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ABSTRACT

The complex phase interactions of the two-phase flow are a key factor in understanding the flow pattern evolutional mechanisms, yet these
complex flow behaviors have not been well understood. In this paper, we employ a series of gas–liquid two-phase flow multivariate fluctua-
tion signals as observations and propose a novel interconnected ordinal pattern network to investigate the spatial coupling behaviors of the
gas–liquid two-phase flow patterns. In addition, we use two network indices, which are the global subnetwork mutual information (I) and
the global subnetwork clustering coefficient (C), to quantitatively measure the spatial coupling strength of different gas–liquid flow patterns.
The gas–liquid two-phase flow pattern evolutionary behaviors are further characterized by calculating the two proposed coupling indices
under different flow conditions. The proposed interconnected ordinal pattern network provides a novel tool for a deeper understanding of
the evolutional mechanisms of the multi-phase flow system, and it can also be used to investigate the coupling behaviors of other complex
systems with multiple observations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146259

In many complex systems, coupling phenomena are frequently
observed, when two or more parts in the system are interact-
ing with each other. As for the complex multi-phase flow, the
coupling behavior between the immiscible phases is influenced
by many factors, making it difficult to get a clear description of
the dynamics of the multi-phase flow system. In this paper, we
design a flow loop experiment to investigate the coupling behav-
iors of the vertical gas–liquid two-phase flow system. We use a
recently proposed popular tool, which is the interconnected ordi-
nal pattern complex network to model the experimental data.
We also employ two indices, the subnetwork mutual informa-
tion and the subnetwork clustering coefficient, to qualify the
spatial coupling strength of different gas–liquid two-phase flow

patterns. This work clarifies the coupling behaviors of different
gas–liquid two-phase flow patterns and provides an efficient tool
for characterizing multi-phase flow systems.

I. INTRODUCTION

The mixed flowing of gas and water in pipes yields typi-
cal gas–liquid two-phase flows, which are widely present in the
fields of petroleum,1 biology,2 hydraulics,3 chemical,4 energy,5 and
so on. Understanding the morphological characteristics of the two
immiscible phases, which are known as flow patterns, is of great
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importance for the design of the flowing control system. How-
ever, the gas–liquid two-phase flow is such a complex system that
there are only a few precise analytic models suitable for interpret-
ing the complex dynamics of diverse flow patterns. Hence, plenty
of researchers have shifted to experimental methods to investigate
the dynamics of gas–liquid two-phase flows in various channels,
such as vertical pipes,6 horizontal pipes,7 inclined pipes,8 porous
media,9 fluidized bed,10 and micro-fluidic chip.11 To reveal the
hidden fluid dynamics from the experimental observations, many
data analysis tools, including time–frequency spectrum,12 recur-
rence plot,13 complex network,14 nonlinear analysis,15 multi-scale
analysis,16 and wavelet analysis,17 have been applied, and various
two-phase flow characteristics, such as flow pattern complexity,18

flow pattern irreversibility,19 flow pattern transition dynamics,20

fluid multi-scale dynamics,21 fluid stability,22 and the flow pattern
determinism23 have been clarified. One inherent characteristic of a
two-phase flow pattern is the spatial coupling behaviors of the two
immiscible phases, which is a key factor for indicating the evolution-
ary dynamics of the gas–liquid two-phase flow patterns. However,
few studies on the detection of coupling dynamics from two-phase
flow experimental data have been reported, and the flow pattern
spatial coupling behaviors still require more detailed clarification.
Note that analyzing the correlations of the experimental multivariate
observations is an effective way to characterize the coupling behav-
iors of a complex system. To date, various tools, including transfer
entropy,24 mutual information,25 phase dynamics modeling,26 state
space topography,27 and polynomial transfer functions,28 have been
employed to analyze the experimental multivariate data, which are
then used to identify the coupling dynamics of diverse complex
systems.29–31

Recently, the complex network is shown as a powerful tool
for modeling the experimental data observed from various com-
plex systems.32–34 As for the multi-phase flow system, the networks
reconstructed from fluid fluctuation signals have also been suc-
cessfully applied to identify the dynamics of the mixed fluid.15,35

In particular, recent research studies broadened the topology of
the complex network to the multilayered configuration,36 which is
assumed more efficient not only to detect the dynamics of the whole
system but also to characterize the interaction behaviors between the
subsystems. Now, the interconnected multilayer complex network
configuration has been successfully applied to model the experi-
mental data observed from various interacted complex systems, such
as the software,37 public transport,38 hemodynamic,39 community,40

and climate changes.41 It is worth noting that the complex multi-
phase flow dynamic behaviors are effectively characterized by the
experimentally measured multivariate signals,42 and it seems that
properly modeling the correlations among each measured univari-
ate signal provides a solution for revealing the coupling behaviors of
the multi-phase flow system.

In this paper, we first conduct a vertical gas–liquid two-phase
flow experiment to collect the multivariate fluid fluctuation sig-
nals. Then, we propose an interconnected ordinal pattern com-
plex network to characterize the inherent coupling behaviors of
the gas–liquid two-phase flow patterns. It can be considered as
a collection of interacted ordinal pattern transitional networks,
which are established with the experimentally collected multi-
variate fluid fluctuation signals. The fundamental configuration

of each individual ordinal pattern network, which was first pro-
posed by Michael Small,43 has recently been applied in many fields,
such as fluid,44 ECG data,45 climate,46 turbulent coaxial jet,47 and
flame.48,49 As a light weighted and fast computing network, the
ordinal pattern network is a powerful tool for modeling noisy
experimental observations, e.g., the contaminated two-phase flow
fluctuation signals. We also employ two interconnected ordinal pat-
tern network coupling indices, which are the global subnetwork
mutual information (I) and the global subnetwork clustering coef-
ficient (C), to quantify the spatial coupling strength among differ-
ent flow patterns, and the flow pattern evolutional dynamics are
also interpreted with the calculated indices, under different flow
conditions.

The remainder of this paper is organized as follows. In Sec. II,
we introduce our gas–liquid two-phase flow experiment and the col-
lected multivariate fluid fluctuation signals. In Sec. III, we give a
description of the construction method of the gas–liquid two-phase
flow interconnected ordinal pattern network. In Sec. IV, the spa-
tial coupling behaviors the gas–liquid two-phase flow patterns are
analyzed. The conclusions are in Sec. V.

II. THE GAS–LIQUID TWO-PHASE FLOW EXPERIMENT

As shown in Fig. 1, we design and carry out a flow loop
experiment in a vertical 50 mm inner diameter pipe to collect the
multivariate conductance fluctuation signals of the gas–liquid two-
phase flow, which are further employed to investigate the spatial
coupling behaviors of different flow patterns. In the experiment,
water and gas are simultaneously induced into a 50 mm inner-
diameter vertical testing pipe to generate the desired flow patterns.
The water flow rate is adjusted with a metering pump, while the gas
flow rate is controlled with an actuated valve and metered with a gas
flowmeter.

We employ a four-sector conductance sensor,50 which is
embedded in the vertical testing pipe, to measure the multivariate
fluctuations of the gas–liquid two-phase flow. As shown in Fig. 1, the
four-sector conductance sensor consists of four pairs of electrodes
(EA and MA, EB and MB, and EC and MC, and ED and MD). The stim-
ulating electrodes EA, EB, EC, and ED are connected to a 100 KHz
sinusoidal signal generator, and MA, MB, MC, and MD are the mea-
suring electrodes. Each pair electrode is an individual conductance
sensor, which is designed sensitively to the fluid fluctuations in a
quadrant area of the pipe cross section. We use these electrode
sensors to measure the gas–liquid two-phase flow fluctuations and
obtain a series of four-channel conductance fluctuation time series.
In the experiment, we use four independent measurement systems
to collect the conductance fluctuation signals on the electrode pairs
of the four-sector conductance sensor. We repeatedly carry out this
experiment under various flow conditions, of which the water flow
rate is in the range of 0.22–23 l/min, and the gas flow rate is in the
range of 0.3472–0.4862 l/min.

As shown in Fig. 2, we observe three typical gas–liquid two-
phase flow patterns in this two-phase flow experiment, which are
the slug flow, the non-uniform bubble flow, and the uniform bubble
flow. (i) Slug flow: observed at a lower mixture flow rate, Tay-
lor bubbles with a diameter almost equal to the pipe diameter are
periodically observed in the testing pipe, and each Taylor bubble
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FIG. 1. The schematic of the gas–liquid two-phase flow loop experiment.

is followed by a cluster of small gas bubbles. (ii) Non-uniform
bubble flow: also known as the slug-bubble transition flow, spher-
ically capped bubbles intermittently pass through the testing pipe.
(iii) Uniform bubble flow: observed at a higher mixture rate, small
gas bubbles are uniformly distributed, and the mixed fluid show
homogeneous characteristics.

As shown in Fig. 3(a), the multivariate conductance signals of
the slug flow fluctuate periodically, indicating the motion of the
intermittent gas slugs. Meanwhile, we observe obvious synchro-
nized fluctuation characteristics of the univariate signals. It indicates
that there exist some sort of local similarities in the structure of
slug flow. Figure 3(b) shows the measured multivariate conduc-
tance fluctuation signals of the non-uniform bubble flow. As we
can see, similar to that of slug flow, the fluctuations of the non-
uniform bubble flow also exhibit periodic characteristics, indicating
the intermittently observed spherically capped bubbles. We also find
synchronized fluctuation behaviors from the multivariate signals of
non-uniform bubble flow, i.e., there still exist some local similarities
of the non-uniform bubble flow. As shown in Fig. 3(c), the experi-
mentally collected multivariate conductance signals of the uniform
bubble flow are noisy like, reflecting the stochastic flowing behaviors

FIG. 2. The snapshot of the different gas–liquid two-phase flow patterns. (a) Slug
flow. (b) Non-uniform bubble flow. (c) Uniform bubble flow.
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FIG. 3. The multivariate conductance fluctuation signals of the gas–liquid two-phase flows. (a) Slug flow. (b) Non-uniform bubble flow. (c) Uniform bubble flow. (a) scale=0.5,
(b) scale=0.5, (c) scale=0.5.

of this homogeneous flow pattern. Furthermore, we find that each
measured univariate signal of uniform bubble flow is uncorrelated,
indicating that the small and uniformly distributed gas bubbles are
flowing in an unsynchronized way.

III. THE GAS–LIQUID TWO-PHASE FLOW

INTERCONNECTED ORDINAL PATTERN NETWORKS

We construct a series of interconnected ordinal pattern com-
plex networks from the collected four-channel multivariate fluctua-
tion signals to characterize the dynamic flow behaviors of different
gas–liquid two-phase flow patterns. Figure 4 shows the schematic
diagram for establishing an interconnected ordinal pattern network
from the multivariate fluctuation signal.

Given the experimentally measured gas–liquid two-phase flow
four-channel multivariate signal sα(n) of length l,

sα(n); α ∈ [1, 2, 3, 4]; n ∈ [1, l]. (1)

We first reconstruct the multivariate phase-space vector with the
standard delay coordinate embedding method,51

−→
Sα (t) = [sα(t), sα(t + τ), . . . , sα(t + (D − 1) · τ)],

t ∈ [1, l − (D − 1) · τ ], (2)

where D is the reconstructed dimension and τ refers to the delay
time. We then associate each reconstructed vector with a symbol,
which is the permutation order of the elements in ESα(t). These per-
mutations are also known as ordinal patterns,52 and there exists a
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FIG. 4. The schematic diagram of gas–liquid two-phase flow interconnected ordinal pattern network.

total of D! kinds of possible ordinal patterns in the reconstructed
phase space. The ordinal pattern set is expressed as

Xα =
{

xα
1 , xα

2 , . . . , xα
p

}

, (3)

where p = D!, and the elements in Xα are all the possible ordinal
patterns derived from ESα(t).With this ordinal symbolization, the
multivariate phase-space vector series ESα(t) is transformed into a
multivariate symbolic sequence 5α(t), which is expressed as

α
∏

(t) = [πα
1 , πα

2 , . . . , πα
l−(D−1)·τ ], (4)

where each symbol πα
t in 5α(t) comes from the permutation orders

of its corresponding phase-space vector ESα(t).
Our proposed gas–liquid two-phase flow interconnected ordi-

nal pattern network can be expressed as a pair,

G = {V, E}, (5)

where V = {vα ; α ∈ [1, 2, 3, 4]} is a family of correlated subnet-
works, and each subnetwork vα is a typical single layered ordinal
pattern transition network,43 which is established by the αth uni-
variate symbolic series of 5α(t). E refers to the interconnections that
link the nodes between each subnetwork vα . The nodes of each sub-
network vα come from the ordinal pattern set Xα , which contains a
total of D! kinds of ordinal patterns. When reconstructing the multi-
variate phase-space vector, we choose a fixed embedded dimension
for each univariate signal, so that the established subnetworks share
the same node set, which is expressed as

X = X1 = X2 = X3 = X4, (6)

The adjacent matrix of each subnetwork vα is expressed as

(dα
ij) =











dα
11 dα

12 · · · dα
1p

dα
21 dα

22 · · · dα
2p

...
...

. . .
...

dα
p1 dα

p2 · · · dα
pp











, (7)

where dα
ij denotes the weighted edge from the ith node to the jth

node in the subnetwork vα , which is determined by the following
equation:

dα
ij =

Nα
ij

T − 1
, (8)

where Nα
ij is the number of enumerated sequential adjacent ordinal

pattern pairs
[

xα
i , xα

j

]

, which exist in the symbolic series 5α(t), and

T is the length of 5α(t).
The interactions among the subnetworks of G are modeled with

the matrix set,

E =
{

(e
αβ

ij ), α < β , α, β ∈ [1, 2, 3, 4]
}

, (9)

(e
αβ

ij ) is the interlayer adjacent matrix, which denotes the weighted

connections between subnetwork vα and vβ ,

(e
αβ

ij ) =













e
αβ

11 e
αβ

12 · · · e
αβ

1p

e
αβ

21 e
αβ

22 · · · e
αβ

2p

...
...

. . .
...

e
αβ

p1 e
αβ

p2 · · · e
αβ
pp













, (10)

where e
αβ

ij denotes the edge, which connects the node xα
i in sub-

network vα and node x
β

j in subnetwork vβ , and the interconnected
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weight can be defined as

e
αβ

ij = P(xα
i

∣

∣

∣
x

β

j ) =
M

αβ

ij

T
, (11)

where M
αβ

ij is the number of enumerated contemporaneously

observed pair
[

xα
i , x

β

j

]

in both the symbolic series 5α(t) and 5β(t),

and T denotes the length of the multivariate ordinal pattern time
series.

In this work, we choose the embedded dimension D = 6 based
on distinguishing false nearest neighbors (FNNs),53 and we use the
correlation-integral-based method54 to determine the delay time
τ = 1, i.e., one sampling duration. The sampling frequency of the
fluid fluctuation time series is set to 2000 Hz, and we choose a
duration of 30 s for the analysis, i.e., the time series used to con-
struct the network has a length of l = 60 000 points. According to
the theory of Bandt and Pompe,52 there will be a total of D! = 720
kinds of possible different ordinal patterns in each two-phase flow
fluctuation signal, and the length of the ordinal sequence π(t) is
l − (D − 1) · τ = 59 995. The established gas–liquid two-phase flow
interconnected complex networks are constituted of four subnet-
works, and each of these subnetworks is a typical single layered
ordinal pattern network with at most D! = 720 nodes. Although we
choose a sufficiently long time series to establish the ordinal pattern
interconnected network, some of the network nodes are still miss-
ing due to the existing flow pattern determinism characteristics.23

We investigate the two-phase flow local evolutional dynamics by
analyzing the topology characteristics of each subnetwork. We also
characterize the flow pattern spatial coupling behaviors with the
network interconnections, which link the interacted subnetworks.

IV. ANALYZING THE COUPLING BEHAVIORS OF

GAS–LIQUID TWO-PHASE FLOW PATTERNS

Next, we employ two interconnected network indices, which
are the subnetwork mutual information (I) and the subnetwork
clustering coefficient (C), to quantitatively investigate the spatial
coupling behaviors of the gas–liquid two-phase flow patterns. Given
an interconnected ordinal pattern complex network G = {V, E}, we
define the subnetwork mutual information entropy of the subnet-
work vα and vβ as

Iαβ =

p
∑

i=1

p
∑

j=1

e
αβ

ij · log
e
αβ

ij

P(xα
i ) · P(x

β

j )
, (12)

where p = D! is the cardinality of the ordinal pattern set. P(xα
i ) and

P(x
β

j ) denote the appearing probability of ordinal pattern xα
i in the

series 5α(t) and the appearing probability of x
β

j in the series 5β(t),
respectively. Then, we define the global subnetwork mutual infor-
mation of interconnected network as the average of Iαβ over all the
subnetworks, which is expressed as

I =
2

k · (k − 1)

∑

α 6=β

α,β∈[1,k]

Iαβ , (13)

where k = 4 is the number of subnetworks in the established
gas–liquid two-phase flow interconnected ordinal pattern network.

The defined mutual information I measures the information shared
between the subnetworks of the overall system. It also quantifies the
coupling strength of the interacted subnetworks. A stronger cou-
pling strength between the subnetworks implies larger I, while a
lower value of I indicating weaker coupling behavior existed in the
overall system.

The subnetwork clustering coefficient of the interconnected
ordinal pattern network G is defined as the averaged inter-
subnetwork clustering coefficient of all the network nodes. It quan-
tifies the inter-subnetwork correlations of the nodes in each subnet-
work. We first define the inter-subnetwork clustering coefficient of
node xi, which corresponds to the subnetwork vα and vβ as

C
αβ

i =

∑

j,r∈[1,p]
j6=r

e
αβ

ij · e
αβ

ir · d
β

jr

∑

j,r∈[1,p]
j6=r

e
αβ

ij · e
αβ

ir

+

∑

j,r∈[1,p]
j6=r

e
αβ

ji · e
αβ

ri · dα
jr

∑

j,r∈[1,p]
j6=r

e
αβ

ji · e
αβ

ri

. (14)

Then, we define the inter-subnetwork clustering coefficient of two
coupled subnetworks as

Cαβ =

p
∑

i=1

C
αβ

i . (15)

The global subnetwork clustering coefficient C of the overall net-
work G are defined as

C =
2

k · (k − 1)

∑

α∈[1,k]
β∈[1,k]
α<β

Cαβ . (16)

For the established interconnected ordinal pattern networks of the
gas–liquid two-phase flow system, we calculate the inter-subnetwork
mutual information Iαβ and the inter-subnetwork clustering coeffi-
cient Cαβ for every pair of subnetworks, which are shown in Fig. 5.
Since the larger gas slugs existed in the slug flows retain an obvious
stable spatial structure, the gas slug flows exhibit strongly coupling
flow behaviors, resulting in a higher value of Iαβ and Cαβ . When
gas slugs evolve into non-uniform bubbles (spherically capped bub-
bles), the gas phase spatial stability is reduced, but not lost. In this
regard, the non-uniform bubble flow still retains the coupled flow-
ing behaviors but shows a slight decrease of Iαβ and Cαβ . In the case
of uniform bubble flow, the smaller gas bubbles are distributed uni-
formly and stochastically in the testing pipe, resulting in a weakly
coupled flow behavior of the uniform bubble flow. Hence, its Iαβ and
Cαβ are significantly reduced from those of the gas slug flow and the
non-uniform bubble flow.

Figure 6 shows the estimated global subnetwork mutual infor-
mation I and the global subnetwork clustering coefficient C of
the gas–liquid two-phase flow interconnect complex networks. The
gas–liquid two-phase flow pattern evolutionary dynamics are identi-
fied with these two coupling indices under different flow conditions.
When gradually increasing the water flow rate, the flow pattern
evolves from the slug flow via the non-uniform bubble flow, to the
uniform bubble flow. As shown in Fig. 6, both I and C gradually
decrease, which implies that the spatial coupling strength of the
gas–liquid two-phase flow is not only related to the flow pattern
but also the fluid turbulence intensity. Under lower water velocity,
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FIG. 5. The estimated coupling indices under dif-
ferent flow patterns. (a) The inter-subnetwork mutual
information of the slug flow. (b) The inter-subnetwork
clustering coefficient of the slug flow. (c) The inter-sub-
network mutual information of the non-uniform bubble
flow. (d) The inter-subnetwork clustering coefficient of
the non-uniform bubble flow. (e) The inter-subnetwork
mutual information of the uniform bubble flow. (f) The
inter-subnetwork clustering coefficient of the uniform
bubble flow.
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FIG. 6. The evolution of the global subnetwork mutual information I and the global subnetwork clustering coefficient C under different flow conditions.

the fluid turbulence intensity is so weak that the gas phase coa-
lesces into gas slugs, which maintain a stable flow structure, result-
ing in a strong coupling flow behavior. With increasing the water
flow velocity, the fluid turbulence is enhanced, and the gas slugs
are broken into non-uniform bubbles, which exhibit diverse flow
behaviors but still retain a rather stable flow structure. In this regard,
the flow pattern spatial coupling strength of uniform bubble flow is
gradually getting weaker with increasing the water velocity. At even
higher water flow velocity, the fluid turbulence is strong enough to
break the non-uniform bubbles into smaller uniformly distributed
gas bubbles, which exhibit homogeneous flow behaviors. The flow
behavior of uniform bubble flow shows stochastic characteristics,
and the uniformly distributed small gas bubbles are weakly coupled

with each other. We also find that the global mutual information I is
sensitive to the phase transition.

As shown in Figs. 6(a) and 6(b), there exists a dramatic decrease
in the value of I, which indicates that the flow pattern evolves
from intermittent flow patterns (slug flow and non-uniform bub-
ble flow) to the homogeneous flow pattern (uniform bubble flow).
However, the mutual information I does not capture the dynamic
changes from slug flow to non-uniform bubble flow. This is due
to the fact that both the gas slugs and the non-uniform bubbles
exhibit intermittent flow behavior, resulting in similar periodic
fluid fluctuations. In fact, in some reports,55,56 the non-uniform
bubble flow pattern is defined as the bubble-slug transition flow.
When the gas slugs are broken into non-uniform bubbles, the
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FIG. 7. The joint distributions of the network coupling indices and the complex-
ity measure of the gas–liquid two-phase flow. (a) The joint distribution of the
global subnetwork mutual information I and the global network entropy E. (b) The
joint distribution of the global subnetwork clustering coefficient C and the global
network entropy E.

global intermittent flow behavior is maintained by the periodi-
cally generated non-uniform bubbles. In particular, the clustering
coefficient C quantifies the inter-subnetwork correlations of each
node of the interconnected ordinal pattern complex network, and

it characterizes the local coupling dynamics of a system. In this
respect, as shown in Fig. 6, when increasing the water velocity,
this measure is sensitive not only to flow pattern transitions but
also to the subtle changes in flow behaviors within identical flow
patterns.

To get a more detailed understanding of the gas–liquid two-
phase flow spatial coupling behaviors, we carry out a joint analysis of
the proposed coupling indices and the network complexity measure.
We employ the global network entropy43 as the complexity measure
of the gas–liquid two-phase flow system. The network entropy of
node i in subnetwork vα is defined as

Eα
i = −

p
∑

j=1

dα
ij · log(dα

ij), (17)

where dα
ij denotes the weighted edge, which links the ith node to the

jth node in the subnetwork vα . The global network entropy En is then
defined as

En =

∑k
α=1

∑p
i=1 Eα

i

k
, (18)

where k is the number of subnetworks existing in the established
interconnected ordinal pattern network.

The joint distributions of the network coupling indices and
the complexity measure of the gas–liquid two-phase flow are shown
in Fig. 7. We find that the flow pattern coupling strength and the
fluid complexity are negatively correlated. When the flow pattern
evolves from the slug flow to the uniform bubble flow, the cou-
pling measures (I and C) gradually decrease, whereas the complexity
measure of the fluid is gradually increasing. The slug flow, which
is a typical periodical and intermittent flow pattern, exhibits obvi-
ous predictable flow behaviors, resulting in a lower complexity of
the fluid. However, the stable structures of the gas slugs make the
fluid maintaining strong spatial coupling behaviors, resulting in a
higher value of the fluid coupling indices. When the flow pattern
evolves to the uniform bubble flow, the flow behavior of small gas
bubbles becomes stochastic and unpredictable. In this regard, the
complexity measure of uniform bubble flow rises to a relatively
higher value. Meanwhile, the flow behaviors of these uniform bub-
bles are independent and uncorrelated, which leads to the reduction
of the coupling indices.

V. CONCLUSIONS

In this work, we investigate the spatial coupling behaviors of
gas–liquid two-phase flow patterns by using experimental multi-
variate fluid conductance fluctuation signals. We first carry out a
gas–liquid two-phase flow experiment in a vertical 50 mm inner
diameter pipe to generate different flow patterns. Meanwhile, we
employ a four-sector conductance sensor to collect the multivari-
ate conductance fluctuation signals under different flow condi-
tions. These signals are then used to reconstruct the interconnected
ordinal pattern complex network, which is powerful for analyzing
the evolutionary dynamics of the two-phase flow system. We also
propose two coupling indices, which are the subnetwork mutual
information (I) and the subnetwork clustering coefficient (C), to
quantitatively analyze the spatial coupling behaviors of various
gas–liquid two-phase flow patterns.
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We find that the coupling behaviors of the gas–liquid two-
phase flow system are not only related to the flow patterns but
also the fluid turbulence intensity. When the flow pattern evolves
from the slug flow via the non-uniform bubble flow, to the uni-
form bubble flow, the fluid turbulence is enhanced, resulting in the
spatial coupling strength of the gas–liquid two-phase flow gradually
decreasing. In addition, we carry out a joint analysis of the proposed
coupling indices and the network complexity measure. We find that
the coupling strength of the gas–liquid two-phase flow system is
negatively related to fluid complexity. The more complex the mix-
ture fluid is, the weaker coupled the flow patterns are. Our research
provides a new approach for characterizing the coupling behaviors
of the two-phase flow system, and it is expected to find broader
applications in complex systems with multiple observations.
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