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ABSTRACT

Many natural systems show emergent phenomena at different scales, leading to scaling regimes with signatures of deterministic chaos at large
scales and an apparently random behavior at small scales. These features are usually investigated quantitatively by studying the properties
of the underlying attractor, the compact object asymptotically hosting the trajectories of the system with their invariant density in the phase
space. This multi-scale nature of natural systems makes it practically impossible to get a clear picture of the attracting set. Indeed, it spans
over a wide range of spatial scales and may even change in time due to non-stationary forcing. Here, we combine an adaptive decomposition
method with extreme value theory to study the properties of the instantaneous scale-dependent dimension, which has been recently intro-
duced to characterize such temporal and spatial scale-dependent attractors in turbulence and astrophysics. To provide a quantitative analysis
of the properties of this metric, we test it on the well-known low-dimensional deterministic Lorenz-63 system perturbed with additive or mul-
tiplicative noise. We demonstrate that the properties of the invariant set depend on the scale we are focusing on and that the scale-dependent
dimensions can discriminate between additive and multiplicative noise despite the fact that the two cases have exactly the same stationary
invariant measure at large scales. The proposed formalism can be generally helpful to investigate the role of multi-scale fluctuations within
complex systems, allowing us to deal with the problem of characterizing the role of stochastic fluctuations across a wide range of physical
systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0106053

The collective dynamics of natural systems is the result of the
dynamics of their individual components, often operating on
multiple spatiotemporal scales and sometimes related to intrinsic
and extrinsic factors. These multiple components reflect in scal-
ing laws, unpredictable vs deterministic behavior, bifurcations

between different regimes, and basin of attractions. Here, we pro-
pose a novel concept of fractal dimension in deterministic and
stochastic Lorenz-63 systems to provide a more complete char-
acterization of the geometric features of attractors at different
scales.
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I. INTRODUCTION

Since their first description by Lorenz in 1963,1 the existence
and properties of strange attractors have been frequently discussed
in the context of such diverse fields as the atmosphere,2 climate,3,4

biology,5 and ecology,6 to mention only a few examples. The concept
of strange attractors is strictly related to that of dissipative dynam-
ical systems with sensitive dependence on the initial conditions.
Being revolutionary at the time of its invention, it has been attracting
much attention, especially in the context of developing measures to
quantify the geometric and dynamical properties of attractors7 and
in revising some earlier concepts on the forecast horizon of phys-
ical systems.8 A one-parametric family of measures, the so-called
generalized fractal dimensions Dq, has been proposed based on a
coarse-grained invariant measure linking the geometric properties
of the phase-space trajectories to the statistics of the dynamical scal-
ing properties.9 These measures provided new insights not only
in the field of dynamical system theory (where they have been
developed)10 but also into different more applied fields, such as fluid
and magneto-hydrodynamic turbulence11,12 and others.13

One of the peculiar aspects of physical systems is their variabil-
ity over a wide range of scales, arising from both intrinsic interac-
tions between characteristic variability components in one or several
variables and external forcings, differently affecting the specific
properties of the whole system at different scales.4 Recently, Alberti
et al.14 proposed a method to investigate how scale-dependency
affects the global phase-space properties and their statistical charac-
teristics. This method requires to first identify scale-dependent com-
ponents contributing to the observed dynamics of a given system as
a whole, which can be achieved by applying time series decompo-
sition techniques, such as empirical mode decomposition (EMD).
Subsequently, quantitative scale-specific measures, such as general-
ized fractal dimensions, are evaluated. The formalism resulting from
the combination of those two approaches allows the introduction of
multi-scale measures by computing the generalized fractal dimen-
sions for each scale-specific component and partial sums thereof.14

The suitability of this approach has been demonstrated for several
dynamical systems of different complexity, synthetic noisy signals,
and real-world time series data.14

For systems exhibiting a heterogeneous phase-space structure
or even non-stationarity, it would, however, be useful to track the
instantaneous number of degrees of freedoms, which are closely
related to its associated recurrence characteristics.15 Indeed, the spa-
tial distribution of the instantaneous (i.e., local in phase-space)
dimensions across the system’s invariant set, as well as its geometric
shape, provides us with more detailed information than established
global (as in Hentschel and Procaccia9) and/or scale-dependent (as
in Alberti et al.14) measures of complexity.

Accordingly, in this work, we thoroughly extend the existing
formalism of multi-scale measures14 to characterize the instanta-
neous scale-dependent properties of strange attractors by combining
time series decomposition methods with concepts from extreme
value theory that are related to the instantaneous number of degrees
of freedom of the observed dynamics. We then show the utility
of our approach for the case of the well-known low-dimensional
deterministically-chaotic Lorenz-63 system and two stochastic
versions thereof.16 We indeed show that the new formalism,
based on instantaneous scale-dependent dimensions, allows us to

discern two properties that are inaccessible by previous global or
scale-dependent analysis, namely, the existence of different scale-
dependent source processes (as the presence of noise or a dominant
scale) and the structural stability of fixed points.

II. METHODS

In this section, we start by introducing the decomposition pro-
cedure and the dynamical system metrics separately, before describ-
ing our proposed formalism. For a more general purpose, we assume
to have a generic N-dimensional system, i.e., an N−dimensional
phase-space, with N > 1. Thus, we describe our decomposition pro-
cedure in a general multivariate framework. For univariate data (i.e.,
N = 1), we may proceed in a largely analogous way.

A. Multivariate empirical mode decomposition

(MEMD)

Considering an N-dimensional system described via a multi-
variate time series signal 2µ(t) = [21(t), 22(t), . . . , 2N(t)]† (with
† indicating the transposition operator), the multivariate empirical
mode decomposition (MEMD) decomposes the data into a finite
number of multivariate oscillating patterns Cµ,k(t), referred to as
multivariate intrinsic mode functions (MIMFs), and a monotonic
residue Rµ(t) as

2µ(t) =

nk
∑

k=1

Cµ,k(t) + Rµ(t). (1)

The decomposition basis, formed by the set of functions Cµ,k(t), is
empirically derived via the so-called sifting process17 modified for
multivariate signals.18 This sifting process consists of

1. identifying local extremes of 2µ(t), i.e., where the N-variate
derivative vanishes;

2. interpolating these points via cubic splines to derive the upper
and lower envelopes u(t) and l(t), respectively;

3. deriving the mean envelope m(t) as m(t) =
u(t)+l(t)

2
; and

4. evaluating the detail h(t) = s(t) − m(t).

These steps are iterated until the detail h(t) can be identified as a
MIMF (also called a multivariate empirical mode);18 i.e., it must sat-
isfy two properties: it has the same number of local extremes and
zeros (or both differing at most by one) and a zero-average mean
envelope m(t).17 The full sifting process stops when no more MIMFs
Cµ,k(t) can be filtered out from the data. Each Cµ,k(t) represents a
peculiar dynamical component intrinsic to the system that typically
evolves on an average scale

τk =
1

T

∫ T

0

t′ 〈Cµ,k(t
′)〉 dt′, (2)

where T is the length of data and 〈·〉 denotes an ensemble average
over the N-dimensional space.19 The MEMD allows us to interpret
2µ(t) as a collection of scale-dependent multivariate fluctuations
contributing to the collective properties of the whole system. Indeed,
each MIMF can be seen as a representative of fluctuations at a typ-
ical scale that is the average of the instantaneous scales (i.e., the
inverse instantaneous frequencies) derived from a given mode via
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the Hilbert transform.19 The MEMD, due to its adaptive methodol-
ogy, relieves some a priori mathematical constraints of fixed-basis
decomposition methods and extracts a limited number of intrin-
sic components that can be visually inspected. Other widely used
decomposition methods, such as Fourier or continuous wavelet
analysis, commonly return a large number of components and/or
need to project our data on a pre-defined decomposition basis.
Moreover, at least classical Fourier transform based methods also
require that our data satisfy a stationarity condition. In this regard,
we do not question the appropriateness of the aforementioned more
traditional conventional analysis techniques, but rather acknowl-
edge that they (as well as any other approaches) have intrinsic
limitations in what we can learn from their application.

B. Instantaneous dimension

Given the N-dimensional system described via the multivari-
ate trajectory 2µ(t), its dynamical properties can be investigated by
combining the concept of recurrences in phase-space and extreme
value theory.20 For some (arbitrary) state of interest ζ in the asso-
ciated phase-space, we first introduce the logarithmic return associ-
ated with each state on the trajectory (except for ζ itself) as

G(2µ(t), ζ ) = − log
[

dist(2µ(t), ζ )
]

, (3)

where dist(·) is a distance between two state vectors in phase-space,
commonly the Euclidean one. By shortening the notation, we obtain
a time series of logarithmic returns g(t) = G(2µ(t), ζ ) that takes
larger values whenever 2µ(t) is close to ζ . If we now define a
threshold s(q) as the qth empirical quantile of g(t), we can intro-
duce the exceedances u(ζ )

.
= {t | g(t) > s(q)}, i.e., the recurrences to

the neighborhood of the reference state in the context first intro-
duced by Poincaré by exploiting a peak-over-threshold like concept
as widely used in extreme value theory. According to the Fre-
itas–Freitas–Todd theorem, the cumulative probability distribution
F(u, ζ ) then converges to the exponential member of the generalized
Pareto distribution (GPD); i.e.,

F(u, ζ ) ' exp

[

−
u(ζ )

ς(ζ )

]

. (4)

The GPD parameter ς depends on the dynamical state ζ and can
be used to introduce the concept of an instantaneous dimension d
at the point in time where ζ is attained, which is simply defined as
d(ζ ) = ς(ζ )−1. Although it could merely be associated with a fit-
ting parameter, it has a clear physical meaning: d is a proxy of the
active number of degrees of freedom around each state ζ in the
phase-space. Note, however, that from a practical perspective, this
instantaneous dimension needs to be considered relative to the set
of time series values available, and the interpretation of its values
may be affected by nonstationarity or non-representative sampling
of the presumed attractor at finer spatial scales.

C. Instantaneous scale-dependent dimension

The instantaneous dimension d introduced above provides a
local (in terms of phase-space) picture of the properties of phase-
space trajectories, i.e., allows us to obtain information for each
sampled point contributing to the global structure of the attrac-
tor under study. Nevertheless, multi-scale systems could have a

scale-dependent phase-space structure14 such that we can distin-
guish between features that emerge at different scales. To provide
a scale-dependent instantaneous view of a given system, we have
to combine a decomposition method, such as the MEMD, and the
extreme value theory applied to inter-state distances in phase space.

Given again an N-dimensional system described via 2µ(t) with
a multi-scale nature, i.e., being characterized by processes occurring
over a wide range of scales, we can write

2µ(t) = 〈2µ(t)〉 +
∑

τ

δ2(τ )
µ (t), (5)

where 〈2µ(t)〉 is a steady-state time-average value and δ2(τ )
µ (t) is

a component of the system operating at a mean scale τ . It is easy
to note the analogy between Eqs. (1) and (5) via the correspon-
dence Cµ,k(t) ↔ δ2(τ )

µ (t) and Rµ(t) ↔ 〈2µ(t)〉. This means that for
each scale τ , we can identify the corresponding invariant set Mτ as
the manifold obtained via the partial sums of MIMFs with scales
τ? < τ ; i.e.,

2τ
µ(t) =

k
∑

k?=1

Cµ,k?(t). (6)

Then, for each scale τ ∈ [τ1, τnk
], i.e., for each k ∈ [1, nk], given a

trajectory 2τ
µ(t) and a state of interest ζτ , the cumulative probability

of logarithmic returns in the neighborhood of ζτ follows a GPD as

F(uτ , ζτ ) ' exp

[

−
uτ (ζτ )

ςτ (ζτ )

]

. (7)

Thus, we can introduce a quantity D(t, τ) = ςτ (ζτ )
−1, represent-

ing the number of active degrees of freedom of fluctuations up to
a maximum scale of τ around each state ζτ . In this way, we exploit
the properties of MEMD in deriving scale-dependent components
embedded into a given system and the instantaneous (in terms of
time) properties of the extreme value theory based metric to derive
the instantaneous scale-dependent metric D(t, τ).

In summary, our procedure consists of the following steps:

1. extract intrinsic components Cµ,k(t) and their mean scales τk

from 2µ(t) by using the MEMD;
2. evaluate partial sums of Eq. (1) at different scales

2τ
µ(t) =

k
∑

k?=1

Cµ,k?(t), (8)

with k∗ = 1, . . . , nk (by construction, MIMFs are ordered with
increasing scales, i.e., τk′ < τk′′ if k′ < k′′); and

3. for each scale τk (i.e., for each k), evaluate D(t, τk).

Our procedure is, by construction, complete since when
k → nk, then D(t, τ k) = d(t), with d(t) being the instantaneous
fractal dimension of the full system.2,15,20

In the remainder of this work, we will discuss some examples
to highlight the potential of our framework to disentangle distinct
dynamical components of a different origin in a multi-scale complex
system.
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III. THE LORENZ-63 MODEL AND ITS STOCHASTIC

VERSIONS

The Lorenz-63 system,1 originally developed as a simplified
model for atmospheric convection, is one of the most famous
and widely studied paradigmatic dissipative–chaotic dynamical
systems,21 which can be written as

dx = s
(

−x + y
)

dt, (9)

dy =
(

rx − y − xz
)

dt, (10)

dz =
(

xy − bz
)

dt, (11)

with the parameters
(

s, r, b
)

related to the Prandtl number, the
Rayleigh number, and the geometry of the atmospheric convective
layer. With the canonical set of parameters

(

s, r, b
)

= (10, 28, 8/3),
the system admits chaotic behavior with all initial points (except
for a set of measure zero) tending toward an invariant set with the
fractal structure, usually termed the Lorenz attractor. It is a strange
attractor whose Hausdorff dimension (and all its generalizations
Dq

9) takes a value of 2.05 ± 0.02.7,9,22

A simple way to investigate the role of hidden fast dynamical
components is to couple deterministic equations to “noise” mimick-
ing the action of unknown fast variables. This can also be easily done
for the Lorenz-63 system by rewriting the original system in terms
of a set of coupled stochastic differential equations as

dx = s
(

−x + y
)

dt + σ dWt, (12)

dy =
(

rx − y − xz
)

dt + σ dWt, (13)

dz =
(

xy − bz
)

dt + σ dWt. (14)

In nonlinear deterministic systems, such additive noise can lead to
non-trivial effects,23 including transitions between coexisting states
or attractors, shifting bifurcations, or acting as external forcing
to the intrinsic variability of the system,11,24 also observed for the
Lorenz-63 system.16

More recently, another stochastic version of the Lorenz-63 sys-
tem has been proposed by Chekroun et al.,16 considering a linearly
multiplicative noise term to the original system as

dx = s
(

−x + y
)

dt + σ x dWt, (15)

dy =
(

rx − y − xz
)

dt + σ y dWt, (16)

dz =
(

xy − bz
)

dt + σ z dWt. (17)

This system provided a first example for the existence of ran-
dom attractors, extending the concept of a strange attractor,
still supporting nontrivial sample measures from deterministic
to stochastic dynamics1,16 that have been shown to be random
Sinaï–Ruelle–Bowen measures.25 Note that in the weak-noise limit,
response theory allows one to compute explicitly the change in the
expectation value of the measurable observables when perturbing an
underlying chaotic dynamics with stochastic terms of rather general
nature.26

In the following, we apply our formalism to the three differ-
ent versions of the Lorenz-63 system described above. In the case
of the stochastic models featuring multiplicative noise, we use the
Itô convention for the stochastic integration, and dWt is a Wiener
process obtained by sampling at each time step a random vari-
able with the same Gaussian density [Wt ∼ N (0, t)] and intensity
σ . The numerical simulation of Eqs. (9)–(17) is obtained by using
the Euler–Maruyama method with a time resolution dt = 5 × 10−3

over N = 107 time steps, using the classical set of parameters
(

s, r, b
)

= (10, 28, 8/3) and σ = 0.4 as in Chekroun et al.16

IV. RESULTS

A. Full system attractor

Figures 1–3 report the trajectories (left panels) of the three
different Lorenz-63 systems (deterministic, Fig. 1; additive noise,
Fig. 2; multiplicative noise, Fig. 3) and their corresponding attrac-
tors in the 3D phase-space (right panels). As expected, a breakdown
of the symmetric shape of the Lorenz attractor is observed when
the classical Lorenz-63 system is subject to either additive or mul-
tiplicative noise. Furthermore, intermittency appears to be reduced,
thus moving from a deterministic strange attractor toward a ran-
dom stochastic attractor.16 Nevertheless, by only looking at the full
system attractor, we are not able to identify any significant differ-
ence in the geometric shape between the additive and multiplicative
model. Furthermore, both random attractors are characterized by
the same dimension, equal to the full dimension of the phase-space,
due to the corresponding property of the invariant measure of an
elliptic diffusion process.

B. Average dimensions of scale-dependent attractors

To further inspect and characterize the role of the noise
vs the deterministic dynamics of the Lorenz system, we apply
our formalism to derive D(t, τ) for the three different sys-
tems. We first decompose every multivariate trajectory 2µ(t)
via the MEMD through which we obtained a set of 15, 20,
and 24 MIMFs, respectively, whose ranges of timescales are τ ∈

[1.64, 2.5 × 105], τ ∈ [9.7 × 10−2, 2.5 × 105], and τ ∈ [8.9 × 10−2,
2.5 × 105], respectively. Then, using Eqs. (6) and (7), we derive the
instantaneous scale-dependent metric D(τ , t) for the three systems.

As a first step, we inspect the behavior of the average instan-
taneous scale-dependent dimension 〈D(τ , t)〉t as a function of the
scale τ as reported in Fig. 4. This is equivalent to the method pro-
posed by Alberti et al.14 where local (in terms of timescale) and
time-independent (i.e., averaged) multi-scale measures have been
introduced.

Our corresponding analysis evidences the absence of timescales
τ < 1.64 for the deterministic Lorenz-63 system as opposed to
its stochastic versions. This is clearly a reflection of the absence
of stochastic terms in the classical deterministic system, which
are responsible for the very fast fluctuations in the stochastic
cases.

Furthermore, we generally observe larger average scale-
dependent dimensions for the multiplicative noise case than for
the deterministic Lorenz-63 system and the additive noise model.
This reflects the effect of the stochastic term on the dynamical
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FIG. 1. (Left) Zoom of the trajectory components of the deterministic Lorenz-63 system as in Eqs. (9)–(11) (L63). (Right) Corresponding attractor in the 3D phase-space
(black points) and its projection in the x–z plane (gray points).

features of the Lorenz-63 system: it does not only act at short
scales, exciting variability at additional scales with respect to the
classical Lorenz-63 system, but also affects the attractor geome-
try and, hence, the time-averaged number of active degrees of

freedom as reflected by the scale-dependent fractal dimension met-
ric at larger timescales. The latter property can be linked to the fact
that the Lorenz-63 system with non-degenerate noise has an invari-
ant measure that is absolutely continuous with respect to Lebesgue

FIG. 2. (Left) Zoom of the trajectory components of the additive noise model as in Eqs. (12)–(14) (L63 additive). (Right) Corresponding attractor in the 3D phase-space
(black points) and its projection in the x–z plane (gray points). The stochastic noise term has an amplitude σ = 0.4.16
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FIG. 3. (Left) Zoom of the trajectory components of the multiplicative noise model as in Eqs. (15)–(17) (L63 multiplicative). (Right) Corresponding attractor in the 3D
phase-space (black points) and its projection in the x–z plane (gray points). The stochastic noise term has an amplitude σ = 0.4.16

such that when introducing a stochastic term, the dimension must
converge to 3, as observed at large timescales for both stochastic
models.

The most interesting feature emerging for the average dimen-
sions is that the largest value D(t, τ) for both the additive and
multiplicative case is obtained for τ of the order of the funda-
mental period (i.e., the Lyapunov timescale τL ≈ 1.12 time units)
of the dominating unstable periodic orbit of the deterministic
system;27,28 see Ref. 29 for a discussion of how unstable periodic
orbits are responsible for resonant behavior in forced systems and
Ref. 30 for evidence of the resonant response of the Lorenz-63
system.

Another interesting feature is the quantitative difference of
〈D(τ , t)〉 in the range of scales dominated by the stochastic con-
tribution (below τL). While for the additive model the average
dimensions converge, as expected, to 3, the dimensions are larger
than 3 for the multiplicative case at the same timescales, thus sug-
gesting that the dynamics at these scales behave as a forcing-like
contribution. Conversely, by looking at the full system attractor, i.e.,
when considering the whole timescales, we are not able to identify
any difference in the dimensions between the additive and multi-
plicative model. Indeed, as expected, the average dimensions tend
to saturate to those expected for the full dynamics when τ → τNk

,
being 〈D(τ , t)〉 = 2.05 ± 0.02 for the deterministic Lorenz-63 sys-
tem and 〈D(τ , t)〉 = 2.98 ± 0.04 for its stochastic versions, because
the invariant measure of an elliptic diffusion process has full dimen-
sion. The results obtained for the deterministic Lorenz-63 system
are in agreement with previous findings by Alberti et al.,14 while our
corresponding findings on the stochastic models have been reported
here for the first time.

C. Instantaneous scale-dependent dimensions

As a second step of our analysis, which is also the main novelty
introduced in this work, we investigate the behavior of the instan-
taneous scale-dependent dimension D(t, τ) for the three different
systems as reported in Fig. 5.

The deterministic Lorenz-63 system is characterized by instan-
taneous dimension values close to DF ' 2.05 at timescales larger
than 102, as expected due to the monofractal nature of the system
with all generalized fractal dimensions Dq taking the same value for
the full system. Conversely, larger values are found for the range

τ ∈ [100, 102], the reason for which will be discussed below.
When a stochastic term is considered, we observe values of

D(t, τ) & 3 at short timescales, extending toward larger scales when
localized (in time) intermittent bursts in the trajectory take place.
Typically, dimensions larger than 3 imply the presence of exter-
nal forcing components, increasing the number of active degrees of
freedom. By further inspecting the behavior of the trajectory in the
phase-space at large scales (see Fig. 6), this excess over the topologi-
cal dimension of the phase-space appears to be related to situations
associated with approaches of the unstable fixed points in the cen-
ters of each of the two lobes and subsequent fast escapes from the
neighborhoods of those points along their unstable manifolds. This
indicates that the increase in the number of active degrees of free-
dom at short timescales, not observed for the deterministic model,
is related to the stochastic component. Indeed, the imposed noise
term acts as additional forcing to the autonomous dynamics. This
means that the noise introduces additional degrees of freedom in
the dynamics because it adds energy to the system: the attractor
can deform through scales by increasing/decreasing its dimensions
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FIG. 4. Average instantaneous scale-dependent dimension 〈D(τ , t)〉t as a function of the scale τ . Green asterisks refer to the Lorenz “63 system, red circles to the additive
noise model, and blue stars to the multiplicative noise case. Error bars are obtained as the standard deviations of D(t, τ) along the respective trajectory.

FIG. 5. Behavior of the instantaneous scale-dependent dimension D(t, τ) for the deterministic Lorenz-63 system (top), its version with additive noise (middle), and the
multiplicative noise case (bottom). The colormap for D(t, τ) has been saturated between 2 and 4 for better visualization. In all three cases, an excerpt comprising 40 000
time units is shown.

Chaos 33, 023144 (2023); doi: 10.1063/5.0106053 33, 023144-7

Published under an exclusive license by AIP Publishing

 07 D
ecem

ber 2023 10:41:03

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 6. Three views of the Lorenz attractor at different timescales color-coded with respect to the instantaneous dimensions: (top) deterministic system, (middle) additive
noise, and (bottom) multiplicative noise.

depending on the instantaneous concurrent effect between the noise
forcing term and the intrinsic dynamics of the Lorenz-63 system.
The main differences between the two stochastic versions emerge
at short timescales (τ < 100), where larger dimensions are found
for the multiplicative noise case as compared to the additive one.
This could be explained by invoking the fact that in the multiplica-
tive case, the amplitude of the stochastic term depends on the state
variables of the system.

D. A scale-dependent instantaneous view of the

attractor

As a final step and to better highlight the scale-dependent
instantaneous properties of the attractor, Fig. 6 reports three views
of the attractor at different timescales color-coded with respect to
the instantaneous dimensions. The shapes of the different scale-
dependent attractors are obtained by summing up empirical modes
in a certain range of scales as in Eq. (8). Due to the associated prop-
erties of MIMFs, they have a zero-average envelope; thus, they fluc-
tuate around zero such that the attractors occupy only a small region
(especially, at short scales) of the phase-space of scale-dependent
fluctuations.

At large timescales (right panels in Fig. 6), roughly correspond-
ing to 100 times the Lyapunov time of the deterministic Lorenz-63
system at the considered parameter values, the geometric shapes
and the spatial distribution of dimensions across both stochas-
tic attractors are qualitatively similar and clearly distinct from the

chaotic attractor of the deterministic model. This means that we
can visually distinguish between the chaotic and the two stochas-
tic attractors, while a clear distinction cannot be made qualitatively
and quantitatively between the two random invariant sets.

By further inspecting the spatial distributions of instantaneous
dimensions of all three attractors, we clearly observe that larger
dimensions are found at the edges of the attractors and close to
the origin as compared to lower dimensions observed within the
two lobes. While this feature has also been previously highlighted
for the deterministic chaotic attractor (see, e.g., Faranda et al.31),
it is the first time that the spatial distribution of dimensions is
inspected for both random attractors. In particular, our analysis
reveals that forcing-like mechanisms leading to D(τ , t) > 3 are oper-
ating at the edges of the attractor and close to the unstable fixed
point at the origin, reflecting the repelling nature of the fixed points
of the Lorenz-63 system. However, the observation of D(τ , t) > 3
suggests that the number of active degrees of freedom near the origin
is increased with respect to the deterministic model, likely related to
the action of the noise term.

To further investigate the last point on the role of the stochas-
tic fluctuations in increasing the number of degrees of freedom
near the origin, we investigate the spatial distribution of dimen-
sions across the trajectory at short timescales, below the Lyapunov
time (left panels in Fig. 6). Clearly, we do not have any dynam-
ical component below the Lyapunov time for the deterministic
Lorenz-63 system, indicating that in both noisy systems, variability
at those fast timescales is intimately related to the stochastic forcings.
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However, completely different spatial distributions of dimensions
across the trajectory are observed between the additive and multi-
plicative case. While the former has a more homogeneous spatial
distribution of dimensions with the most probable value close to 3
and small fluctuations around it, the latter is characterized by a sad-
dle point-like dynamics D(τ , t) > 3 in a ring-like configuration lying
in the x–y plane and D(τ , t) < 3 elongated in the z direction. This is
due to the different structure of the noise terms, being a “pure” noise
term in the additive case, reflecting into D(τ , t) = 3 + ε, with ε � 1,
while acting as “forcing” for the multiplicative one, providing D(τ , t)
values larger than the system’s dimension.15,20

When approaching the Lyapunov scale τL (middle panels in
Fig. 6), a different spatial distribution of the dimensions is again
observed, together with a different coverage of the available phase-
space when comparing the chaotic attractor with the two stochastic
ones. The latter are characterized by regions with a low dimension
surrounded by higher-dimensional ones, markedly differing from
the deterministic Lorenz-63 system. We hypothesize that the regions
with low instantaneous dimensions could indicate the location of
weakly repulsive low-period unstable periodic orbits.32,33

Overall, our results indicate, for both the deterministic and
the two stochastic models, a clear different spatial distribution of
the dimensions across the phase-space at large timescales. In par-
ticular, the two stochastic attractors are characterized by a region
with dimensions larger than the topological dimension of the system
close to the origin O = (0, 0, 0), suggesting the existence of forcing-
like mechanisms altering the structure of this fixed point of the
deterministic model. Since the stochastic term mainly operates at
short timescales (below the Lyapunov scale τL), the source of this dif-
ference must be searched in this range of scales whose corresponding
attractors for the additive and multiplicative models are structurally
different, both in terms of the geometric shape and in the spatial dis-
tribution of the dimension values. In this regard, the stochastic term
is able to change the stability of the origin, revealing a new struc-
ture of attractors whose properties (i.e., fractal dimensions) evolve
in time and across scales. This difference disappears when reach-
ing larger and larger timescales due to the existence of an invariant
measure for the Lorenz-63 system that is absolutely continuous with
respect to Lebesgue such that when introducing a stochastic term,
the dimension must converge to 3, as observed at large timescales.

Finally, it is important to underline that in the determin-
istic Lorenz-63 system with standard parameters [i.e.,

(

s, r, b
)

= (10, 28, 8/3)], the origin O is an unstable saddle point whose
structure is preserved when considering a multiplicative stochastic
term. Conversely, this nature seems to be modified when consid-
ering additive noise, altering the structural stability of the unstable
point toward different nature. However, a linear stability analysis of
the stochastic models is beyond the scope of the present work and is
left for a future devoted study.

V. CONCLUSIONS

We have presented a formalism to study the behavior of chaotic
or stochastic attractors as a function of the timescale, indicating
that when considering different timescales, the concept of a sin-
gle universal attractor should be revised. Specifically, using the
famous Lorenz-63 system in its standard deterministic as well as

two stochastically forced versions, we have demonstrated that the
attractor of this system is scale dependent.

To reach this conclusion, we have extended an approach
recently introduced by Alberti et al.14 to investigate the instan-
taneous scale-dependent properties of attractors by combining
concepts from time series decomposition methods and extreme
value theory applied to recurrences in phase space. More specifi-
cally, we have used the multivariate empirical mode decomposition
(MEMD) to derive intrinsic components of a given system at differ-
ent timescales. Based on this decomposition, we have estimated the
instantaneous scale-dependent dimensions of the system’s attractor
at different scales. We have shown that a new structure of attractors,
whose properties evolve in time, space, and scale, is discovered by
looking for fixed points and following their evolution from a small
to large scale and vice versa. Thus, the geometric structure of the
attractor is gradually deformed and depends on the scale at which
we are investigating the respective system.

The main novelty introduced in this study is a powerful
method to identify the existence of processes of a different origin
by looking at the spatial distribution of fractal dimensions across
the full phase-space trajectories at different timescales. Concern-
ing the systems considered in this work, our formalism allowed us
to clearly distinguish between a purely noise-like contribution at
short timescales for the additive noise model, being characterized
by an ergodic coverage of the available phase-space with dimen-
sions fluctuating around 3 (as expected), as compared to a more
forcing-like contribution for the multiplicative noise model at the
same timescales, where the dimensions are larger than 3 and dif-
ferently distributed across the attractor. Conversely, by looking at
the full system attractor, i.e., when considering the whole range of
contributing timescales, we are not able to identify any clear dif-
ference, both in the attractor shape and in the spatial pattern of
the instantaneous (i.e., local in time and phase-space) dimensions,
between the additive and multiplicative model since the invariant
measure of an elliptic diffusion process has a full dimension. Thus,
our method allows us to evidence where the difference between the
two stochastic models resides only by looking at the spatial distri-
bution (see Fig. 6) of instantaneous fractal dimensions at different
timescales.

Our formalism can be easily modified by using any alterna-
tive time series decomposition technique (such as wavelet decom-
position, singular spectrum analysis, or others). Our choice of
the MEMD has been motivated by its empirical and adaptive
nature, reducing a priori constraints and possible artifacts of fixed-
frequency/fixed-basis decomposition methods. Furthermore, the
instantaneous nature (i.e., time-dependency) of the intrinsic com-
ponents derived via the MEMD allows us to perform a more detailed
investigation of the dynamical evolution (in time) of a system vari-
able, better suited for evaluating instantaneous dynamical system
metrics (as the dimension) than fixed-basis methods as Fourier
transforms.

We are confident that the proposed formalism provides a novel
way to investigate the underlying geometric (fractal) properties of
physical systems at different scales during their time evolution. The
concept of a scale-dependent attractor could tackle the problem of
defining a more useful concept for the analysis of multiscale sys-
tems, such as in the case of the climate or for turbulence, which
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has largely remained unsolved despite numerous efforts reported in
the last four decades. In a companion paper,34 where our formalism
has been applied to laboratory experiments on fluids, we observe the
emergence of an intrinsic timescale, solely determined by nonlinear
interactions, controlling the geometric and topological properties of
phase-space trajectories.

In this first study, we focused only on the geometric properties
of attractors in order to show that the universal concept of an attrac-
tor can be insufficient for fully describing multiscale systems in the
presence or absence of noise. The counterpart of our geometric view
of each point in phase-space is the instantaneous, i.e., time behavior,
of the scale-dependent dimension. Indeed, this interesting aspect
can be used for further studying some crucial aspects of physical
systems, e.g., bifurcations, tipping points, small- vs large-scale forc-
ing, and/or driving mechanisms.19 The corresponding prospects call
for further studies to investigate these aspects in more detail, which
is beyond the scope of the present paper and will be the subject of
future work.
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