concerned.
Unlike on Earth, where localized extinction-level events occurred but conditions for life
persisted in other habitats (and cf. the subsurface punctuated habitability suggested for Mars
by Melosh and Vickery 1989), this may not have been a possibility on Venus.

6 Investigation Priorities

There are two investigation priorities concerning the habitability of Venus:

1. To study past habitability. This can be addressed both through orbital observations of
the surface and crust, in order to understand the geodynamic regime through time, and
through noble gas and light element isotope measurements, to obtain insights into the
history of volatiles through formation and evolution.

2. To characterize the present cloud-level environment including searching for molecular
biosignatures of past or present-day life. This can be partially addressed by descent
probes, but a more comprehensive investigation would require sustained presence in the
clouds as from a balloon platform.

1. Studying the past habitability of Venus
It is very difficult to access Venus’ history. Modelling and comparative planetology with

other planets of our Solar system alongside exoplanets (for example, their age in conjunction
with their rotation rate) will provide insight into the past conditions on Venus but models are
only as good as the data initially used. Both the onset of, and exit from, a potential habitable
phase need to be modelled. The period toward the end of the magma ocean phase has been
highlighted as an important criterion for subsequent evolution and needs to be studied more
intensely before any definitive conclusions can be drawn as to whether Venus ever hosted
liquid water at its surface (e.g. Salvador et al. 2023, this journal). Similarly, much more work
needs to be done to explore how a planet may go from a temperate to a moist and then a
runaway greenhouse state (e.g. Kasting 1988), and coupled interior-atmosphere models as
well as 3D GCMs will be needed (e.g. Boukrouche et al. 2021). Future Venus missions will
address habitability in a range of different investigations. One approach to reconstructing
Venus’ history is to study its geologic record, as preserved in its surface and crust; this
provides a record of the last billion years or so of surface evolution.

Of particular interest is the possibility that the tessera highlands show emissivity signa-
tures consistent with widespread (continental-scale) granitic composition, like that found in
Earth’s continental crust; such a detection would suggest that large volumes of liquid water
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were present during their formation (Gilmore et al. 2017). However, non-detection of this
felsic signature would not be conclusive, as such continental crust might have been covered
by aeolian or other deposits, or otherwise not detectable from orbit. Determining Venus’
current geodynamic regime – through gravity mapping and through searches for recent or
ongoing geological activity – will help to constrain estimates of current heat and volatile loss
from the interior, important factors in modelling the evolution of Venus’ climate and habit-
ability. The EnVision and VERITAS orbiters both will provide extensive datasets to address
these investigations, as will DAVINCI descent imaging of tesserae, as will discussed in far
more detail in companion publications in this journal (Chaps. 2–4).

Another approach, isotope geochemistry, allows one to constrain Venus’ evolution in the
distant past, right back to its formation and early evolution. The isotopic abundances of noble
gases and light elements provide constraints on acquisition and loss processes of volatiles,
and about their exchanges between mantle and atmosphere, so are particularly important for
reconstructing the history of water. For example, measuring the magnitude of radiogenic/fis-
siogenic excesses of 4He and 129, 131–136Xe produced at different times over Venus’ history,
will help to distinguish between scenarios for the geological evolution of Venus (stagnant
lid, episodic plate tectonics episodes etc. see Gillmann et al. 2022, this journal). Although
some noble gas isotope measurements were already obtained from Pioneer Venus and Ven-
era in the 1970s and early 1980s, the upcoming DAVINCI entry probe mission will measure
a greater variety of these isotopes with much greater precision, including the first measure-
ments of krypton and xenon isotopes, permitting much better constraints on formation and
evolution scenarios than are currently possible. Venus atmospheric sample return missions,
though technically demanding, would allow isotopic ratio measurement to even higher preci-
sion and thus would offer correspondingly greater constraints on evolution scenarios. These
investigations, and their implications for determining the history of water, are reviewed in
detail in (Avice et al. 2022, this journal).

Conducting these investigations will not only give us a better understanding of Venus’
evolution and potential habitability through time, but also will help us to assess habitability
in terrestrial worlds in other planetary systems; these parallels are explored in much more
detail in (Way et al. 2023, this journal).

2. The search for biosignatures in Venusian clouds
If Venus was habitable in the past (meaning, it had liquid water on its surface, the other

ingredients of life being a given on a rocky planet such as Venus, and similar to early Earth),
and life emerged, could it have survived to the present day in atmospheric aerosols? With
regard to the habitability of the Venusian cloud deck, high priority in situ investigations in-
clude the structure of the atmosphere and variables, such as temperature, pressure, pH, UV
radiation flux (cf. Grinspoon and Bullock 2007; Dartnell et al. 2015), and above all, detailed
composition of the cloud aerosols, including water activity, acid activity, and trace con-
stituents such as organics and ammonia. Comparison of these variables with those on Earth
would substantially improve our ability to provide a ‘habitable range’. Moreover, analysis of
the aerosols will permit detailed study of the micro-environmental conditions within them.
Could they be conducive to hosting an airborne biosphere, permitting life to thrive (not just
survive), even if they are “extreme” by terrestrial standards? Future descent probes, like the
upcoming DAVINCI (Garvin et al. 2022) probe, or the descent phase of lander missions such
as Venera-D (Zasova et al. 2019) will be essential for this investigation by providing verti-
cal profiles of atmospheric composition with far greater sensitivity and vertical resolution
than is available from past missions. Far more spatially and temporally extensive investi-
gations will require cloud-level aerial platforms (e.g. Cutts et al. 2018; Baines et al. 2018;
Arredondo et al. 2021) offering sustained presence in the clouds. Instrumentation on such
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platforms should, in particular, seek to measure the composition, size, and lifetime of cloud
and aerosol particles, as these are the most habitable environmental niches of astrobiological
interest.

In situ investigations should also look for signs of extant life (biomolecules, metabo-
lites). A staged approach to detection of biosignatures was developed by the Venus Life
Finder Missions team (Seager et al. 2022), consisting of missions increasing in size and
complexity. In a first mission, a small entry probe would descend through the clouds carry-
ing an autofluorescence backscatter nephelometer, which would characterize the shape and
composition of cloud particles and search for the fluorescence in UV light as a biomarker
(Baumgardner et al. 2022). Such a mission is in development, at the time of writing, and
may launch as soon as 2023 (French et al. 2022). A second proposed mission would put
more capable chemical and environmental detection instrumentation on a long-lived bal-
loon floating in Venus’ clouds; such instrumentation could eventually include an aerosol
mass spectrometer (Baines et al. 2021) and/or a fluorescent microscope which provides par-
ticular sensitivity to biomolecules (Sasaki et al. 2022). These could eventually lead to a third
mission which would bring back a sample of Venus cloud material to Earth, so that it could
be examined with the highly sensitive instrumentation available in terrestrial laboratories.
Even if no metabolically active life forms are detected, information from these investiga-
tions will inform the models used to determine the history of the planet and its potential for
having been habitable and seen the independent emergence of life.

One final note is that any information from Venus in situ and any possible, future sample
return mission would be extremely valuable for studying the habitability of exoplanets.
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Baines KH, Nikolić D, Cutts JA, Delitsky ML, Renard JB, Madzunkov SM, Barge LM, Mousis O, Wilson
C, Limaye SS et al (2021) Investigation of Venus cloud aerosol and gas composition including potential
biogenic materials via an aerosol-sampling instrument package. Astrobiology 21(10):1316–1323

Bains W, Petkowski JJ, Sousa-Silva C, Seager S (2019a) Trivalent phosphorus and phosphines as components
of biochemistry in anoxic environments. Astrobiology 19(7):885–902

Bains W, Petkowski JJ, Sousa-Silva C, Seager S (2019b) New environmental model for thermodynamic
ecology of biological phosphine production. Sci Total Environ 658:521–536

Bains W, Petkowski JJ, Seager S, Ranjan S, Sousa-Silva C, Rimmer PB, Zhan Z, Greaves JS, Richards
AM (2021) Phosphine on Venus cannot be explained by conventional processes. Astrobiology
21(10):1277–1304. https://doi.org/10.1089/ast.2020.2352

Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and
metabolism at −10 ◦C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326.
https://doi.org/10.1046/j.1462-2920.2003.00419.x

Barabash S, Fedorov A, Sauvaud J, Lundin R, Russell C, Futaana Y, Zhang T, Andersson H, Brink-
feldt K, Grigoriev A et al (2007) The loss of ions from Venus through the plasma wake. Nature
450(7170):650–653

Barboni M, Boehnke P, Keller B, Kohl IE, Schoene B, Young ED, McKeegan KD (2017) Early formation of
the Moon 4.51 billion years ago. Sci Adv 3(1):e1602,365

https://doi.org/10.1126/science.1261952
https://doi.org/10.1111/j.1574-6941.2006.00199.x
https://doi.org/10.1371/journal.pone.0182869
https://ui.adsabs.harvard.edu/abs/2021LPI....52.1526A
https://doi.org/10.1007/s11214-020-00655-0
https://doi.org/10.1016/j.gca.2018.04.018
https://doi.org/10.1007/s11214-022-00929-9
https://doi.org/10.1007/s11214-022-00929-9
https://doi.org/10.2458/azu_uapress_9780816530595-ch006
https://www.liebertpub.com/doi/10.1089/ast.2017.1783
https://doi.org/10.1089/ast.2020.2352
https://doi.org/10.1046/j.1462-2920.2003.00419.x


The Habitability of Venus Page 39 of 53 17

Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environments as sites
for the origin and evolution of life. Orig Life Evol Biosph 15(4):327–345

Basilevsky A, Head J (1997) Onset time and duration of corona activity on Venus: stratigraphy and history
from photogeologic study of stereo images. Earth Moon Planets 76(1):67–115

Baumgardner D, Fisher T, Newton R, Roden C, Zmarzly P, Seager S, Petkowski JJ, Carr CE, Špaček J,
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