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ABSTRACT

The recurrence plot and the recurrence quantification analysis (RQA) are well-established methods for the analysis of data from complex
systems. They provide important insights into the nature of the dynamics, periodicity, regime changes, and many more. These methods are
used in different fields of research, such as finance, engineering, life, and earth science. To use them, the data have usually to be uniformly
sampled, posing difficulties in investigations that provide non-uniformly sampled data, as typical in medical data (e.g., heart-beat based mea-
surements), paleoclimate archives (such as sediment cores or stalagmites), or astrophysics (supernova or pulsar observations). One frequently
used solution is interpolation to generate uniform time series. However, this preprocessing step can introduce bias to the RQA measures,
particularly those that rely on the diagonal or vertical line structure in the recurrence plot. Using prototypical model systems, we systemat-
ically analyze differences in the RQA measure average diagonal line length for data with different sampling and interpolation. For real data,
we show that the course of this measure strongly depends on the choice of the sampling rate for interpolation. Furthermore, we suggest a
correction scheme, which is capable of correcting the bias introduced by the prepossessing step if the interpolation ratio is an integer.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0167413

Almost all natural systems are non-linear systems, often with
multiple dimensions. The analysis of the possibly rich dynam-
ics of such systems requires advanced methods. One of these is
the recurrence plot and the associated recurrence quantification
analysis, which are, among other things, used to investigate the
nature of the dynamics, periodicity, or to detect regime transi-
tions. As with most other methods, this method was developed
for uniformly sampled data. This, however, restricts the use of
the method. Some data from, for example, astrophysics or pale-
oclimate cannot be analyzed straightforwardly. To circumvent
this restriction, one used approach is to interpolate the data to
a constant sampling rate. We show that the differences in the
sampling rate together with the subsequent interpolation can
lead to strong deviations, and it is not recommendable to take
this approach without further consideration. We, thus, propose

a correction scheme that can, with some limitations, correct these
deviations.

I. INTRODUCTION

The analysis of data from complex real-world systems creates
the basis for many different fields in science, such as finance, engi-
neering, life, and earth science. For many kinds of data, standard
measures, such as mean, standard deviation, or higher moments,
are not sufficient to capture the details of their dynamics. For this
purpose, methods from complex system science are more appro-
priate, such as Lyapunov exponents,1 complex networks,2 symbolic
dynamics,3 or recurrence analysis.4 Recurrence analysis provides a
set of tools, e.g., for studying synchronization, classifying different
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types of dynamics, or detecting regime transitions.5 The increasing
popularity of this framework is reflected by the lively methodi-
cal development and the growing number of applications in many
scientific disciplines.6

In several fields, data are only available on a non-equidistant
time axis; for instance, measurements based on heartbeats are timed
by the rhythm of the heart,7,8 which gives a natural varying timescale,
and this leads to the necessity of interpolation when compared
with other variables that form the cardiorespiratory system, such
as the blood pressure.9 Time series of pulsars and rotating stars
are obtained through non-equidistant observations,10,11 and pale-
oclimate data are hampered by the non-constant sedimentation
rate, resulting in non-equidistant sampling.12 Such unevenly sam-
pled data are a challenge for most time series analysis techniques,
which usually require equidistant sampling points. One solution
is to transform the time series to an equidistantly sampled one
using interpolation or other techniques (e.g., transformation cost13).
Other approaches try to modify the time series analysis tools to
be directly applicable to uneven time series, such as Lomb–Scargle
periodogram,14 kernel-based correlation,15,16 or edit distance-based
recurrence analysis.17 However, interpolation is still a widely used
technique, although it can cause serious bias in the results (overem-
phasizing the lower frequencies). Although this interpolation effect
is known for several time series analysis techniques,18 it is not yet
systematically considered for recurrence analysis and, thus, can lead
to wrong interpretations and conclusions.

Our focus in this study is the effect of non-uniform sampling
in paleoclimate time series on the results of recurrence analysis, as
it has recently gained attention for its potential to address various
research questions in geosciences.19–24 A prominent example is the
investigation of transitions in the paleoclimate.25–29 Changes in the
recurrence properties, mainly based on changes in the distribution
of the diagonal line structures in recurrence plots (related to deter-
minism or predictability of the underlying dynamics), can be used
to identify regime changes. Paleoclimate data are usually retrieved
from specific geological archives, e.g., marine and lake sediments,
tree rings, ice cores, or stalagmites. The climate information is stored
during the growth (deposition) of these archives. Since the growth
or sedimentation rate can differ over time, but the sampling proce-
dure of such archives usually uses an equidistant sampling scheme,
and the final time series are usually unevenly sampled in time.12

Using interpolation without due consideration before conducting
recurrence analysis can lead to bias in the distribution of diagonal
line structures in the recurrence plots, finally resulting in erroneous
conclusions.

In this work, we show the effects of different and changing
sampling times and subsequent interpolation on the recurrence
quantification analysis using different types of model systems as well
as a real paleoclimate example.

We further suggest an approach to estimate quantitatively these
effects and provide a correction scheme. Although we focus here on
applications in paleoclimate research, the correction scheme can be
analogously applied on other research questions, e.g., in astrophysics
or physiology.

This work is structured as follows: In Sec. II, the recurrence
plot and recurrence plot measures are introduced. In Sec. III, the
used models and methods are given. Then, we present the measured

effects for the simulated systems. Afterward, in Sec. IV, we present
the derivation as well as the evaluation of our correction scheme.
In Sec. V, a real-world example is considered. We conclude our
findings in Sec. VI.

II. PRINCIPLES OF RECURRENCE PLOTS (RPs) AND

RECURRENCE QUANTIFICATION ANALYSIS (RQA)

The recurrence plot (RP) is based on the fundamental princi-
ple that a dynamical system will always return to a state arbitrarily
close to its initial or any other state.4 This fact is used to simplify
the generally multidimensional phase space trajectory to a matrix
containing only zeros and ones. This method can be applied to any
series of states in a given phase space

{

Exi | i = 1, . . . , N
}

, where Exi

is the phase space vector at the time step i (corresponding to time
t = i · dt and dt the sampling time) and N the number of considered
states (or the length of the time series). If we do not have access to
the full phase space vector, it can be reconstructed using time delay
embedding.30,31 To create a matrix representation of the recurrences
of the data, the phase space distance from all pairs of data points is
calculated using a suitable norm, represented by the distance matrix

Di,j =
∥

∥Exi − Exj

∥

∥ , i, j = 1, . . . , N. (1)

If not stated otherwise, we use the Euler norm. A recurrence is
finally defined as having the pairwise distance Di,j between the
states smaller than a specified recurrence threshold ε; i.e., the recur-
rence matrix is derived from the distance matrix D by applying
the threshold ε, leading to the binary recurrence matrix R with its
elements

Ri,j(ε) = 2
(

ε − Di,j

)

, (2)

with 2 being the Heaviside function and ε being the recurrence
threshold.4

The recurrence matrix R can be displayed as a plot, where
all the ones (Ri,j = 1) are marked by points, and such an entry is,
therefore, called a “recurrence point” or a “1-point.” In contrast, the
points Ri,j = 0 are called a “non-recurrence point” or a “0-point.”
This plot is then called a recurrence plot (RP) and can be visu-
ally interpreted because it expresses rich patterns characteristic of
specific dynamics.4,32

Although the first visual impression gives some important
hints, further (quantitative) analysis is often useful. For this purpose,
the recurrence quantification analysis (RQA) was introduced.7,33,34

The recurrence rate RR, the fraction of recurrence points in the RP,
gives a quantification of how often the system returns to the same
region in the phase space. Most of the other measures in RQA rely
mainly on the length distribution Pl(l) of either diagonal or verti-
cal lines (formed by the recurrence points) visible in the RP. Such a
diagonal line is denoted here as a “recurrence line” or a “1-line.” The
idea behind the study of diagonal recurrence lines is that their length
corresponds to the time the system evolves similarly compared to the
other times the system visited the same region in the phase space.
Therefore, the fraction of 1-points that form diagonal 1-lines in the
RP is a heuristic measure of how deterministic the system is,

DET =

∑N
l=lmin

lPl(l)
∑N

l=1 lPl(l)
, (3)
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with Pl(l) being the probability to find a 1-line with exact length l,
lmin a chosen minimal line length, and N the maximal line length
(equal to data length). This measure is called determinism and ranges
between 0 and 1. It becomes 1 if all recurrence points belong to diag-
onal lines equal or longer than lmin and 0 if no recurrence point does.
This measure is widely used to identify regime transitions, e.g., in
paleoclimate studies.27–29,35,36

The calculation of DET is based on the distribution of diagonal
line lengths. For the sake of simplicity, here, we focus on the average
diagonal length,

L =

N
∑

l=1

lPl(l). (4)

In contrast to the standard definition of this measure,4 we consider
here all line lengths, including such of length 1. This simplification
allows us to construct correction schema for possible sampling and
interpolation effects. This measure is related to the prediction time.
However, it depends on the temporal resolution of the system. For
Gaussian white noise, L is 1/(1 − RR) and, therefore, for small RR
close to one, whereas for perfectly periodic systems, it should theo-
retically be infinite but is limited by the RP size and boundary.37 L is
very sensitive to noise because noise causes random interruptions in
the diagonal lines. In paleoclimate studies, measures quantifying the
diagonal lines are often interpreted in terms of the predictability of
the climate.29,35,36

In many cases, the temporal variation of the RQA measures is
of interest as they can reveal changes or transitions in the system’s
dynamics, such as when the system is approaching a tipping point.
To determine such changes, the sliding window approach is used.
The time series is partitioned into smaller segments (windows) of a
predetermined length, which may overlap with one another. Then,
the RP and the RQA measures are calculated for every window sep-
arately. The distance between the start points of two consecutive
windows is called the window step size, and the size of a window
is the window size. It is important to determine which time point
is assigned to each window. In this study, we just take the starting
point of the window so that all points used to calculate the measure
are in the interval after this time point.

III. INTERPOLATION EFFECT ON RECURRENCE

ANALYSIS OF MODEL SYSTEMS

To demonstrate the interpolation effect, we use two model sys-
tems to generate prototypical data. We use an autoregressive model,
where the course of the data is stochastically driven, and a Roessler38

system, which is a typical non-linear system, fully described by three
non-linear ordinary differential equations.

To quantify the deviation in the L measure due to the differ-
ence in the sampling rate and subsequent interpolation, we compare
Lref calculated from a reference series without interpolation with Lint

calculated from the interpolated series with the same temporal res-
olution as the reference series by taking the ratio Lint/Lref. Ratios
greater than 1 indicate an increase of the measure due to the inter-
polation and ratios smaller than 1 a decrease. This could then either
lead to an over- or underestimation of an Lref value when analyzing
the interpolated series.

FIG. 1. Schema illustrating the different series as well as the offset and
interpolation.

The effect depends on the considered system, the interpolation
ratio, and the offset. The interpolation ratio r is the ratio of the sam-
pling time of the time series before and after interpolation. The offset
is the time difference between the first value in the time series before
and after interpolation (Fig. 1).

An interpolation ratio greater than 1 increases the total num-
ber of points. For integer interpolation ratios, every rth point in the
interpolated series lines up with the underlying series only if the
offset is zero.

A. Systems

We use the two different model systems for our study and gen-
erate the data using the following equations. To remove transient
behavior from the initial conditions to some kind of stable dynamics,
the first part of every time series is discarded.

1. Autoregressive model

The time series is generated iteratively according to the rule

xi+1 = axi + σξi, (5)

where ξ is Gaussian white noise (mean zero and standard deviation
one) and a and σ are free parameters, defining the auto-correlation
(memory) and the impact of the noise. We used a parameter setting
of a = 0.99 and σ = 1. Three series are generated for the analysis
with each 2501 data points. The initial conditions are drawn from
a normal distribution, and the first 100 points are discarded. The
noise and the initial conditions are generated with a random number
generator with three different seeds to make the results reproducible.

2. Roessler model

The Roessler system is fully described by the differential
equations38
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ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c).

(6)

We use the standard parameters a = 0.15, b = 0.2, c = 10 and
a temporal resolution of dt = 0.01. To approximately solve these
equations, we used the Euler method and the initial condition
(x = 15, y = 0, z = 0). The obtained series has 12 505 data points,
and the first 500 points are discarded. Afterward, only every fifth
data point is used so that the series of both systems have 2401
points.

B. Method

To mimic the effect of different sampling times and subsequent
interpolation, we consider high-resolution series, representing the
“true” dynamics. To obtain series with different temporal resolution,
multiple downsampled versions are constructed. One downsampled
time series is chosen as reference series and analyzed without inter-
polation so that the results are unchanged and describe the dynamics
of the system. All other downsampled series are called the test series
(see Fig. 2). In the analysis, the offset for the reference series is cho-
sen to be 0 because only the difference in the offset between the
reference and the test series is important. This gives the following
series:

High-resolution series:
{

Exi|i = 0, 1, 2, . . . , Nhr − 1
}

,

Reference series:
{

Exi|i = 0, 1 · dref, 2 · dref, . . . , (Nref − 1) · dref

}

,

Test series:
{

Exi|i = ktest,n, 1 · dtest,n + ktest,n, 2 · dtest,n + ktest,n, . . . ,
(

Ntest,n − 1
)

· dtest,n + ktest,n

}

,

where Nhr, Nref, and Ntest,n are the lengths of the different series, dref

is the downsampling factor of the reference series, and dtest,n and
ktest,n are the downsampling factors and offsets of the different test
series, where n numbers the different test series. The corresponding
times are given by ti = i · dt. We generate interpolation functions
for every test series using linear, quadratic spline, cubic spline, and
pchip interpolation. To obtain the interpolated series, we evaluated
these interpolation functions at the same time points as the reference
series (see Fig. 1).

Using the reference instead of the high-resolution time series as
a comparison, it is possible to study non-integer interpolation ratios,
offsets, and also interpolation ratios smaller than one.

FIG. 2. Scheme illustrating the method used to investigate the change in the RQA
measures due to the difference in the sampling time, offset, and interpolation.

The interpolation ratios are given as

rn =
dttest,n

dtint

=
dttest,n

dtref

=
dtest,n · dthr

dref · dthr

=
dtest,n

dref

, (7)

where dthr, dtref, and dttest,n are the different sampling times from the
series defined above and dtint is the sampling time of the interpolated
series.

The RP and the RQA measure L are calculated for the reference
and for every interpolated series using the same recurrence thresh-
old ε. Lref is the measure obtained for the reference series and Lint for
the interpolated series. The differences in the RQA measure are due
to the different sampling times and the interpolation. We can com-
pare the results from all interpolated series to the reference series by
computing all ratios Lint/Lref.

Using this procedure, we mimic the typical sampling bias,
e.g., in paleoclimate studies, where sliding windows with different
sampling are all interpolated to the same reference sampling and
the hidden “true” dynamics is the continuous nature and is not
accessible.

C. Results

To illustrate the deviations in the RP between an interpolated
series and a reference series, we consider a short time series of an
arbitrary autoregressive process and downsample it by a factor of
four before interpolating it linearly back to the original size. This
procedure leads to an interpolation ratio of r = 4 and no offset.
Here, the high-resolution time series corresponds to the reference
series. Comparing the RP of the interpolated time series with the RP
of the reference time series, we find some differences (Fig. 3). Points
that are 1-points in both RPs are black, points that are only 1-points
in the reference RP are red, and points that are only 1-points in the
interpolated RP blue. The coarse structure is preserved under the
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FIG. 3. Difference of interpolated and reference recurrence plots of an arbitrary
AR process. Black pixel mark 1-points in both RPs; red pixel mark 1-points in
reference RP, which 0-points in interpolated RP; and blue pixel mark 0-points in
reference RP, which are 1-points in interpolated RP. The interpolation ratio is r = 4
and offset 0.

downsampling and interpolation; however, on a smaller scale, many
short 1-lines are missing in the interpolated RP, while other 1-lines
are merged into greater recurrence structures. Both effects lead to an
increased average 1-line length.

To quantitatively study the effects on the average 1-line length,
we use the method described in Sec. III B. For every model system,
the high-resolution series is created according to Sec. III A. From
this one, reference and multiple test series are created by down-
sampling with different offsets and downsampling factors dtest,n.
We use downsampling factors between 1 and 50 and for every down-
sampling factor five different offsets, if possible. For series with
a downsampling factor smaller than five, the number of different
offsets is limited by the downsampling factor.

The reference series are obtained with a downsampling fac-
tor dref = 5 and no offset. The high-resolution series have a length
of 2401. The reference series have, therefore, 481 data points. The
recurrence thresholds for the systems are chosen so that the RP of
the reference series has a recurrence rate of 10%. The recurrence
thresholds as well as the Lref measure are given for the Roessler
and the three autoregressive systems in Table I. The number in
the name of the autoregressive systems (AR-42, AR-43, and AR-44)
states the used seed for the random module of the Python library
NumPy. With the three different autoregressive systems, we can
check whether the results are changed for other realizations of the
noise. For every system, the ratio Lint/Lref is calculated for every
interpolation ratio, interpolation method, and offset separately. To

TABLE I. Properties of the four different reference series.

System name Recurrence threshold ε Reference Lref

Roessler 5.06 24.6
AR-42 1.13 1.44
AR-43 1.05 1.36
AR-44 1.26 1.46

simplify the data, the mean and the standard deviation are calcu-
lated over the different offsets, and for the autoregressive systems,
also over the three different realizations. The result is, therefore, only
dependent on the kind of the system, the interpolation ratio, and the
interpolation method.

1. Roessler system

For the Roessler system, Lref and Lint values are almost equal
for interpolation ratios smaller than 1.5 (Fig. 4 left). For a larger
interpolation ratio, the Lint values for the different interpolated series
are smaller than Lref and decrease with an increasing interpolation
ratio. The quadratic and the cubic spline interpolation lead to very
similar results, whereas the linear and the pchip interpolation cre-
ate the strongest deviation. The differences caused by the offset
values are negligible for the linear interpolation, except at the inte-
ger ratios 2, 3, and 4. An explanation for this behavior is given in
Sec. IV. Additionally, the same analysis was done with the maximum
norm instead of the Euler norm. The results are qualitatively similar
(see Appendix B).

2. Autoregressive process

For the interpolated series from the autoregressive systems, Lint

increases with growing interpolation ratios for all methods (Fig. 4,
right). Lint calculated from the linearly interpolated series shows the
strongest deviation from the reference series. The effect of differ-
ent realizations and offsets is similar for all considered interpolation
methods.

To investigate the deviation caused by different offsets, Lint/Lref

is calculated without offset and compared with the mean over all
offsets. We find that the deviation is only different for integer inter-
polation ratios (Fig. 5). This is as expected because only for integer
interpolation ratios, an offset determines whether all time points of
the test series are aligned (without offset) or misaligned (with off-
set) to the interpolation time points (see Fig. 1). The Lint/Lref value
is smaller without an offset, which means that the deviation of Lint

from Lref is smaller.
This result shows that interpolation can have a remarkable

impact even if the interpolation ratio is 1 if there is some time offset
between the points of the interpolated and test series. This situation
commonly arises when the sampling time varies, causing misalign-
ment between the interpolated series and the data. Even in portions
of the data where the sampling time in the interpolated series is equal
to the data’s sampling time, the exact timings of the different series
can be misaligned.
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FIG. 4. Relative deviation of L between interpolated and reference series for the Roessler system (left) and three autoregressive systems (AR) (right). The data points
represent the mean over the different systems (only for AR) and offsets, and the error bars give the standard deviation.

IV. CORRECTION SCHEME

Knowing the specific effect of interpolation on RQA measure
L, it becomes apparent that a correction scheme aimed at mitigating
this interpolation effect would be both desirable and feasible.

A. Method

To construct a correction scheme, which models the deviation
in the L measure between an interpolated series to the reference
series, it is necessary to account for the influences of interpolation
and the differences in the sampling rate.

L can be calculated using the total number of diagonal 1-lines
(i.e., lines consisting of values 1),

L =
Nr

Nl

=
N2 · RR

Nl

, (8)

FIG. 5. Relative deviation of L between interpolated and reference series for three
autoregressive systems (same as Fig. 4, right). The data points represent the
mean over the different systems with (blue) and without (red) different offsets,
and the error bars give the standard deviation.

where Nr is the total number of 1-points in the RP, Nl is the number
of 1-lines (including the single points, i.e., lines with l = 1), N is the
length of the series, and, therefore, N2 is the total number of points
in the RP, and RR is the recurrence rate.

The total number of points N2 in the RP generated from the
reference series

(

Rref
)

and the interpolated one
(

Rint
)

is equal. In all
investigated examples, the recurrence rate RR is also very similar;
therefore, the deviation in L can be derived from the difference in
the number of 1-lines Nl. As we will show, the number can differ,
because

1. separated 1-lines in Rref can be connected in Rint,
2. 1-lines in Rref can be missing in Rint, and
3. parts of 0-lines in Rref can form 1-lines in Rint.

(1) and (2) lead to fewer 1-lines in Rint and a greater L compared to
Rref. (3) leads to more 1-lines and a smaller L.

To tackle the problem, we restrict ourselves to the following
case:

• There is an integer interpolation ratio between the test series and
the interpolation series and no offset.

This means that the test series consists of every rth data point
from the reference series and is, therefore, a downsampled version
of it. The downsampling results in a RP

(

Rtest
)

consisting of every

rth point in every rth row of the reference RP
(

Rref
)

(with r being the
interpolation ratio). The same is true for the diagonals: The ith diag-
onal in Rtest consists of every rth point from the (r · i)th diagonal of
Rref. We call these points anchor points and these diagonals anchor
diagonals (Fig. 6). To calculate the relative change in the number of
1-lines, we restrict ourselves to these diagonals.

At first, we calculate the difference in the number of 1-lines, due
to the different sampling, by comparing the structures in Rref and
Rtest. There are more 1-lines in Rref if there are more 1-lines starting
between two anchor points than depicted by them. We refer to the
sequences of 0- and 1-points between two anchor points as intervals.
Only if the first anchor point is a 0-point and the second one is a
1-point, there is a starting point in Rtest; all further starting points
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FIG. 6. Recurrence plots of some arbitrary reference signal (left), the test signal (middle), and the interpolated signal (right). The red boxes indicate the anchor points, which
are identical in all plots. Blue boxes indicate all points belonging to the anchor diagonals. The interpolation ratio r is 3.

in Rref are additional. To quantify this effect, we can calculate the
mean number of 1-line starting points. This is calculated separately
for intervals following a 1- or a 0-anchor point,

〈1Nl〉1 =

r
∑

1Nl=0

1Nl · P1Nl ,1
(1Nl), (9)

〈1Nl〉0 =

r
∑

1Nl=0

1Nl · P1Nl ,0
(1Nl), (10)

where 〈1Nl〉1 is the mean number of additional 1-line starting
points per interval, for intervals following 1-points, and 〈1Nl〉0

for intervals following 0-points. P1Nl ,1
(1Nl) and P1Nl ,0

(1Nl) are
the probabilities to find intervals with 1Nl 1-lines starting points,
starting on either 1-points or 0-points.

To find these probabilities, we calculate the length distribution
for sequences of alternating 0- and 1-lines, which have 1Nl 1-lines
starting points and calculate the probability that they fit between two
anchor points. Such a sequence between two 1-points has a length
between

l1Nl ,1,1 = ls +

1N
∑

i=1

di +

1N−1
∑

i=1

li and (11)

l∗1Nl ,1,1 = ls +

1N
∑

i=1

(di + li). (12)

ls is the start length, which is the number of 1-points after a random
point on a random 1-line and di and li are the length of random
0-lines and 1-lines. Here, the second equation includes the 1-line
containing the second 1-point and the first does not [example for
1Nl = 2 in Fig. 7(a)]. A sequence between a 1-point and a 0-point,
which has 1Nl 1-line starting points, has a length between [example

for 1Nl = 1 in Fig. 7(b)]

l1Nl ,1,0 = ls +

1N
∑

i=1

(di + li) (13)

and

l∗1Nl ,1,0 = ls +

1N+1
∑

i=1

di +

1N
∑

i=1

li. (14)

To get the probability that such sequence fits between a 1-anchor
point and a random second anchor point, we add up probabilities
for a 1- and a 0-point as a second anchor. In both cases, the prob-
ability is derived from the probability that the sequence is shorter
than the interval length, multiplied by the probability of reaching the
next anchor point when considering the next line together. The sec-
ond factor is always a conditional probability because both lengths
are not independent of each other. The distance between two anchor
points and, therefore, the interval length is the same as the interpola-
tion ratio r. The underlying probability distributions are given later.
In total, we get

P1Nl ,1
(1Nl) = P

(

l1Nl ,1,1 < r
)

· P
(

l∗1Nl ,1,1 ≥ r
∣

∣

∣
l1Nl ,1,1 < r

)

+ P
(

l1Nl ,1,0 < r
)

· P
(

l∗1Nl ,1,0 ≥ r
∣

∣

∣
l1Nl ,1,0 < r

)

,

(15)

where r is the interpolation ratio and P(X < r) are cumulative
probabilities, which can be calculated from the probability distri-

butions: P(X < r) =
∑r−1

X=0 PX(X), where PX(X) are the probability

distributions of the different sequence lengths.
The first two rows give the probability that if the first anchor

point is a 1-point that there are 1N 0-lines and (1N − 1) 1-lines
before the next anchor point, which is also a 1-point. The third and
the fourth row calculate the probability that there are 1N 0-lines
and 1N 1-lines before the next anchor point, which is a 0-point. In
both cases, the total interval has 1N more 1-lines than the interval
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FIG. 7. Example intervals (a) between two 1-anchor points, showing one possible configuration with two additional 1-line starting points. (b) Between one 1-anchor points
and one 0-anchor point, showing one possible configuration with one additional 1-line starting point.

downsampled to the two anchor points. This is explicitly given for
all possible configurations for one example interval in Appendix C.

The first and third row are calculated from the probability
distribution of the sum of the given random variables [Eqs. (11)
and (13)]. For our calculation, we assume that the probabilities for
the length of the consecutive 1- and 0-lines are independent. This
gives

Pl1Nl ,1,1

(

l1Nl ,1,1

)

=
(

Pls ∗ [Pd ∗ Pl]x(1Nl−1) ∗ Pd

) (

l1Nl ,1,1

)

, (16)

Pl1Nl ,1,0

(

l1Nl ,1,0

)

=
(

Pls ∗ [Pd ∗ Pl]x(1Nl)

) (

l1Nl ,1,1

)

, (17)

where ∗ represents a convolution and [Pd ∗ Pl]x(M) indicates that this
part of the equation is repeated M times. Pls(ls), Pd(d), and Pl(l) are

the probability distributions for the start length, the 0-lines, and the
1-lines. Pd(d) and Pl(l) have to be known and are only accessible
from the 0- and 1-line length histograms of the reference recurrence
plot. How to estimate these when the reference series is not known
is discussed later. The probability distribution for the start length ls
is (see Appendix A)

Pls(ls) =

∑∞
l=ls+1 Pl(l)

∑∞
l=1 l · Pl(l)

; (18)

for the conditional probabilities in row two, we first need to
modify the probability from before so that the condition is
fulfilled,

P∗
l1Nl ,1,1

(l1Nl ,1,1) =
1

∑r−1
l1Nl ,1,1=0 Pl1Nl ,1,1

(l1Nl ,1,1)
×

{

Pl1Nl ,1,1
(l1Nl ,1,1) l1Nl ,1,1 < r

0 else,
(19)

where the part in front of the curly bracket is the normalization
factor. This can now be used to calculate

P
(

l∗1Nl ,1,1

∣

∣

∣
l1Nl ,1,1 < r

)

=
(

P∗
l1Nl ,1,1

∗ Pl

) (

l∗1Nl ,1,1

)

(20)

and equivalent for row four. P1Nl ,0
(1Nl) can be calculated in the

same way by interchanging all di and li and calculating ls with Pd(d)

instead of Pl(l).
We now calculate the difference between Rint and Rtest. After-

ward, we can add up the changes. When interpolating the test series,
the RP

(

Rint
)

regains the size of the reference RP
(

Rref
)

, and every
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anchor point is equal in both plots (Fig. 6),

Rref
i,j = Rtest

i/r,j/r = Rint
i,j for i, j ∈ [0, r, 2r, . . .]. (21)

If we make the assumption that the anchor diagonals have the
same statistics for the length of 0- and 1-diagonal lines compared to
all diagonals in the interpolated RP

(

Rint
)

, we only have to investi-
gate the intervals between anchor points. For linear interpolation,
there are four possibilities in Rint. For the formal derivation, see
Appendix B.

1. In intervals lying between two 1-anchor points, all points are 1;
therefore, there is no 1-line starting point.

2. In intervals lying between two 0-anchor points, there is at most
one 1-line in between; therefore, there is either one or zero
1-lines starting point.

3. In intervals lying between one 1- and one 0-anchor point, then
there is one 1-0 transition and therefore, no start of a 1-line.

4. In intervals lying between one 0- and 1-anchor point, then there
is one 0-1 transition and, therefore, one start of a 1-line.

Only the second point causes differences in the number of 1-lines
between the plots because there is no start of a 1-line in Rtest, but
there might be in Rint. If there is a 1-line, we call this case a jump.
The total number of jumps is Nj and can be directly measured by
counting the number of intervals with jumps in Rint. From this, we
can follow that there is always a bigger or equal amount of 1-lines on
anchor diagonals in the interpolated RP

(

Rint
)

compared to the test
RP (Rtest).

The estimated total difference 1Nl of 1-lines lying on anchor
diagonals between Rint and Rref can now be calculated as the sum
of, minus the number of intervals following a 1-anchor point times
the mean number of 1-line starting-points in such an interval minus
the number of intervals following a 0-anchor point times the mean
number of 1-line starting points in such an interval plus the number
of jumps,

1Nl = −
Nd

r
RR〈1Nl〉1 −

Nd

r
(1 − RR)〈1Nl〉0 + Nj, (22)

with Nd being the total number of points on the anchor diagonals, r

is the interpolation ratio, and RR is the recurrence rate.
Nd
r

RR is the

number of intervals following a 1-anchor point, and
Nd
r

(1 − RR) is
the number of intervals following an 0-anchor point. The first two
summands quantify the difference between Rtest and Rref, and 〈1Nl〉1

and 〈1Nl〉0 are calculated using Eqs. (9) and (10). The last summand
quantifies the difference between Rint and Rtest.

To get the estimated deviation of the average diagonal line
length from this consideration, we first use Eq. (8) to write

Lint

Lest
=

Nint
l − 1Nl

Nint
l

= 1 −
1Nl

Nint
l

, (23)

where Lint is the average line length measured in the interpolated
RP

(

Rint
)

and Lest is our estimation of Lref measured in the refer-

ence RP
(

Rref
)

. Nint
l is the number of 1-lines in the interpolated RP

(

Rint
)

on the anchor diagonals, and 1Nl is the estimated difference
of the 1-lines between the reference and the interpolated RP on these
diagonals.

After inserting Eq. (8) with Nr = Nd · RR, which is the num-
ber of 1-points on the anchor diagonals, and Eq. (22), this can be
written as

Lint

Lest
= 1 +

(

〈1Nl〉1

r
+

〈1Nl〉0

r
·

(

1

RR
− 1

)

−
Nj

Nd · RR

)

Lint.

(24)

The total number of jumps Nj can also be rewritten as a prob-
ability nj that a random interval contains a jump by dividing the
number of jumps Nj by the number of intervals Nd/r,

nj =
Nj · r

Nd

. (25)

Inserted in Eq. (24), this gives the final result

Lint

Lest
= 1 +

(

〈1Nl〉1

r
+

〈1Nl〉0

r
·

(

1

RR
− 1

)

−
nj

r · RR

)

Lint. (26)

This equation can be used to estimate the correction for the
effects of the different sampling and the interpolation under the
conditions that there is an integer interpolation ratio r and no off-
set between, the reference series and the test series. Furthermore,
anchor and not anchor diagonals in the interpolated RP must have
similar probability distributions for the 1- and 0-lines (Pl(l) and
Pd(d)), and the probabilities for consecutive lines have to be inde-
pendent. In order to calculate our estimate Lest from a measured Lint

from the interpolated RP, it is necessary to know the statistics for
the 1- and 0-lines [Pl(l) and Pd(d)] from the underlying dynamics.
This might for a real-world example be accessible from a period in
the data with a high sampling rate. The recurrence rate RR as well
as the jumping probability nj can be directly computed from the
recurrence plot of the interpolated series. The recurrence rate is just
the fraction of 1-points, and nj is calculated by counting the inter-
vals that contain a jump and dividing the results by the number of
intervals.

In Sec. IV B, the use of this correction scheme is demon-
strated on a simulated data processing example, where everything is
known about the true underlying dynamics. Afterward, the scheme
is used to correct for sampling and interpolation-induced biases in
real-world data.

B. Results

To evaluate the correction scheme, Lint/Lref is calculated for the
first autoregressive system and the Roessler system in the same way
as before (Sec. III) and compared to the correction Lint/Lest, which is
calculated with the described scheme. r being the interpolation ratio
is varied, and while nj and RR are obtained from the interpolated

series and the corresponding recurrence plot
(

Rint
)

, Pl(l) and Pd(d)

are obtained from the reference RP
(

Rref
)

.
The estimated Lint/Lest for the autoregressive process follows

the increase in Lint/Lref with increasing interpolation ratio in the
real data very closely if the interpolation ratio is smaller than 5
[Fig. 8(b)]. For higher values, there are some deviations caused by
the small size of the test series. It has less than 100 data points
for an interpolation ratio greater than 5. For the Roessler system,
the correction only qualitatively captures the decrease, but with an
underestimation of the effect [Fig. 8(a)].
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FIG. 8. Estimation and measured relative deviations of the L measure between the interpolated and reference series for the Roessler (top left) and autoregressive system
(top right) (the same as in Fig. 4) for integer interpolation ratios. Equation (26) is used to calculate the correction. The bottom row shows the same systems, but the L-measure
for the calculation of the change as well as for the calculation of the correction is obtained only from the anchor diagonals (Fig. 6).

This deviation is caused by the fact that the following assump-
tions are not true for the Roessler system. On the one hand, the
statistics of the diagonal lines are very different when looking at all
diagonals compared to the anchor diagonals. If only these diagonals
are considered, the correction for the Roessler system captures the
effect also quite well [Fig. 8(c)]. On the other hand, the assump-
tion that the length of consecutive 1- and 0-lines is independent of
each other is not true for a deterministic system, such as the Roessler
system.

Using consideration from Sec. IV A, it is possible to understand
the reasons for the differences between the systems. For the autore-
gressive process, the dominating effect is that there are fewer short
1- and 0-lines in Rint compared to Rref; therefore, the total number
of lines is smaller and Lint is greater than Lref. The dominating effect
for the Roessler system is that there are more short 1-lines between
two anchor points in Rint than in Rref; therefore, the total number of
lines is greater and Lint is smaller than Lref.

V. APPLICATION TO PALEOCLIMATE DATA

In this section, we use the insights from the theoretical con-
siderations and simulations above to investigate real-world data.

We use the described correction scheme to reduce the influence of
the interpolation and the different sampling times.

For this purpose, we use the data from a 290 m long com-
posite core from Chew Bahir in southern Ethiopia. The core was
created by combining the two ∼280 m long parallel lacustrine sedi-
ment cores CHB14-2A and 2B, which were drilled within the Chew
Bahir Drilling Project (CBDP) in 2014.39 The aim of the CBDP was
to establish a high-resolution environmental record spanning an
important time interval of human evolution in eastern Africa. The
potassium (K) concentration in the sediment is a proxy for the arid-
ity in the region during the time of deposition.40 It was determined
by micro x-ray fluorescence (µXRF) scanning, which was carried
out with a spatial resolution of 5 mm. To attribute time points to the
measured K concentrations, the age-depth model RRMarch202141

is used, which follows a direct-dating approach and uses multi-
ple chronometers, including AMS 14C dating, optically stimulated
luminescence (OSL) dating, argon-argon (40Ar/39Ar) dating, and
tephrochronological data. Details about the age-depth model can
be found in Roberts et al.41 In the following, we use this environ-
mental record to show sampling and interpolation effects, which
are not dependent on the accuracy of the age-depth model. A
detailed RQA and corresponding interpretation has been performed
in Trauth et al.42
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The age-depth model reveals a non-constant sedimentation
rate; i.e., the data points in this time series are not sampled equally
in time. We investigate the temporal change of the mean diagonal
line length L using the sliding window approach with a window
size of 3079 yr. Therefore, we get a measure of the temporal evo-
lution of the predictability of climate. The mean sampling time
changes between these windows. In the oldest part from 616 787 to
434 038 yrBP, the sampling time is around 15 yr, and from 434 038
to 148 149 yrBP, there is a sampling time of around 10 yr. In the
newest part of the data from 148,149 yr BP until present, the sam-
pling time changes a lot, from a minimum of around 5.36 to 47.27 yr
[Fig. 9(a)]. The strong changes in the sampling time result from the
increased number of age measurements available for more recent
times. The long periods of uniform sampling times arise due to the
limited availability of datable material within the cores during those
time intervals.

To analyze the data, we use the measured potassium concentra-
tion together with the corresponding time points from the age-depth
model as our time series. We interpolate this series linearly and

FIG. 9. (a) Mean sampling times for every window (red) and constant sam-
pling times with which the interpolation function is evaluated (blue, green). The
window step size is 3079 yr, and the window size is 6153 yr. (b) and (c) L for slid-
ing windows, with dt = 47.2 yr (blue) and 5.36 yr (green). With fixed ε = 250.
(d) Corrected data with a described scheme.

evaluate the interpolation function at time points with a fixed sam-
pling time. To see the effect of a different choice of this sampling
time, two time series are created, one with a sampling time of
dt = 5.36 yr and one with dt = 47.2 yr. These sampling times corre-
spond to the lowest and highest sampling times in the data. To avoid
effects from the interpolation over long time periods with missing
data (hiatuses), we exclude all points of the interpolated time series,
where the temporal distance between the two neighboring measured
data points exceeds 50 yr. For windows where more than 40% of the
points are excluded, we do not calculate the L measure. This leads to
some gaps in the L-series (see Fig. 9).

When comparing the L-curves calculated from the interpo-
lated series with dt = 5.36 yr and dt = 47.2 yr, significant differ-
ences emerge. First, the first peak at approximately 10 000 yrBP is
considerably stronger in the interpolated series with dt = 5.36 yr.
Additionally, the amplitudes of the structures from 616 787 to
434 038 yrBP show an increase compared to the amplitudes of the
structures between 434 038 to 148 149 yrBP [Figs. 9(b) and 9(c)]. The
sampling time in the time intervals of increased amplitudes is lower
than in the other parts, which leads to the hypothesis that the differ-
ence in the course of the data is due to the different interpolation.
As we can see in Sec. III C, the deviations caused by an interpola-
tion ratio smaller than 1 seem to be small compared to the effect of a
larger interpolation ratio. This leads to the conjecture that the results
from the interpolated series with dt = 47.2 are closer to the truth
and the results of the series with dt = 5.36 yr are altered by the inter-
polation. To investigate this further, we apply our correction scheme
to the Lint values. To use this method, the original distributions Pl(l)
and Pd(d) have to be known. We assume some stationarity; i.e., these
distributions should not change too much within the course of the
data. We, therefore, use the histograms of 0- and 1-line lengths from
the interval where the original dt is 5.36 yr. This is the case between
36 132 and 45 501 yrBP. RR, Lint, and nj are calculated for every win-
dow. The correction method can only be used for integer ratios;
therefore, the interpolation ratio is calculated for every window by
dividing the mean sampling time in the data inside the window by
the interpolation sampling time of 5.36 yr and rounded to the next
integer to calculate the correction.

After applying the correction, the first peak is reduced in its
height, and also, the changes of amplitudes in the older part of the
data match the results of the interpolated series with dt = 47.2 yr
[Fig. 9(d)]. This is an indication that the correction provides a
close approximation of the true effect, which leads to the deviations
in the L measure and helps to avoid misinterpretation due to the
interpolation.

VI. CONCLUSION

Recurrence plots and recurrence quantification analysis are
useful tools for the analysis of data from non-linear systems. They
can give valuable insights into the changes in the dynamics and indi-
cate critical regime changes. Applying these methods to paleoclimate
data give additional and complementary valuable insights, which are
usually not accessible with standard linear methods.

When using RPs for paleoclimate data, we have to take into
account that the data from paleoclimate archives are usually not uni-
formly sampled in time. One commonly used method to tackle this
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is to generate an interpolation function and evaluate it at equally
spaced time points. This, however, can create some bias and lead to
wrong conclusions.

In this work, we have demonstrated that, depending on the
dynamics, the average diagonal recurrence line length L calculated
from the RP of an interpolated signal can be greater or smaller com-
pared to the true L derived from the RP of the raw signal with the
same temporal resolution. We have shown this by comparing data
with different sampling rates, which are interpolated to the time
points of the reference time series.

For a Roessler system, L calculated from the interpolated series
is smaller than the one calculated from the reference series for all
considered interpolation methods. For autoregressive processes, on
the other hand, L is bigger. Furthermore, we have explained that
for an integer interpolation ratio, a possible offset can also change
the result, and this is even true if the temporal resolution is not
changed.

We identified three main reasons for the difference between
the series with different sampling and interpolation: (1) distinct
recurrence lines in the reference RP are merged in the interpolated
recurrence plot, (2) short recurrence lines in the reference RP are
missing in the interpolated one, and (3) there are short recurrence
lines in the interpolated RP, which are not present in the reference
one.

Using these insights, we developed a correction scheme and
discussed its capabilities and limitations. For the autoregressive pro-
cess, it can predict the difference very precisely, as long as the
interpolation ratio is not too large and the downsampled data, there-
fore, not too short. For the Roessler system, on the other hand, it
can capture the decrease but underestimates the effect up to a fac-
tor of two. Here, the main reason for this deviation seems to be
that the correction is only true for the diagonal lines in the inter-
polated plot, which correspond to a diagonal in the downsampled
one.

In the last part of our work, we have investigated paleoclimate
data from a lake sediment core. First, we showed that the course
of the L measure, when calculated in sliding windows, strongly
depends on the choice of sampling time when evaluating the inter-
polation function. We then applied our proposed correction scheme
to produce an approximation of the actual course.

This study shows that there are potentially big biases, when
interpolating data, before applying the RP method. It also shows
that the effect is strongly system dependent, and a simple correction
might not be possible. The proposed correction scheme provides an
intuition on which system shows which effects and also provides
an approximate correction. The correction scheme is only valid for
integer interpolation values without offset, which is rarely the case
for real data. Nevertheless, this can give an approximation of the real
effect. Further research is required to enhance our understanding
of the impact of offset and noninteger interpolation ratios. Another
limitation of this study is that the series with different temporal res-
olutions are obtained by downsampling, which is only similar to the
measurement process if the measure yields the value of some quan-
tity at one time point. In reality, measurements often do some kind
of averaging over a finite period of time. To understand to what
extent this changes the result of this study and how to change the
correction scheme, further research is required.
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APPENDIX A: START LENGTH

When starting on a random 1-point in a recurrence plot, ls is
the remaining length on the 1-line, where this 1-point is a part of (see
Fig. 7). To calculate the probability distribution of this length Pls(ls),
we have to account for every combination of 1-line length together
with the position of the point on this line, which creates a remaining
line of the length ls; for example, if we start on 1-line with length 6
on the fourth position, the remaining length ls is 2. The probability
to hit a 1-line with a certain length is the probability to find such a
line in the RP times the length of the line and this normalized,

P∗(l) =
l · Pl(l)

∑∞
l=1 l · Pl(l)

. (A1)

When hitting a 1-line of a certain length l, the probability that the
remaining length is ls is 0 if the length l is not longer than ls. Other-
wise, the probability is 1/l. Summed over all possibilities, which are
not zero, this gives in total

Pls(ls) =

∑∞
l=ls+1 Pl(l)

∑∞
l=1 l · Pl(l)

. (A2)

APPENDIX B: RECURRENCE OF LINEAR

INTERPOLATED POINTS

Here, we show the mathematical proof for the statements made
about the 1-points on anchor diagonals.

1. In intervals lying between two 1-anchor points, all points
are 1.

• The distance matrix for an interpolated time series is
given by

Di,j =
∥

∥EI(ti) − EI(tj)
∥

∥ , (B1)

where EI(t) is the linear interpolation function. When look-
ing at interpolation with integer r and without offset, we

Chaos 33, 103105 (2023); doi: 10.1063/5.0167413 33, 103105-12

© Author(s) 2023

 28 M
ay 2024 10:53:33

https://pubs.aip.org/aip/cha
https://doi.org/10.5281/zenodo.8123086


Chaos ARTICLE pubs.aip.org/aip/cha

TABLE II. Example of different intervals on the anchor diagonal of a recurrence plot and how they are changed when the underlying data are downsampled and linearly

interpolated with an interpolation ratio of r = 4. The first and the last point are always the anchor points, as described in Sec. IV A.

Original Downsampled Interpolated 1-line-starts Probability

11111 11 11111 0 P(ls > r)
11000 10 11100 0 P(ls < r) · P(ls + d1 > r | ls < r)
10011 11 11111 1 P(ls + d1 < r) · P(ls + d1 + l1 > r | ls + d1 < r)
10110 10 11100 1 P(ls + d1 + l1 < r) · P(ls + d1 + l1 + d2 > r | ls + d1 + l1 < r)
10101 11 11111 2 P(ls + d1 + l1 + d2 < r) · P(ls + d1 + l1 + d2 + l2 > r | ls + d1 + l1 + d2 < r)

have anchor diagonals. At the anchor diagonals, the follow-
ing equation holds:

ti − tj = z · r · dtref = z · dttest z ∈ Z, (B2)

with z being an integer and dtref and dttest are the sampling
times of the reference and test series. The interpolation
function is a linear function for tk < t < tk+1, where tk are
the sampling points of the test series. Therefore, EI(ti) − EI(tj)

is the difference between two linear functions for tki
< ti

< tki+1 and tkj
< tj < tkj+1. The second equation can be

rewritten as tkj
< ti − z · dttest < tkj+1, which is the same as

tkj
+ z · dttest < ti < tkj+1 + z · dttest, which is the same as

the first conditions. This shows that the difference itself is
a linear function between two anchor points.For the linear
function, which goes through the points A and B, we can
show that if ‖A‖ and ‖B‖ are smaller than ε, then all points
in between have a norm smaller than ε. It follows that if
our interpolation function is a linear function between two
anchor points and both anchor points are recurrent and
therefore, their norm is smaller than ε, all points on the
interpolation function in between have a norm smaller than
ε and are, therefore, also recurrent.

‖A‖ < ε and ‖B‖ < ε,

C = A + z · (B − A) 0 ≤ z ≤ 1,

‖C‖ = ‖A + z · (B − A)‖

= ‖(1 − z) · A + z · B‖

≤ (1 − z) · ‖A‖ + z · ‖B‖

≤ max(‖A‖, ‖B‖)

≤ ε. (B3)

2. In intervals lying between two 0-anchor points, there is at most
one 1-line in between.

• Two 1-lines would violate the first point because there
would be 0-points between 1-points.

3. In intervals lying between one 1- and one 0-anchor point, then
there is one 1-0 transition.

• There cannot be an additional 0-line before the last 1-point,
as shown in the first point.

4. In intervals lying between one 0- and 1-anchor point, then there
is one 0-1 transition.

• There cannot be an additional 0-line after the first 1-point,
as shown in the first point.

APPENDIX C: EXAMPLE OF AN INTERVAL ON AN

ANCHOR DIAGONAL

To illustrate changes to different intervals on an anchor diago-
nal, we show in Table II the effect of downsampling and interpola-
tion. Furthermore, we give the probability of finding such an interval
in the original recurrence plot.

APPENDIX D: INTERPOLATION EFFECT ON ROESSLER

WITH A MAXIMUM NORM

To show that the effect seen for the Euler norm is also present
when using the maximum norm, we performed the analysis from
Fig. 4 (left) again, but using the maximum norm instead. Here,
we also see that the L-measure obtained from the interpolated
recurrence plot is decreased compared to the reference recurrence
plot and the deviation is present for all interpolation methods and
increases with the interpolation ratio. The linear and pchip inter-
polation leads to a similar deviation, which is qualitatively differ-
ent from the deviation after using one of the spline interpolations
(Fig. 10).

FIG. 10. Relative difference of Lint between interpolated and reference series.
For a Roessler system, Lref = 8.77, ε = 4.45, and the maximum norm is used.
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