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ABSTRACT

We study the slow–fast dynamics of a system with a double-Hopf bifurcation and a slowly varying parameter. The model consists of coupled
Bonhöffer–van der Pol oscillators excited by a periodic slow-varying AC source. We consider two cases where the slowly varying parameter
passes by or crosses the double-Hopf bifurcation, respectively. Due to the system’s multistability, two bursting solutions are observed in each
case: single-mode bursting and two-mode bursting. Further investigation reveals that the double-Hopf bifurcation causes a stable coexis-
tence of these two bursting solutions. The mechanism of such coexistence is explained using the slowly changing phase portraits of the fast
subsystem. We also show the robustness of the observed effect in the vicinity of the double-Hopf bifurcation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0157718

Bursting oscillations have been widely reported in natural and
technological systems. The alternation between large-amplitude
oscillations (spiking states) and small-amplitude oscillations or
at rest (quiescent states) in such systems is explained by differ-
ent transitions through bifurcations. Here, we have discovered
an effect of the codimension-2 double-Hopf bifurcation: it leads
to the coexistence of different bursting solutions. Our projec-
tion technique based on singular value decomposition helps us
to understand the multiple paths to bursting in the vicinity of the
double-Hopf bifurcation.

I. INTRODUCTION

Many real-world problems involve multiple time scale
dynamics.1–7 For example, slow–fast chemical reaction systems with
strongly different reaction rates can exhibit mixed-mode oscilla-
tions (MMOs),8–11 corresponding to interactions of multiple peri-
odic orbits; mixed-mode oscillations in a three-time-scale neural
model are reported in Ref. 12 and the enhancement or emergence
of bursting by noise in Refs. 13–17, to name but a few.

To understand the mechanism of bursting activities, Rinzel
used the slow–fast analysis method,18 based on splitting of the
original system into fast and slow subsystems

ẋ = f(x, y, µ),

ẏ = εg(x, y, µ),
(1)

which can be treated separately under certain conditions. In partic-
ular, 0 < ε � 1 implies that the fast variables x evolve at a much
higher rate than the slow variables y. By treating y as a slowly vary-
ing parameter, equilibrium branches and bifurcations of the fast
subsystem can be studied to explore the dynamics of transitions
between spiking and quiescent states, and thus to classify differ-
ent patterns of bursting oscillations. Based on this method, several
results related to codimension-1 bifurcations of the fast subsys-
tem have been obtained. For example, the fold/fold, fold/Hopf, and
fold/homoclinic bursting attractors have been reported in Refs. 19
and 20. Izhikevich proposed a classification of possible bursting
attractors in low-dimensional systems, refining the classification of
codimension-1 bursts.21

However, higher codimension (higher than 1) bifurcations of
the fast subsystem can lead to more complex forms of transitions.22,23
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One such example is a bursting attractor with cusp bifurcation.24

By changing the slowly varying parameter, not only interactions
between stable attractors can be observed but also different bifur-
cation paths.25 A question that arises is how a high codimension
bifurcation can affect transitions in slow–fast systems,26 or, more
generally, whether there are differences between bursting oscilla-
tions due to codimension-1 or codimension-2 bifurcations of the
fast subsystem.

So far, a limited number of studies have been devoted to the
slow–fast dynamics of systems with high codimension bifurcations
of the fast subsystem.26–31 The papers27,32 investigated how burst-
ing dynamics arise when the slow parameter periodically follows a
closed path around the codimension-2 cusp, degenerate Hopf, Bog-
danov–Takens, zero-Hopf, and double-Hopf bifurcation points. The
bursting attractors in the Chay system related to codimension-2
cusp and Bogdanov–Takens bifurcations were reported in Refs. 26
and 28, which show that codimension-2 bifurcations can deter-
mine the bursting types. The paper29 provides complex bursting
patterns associated with a codimension-2 global bifurcation involv-
ing a saddle-node bifurcation of equilibrium and a saddle-node
bifurcation of the limit cycle. The burst duration and the inter-
burst interval are shown to be controlled by such a global bifur-
cation. Furthermore, the slow–fast dynamics in the presence of
codimension-2 pitchfork-Hopf bifurcation was studied in our recent
work.31

Among the codimension-2 bifurcations discussed, the double-
Hopf bifurcation is characterized by the occurrence of two pairs
of purely imaginary roots, giving rise to two periodic solutions.
With the variation of parameters, such a phenomenon can result
in various possible transitions, e.g., from a stable state to oscil-
latory behavior, from one oscillatory behavior to another, even
route to chaos via a homoclinic bifurcation in the vicinity of the
bifurcation point.33 Understanding the slow–fast dynamics with the
double-Hopf bifurcation remains an open problem.

Here, we study two coupled Bonhöffer–van der Pol (BVP)
oscillators.34 This five-dimensional system can exhibit codimension-
2 double-Hopf bifurcation leading to the birth of two stable limit
cycles.35 The system also features multistability so that various tran-
sitions can be observed near the double-Hopf bifurcation. Addition-
ally, we consider a periodically changing power source as a slowly
varying excitation to the circuit. This type of external force can
potentially be implemented in hardware.

Our work focuses on the bursting multistability induced by the
double-Hopf bifurcation. More specifically, we observe two bursting
solutions: single-mode bursting and two-mode bursting. The single-
mode bursting contains fast oscillations based on a single limit cycle,
while the two-mode bursting involves fast oscillations from two dif-
ferent limit cycles. Near the double-Hopf point, the two different
bursting scenarios coexist, i.e., depending on the amplitude of the
variation of the slow parameter, either single-mode or two-mode
bursting can be realized. The mechanism for such coexistence is
explained using phase space analysis of the fast subsystem. We also
show the robustness of the observed effect.

The structure of the paper is as follows. In Sec. II, we introduce
the mathematical model and its dynamical properties. In particu-
lar, we consider two-parameter paths that allow the slowly varying
parameter to pass by (codimension 1 case) and cross (codimension

FIG. 1. The circuit diagram. Two Bonhöffer–van der Pol (BVP) oscillators are
coupled by a resistor–inductor component L0 and R0. L, r , and C represent the
inductor, resistor, and capacitor in two oscillators, respectively. g is a nonlinear
conductor.36,37

2 case) the double-Hopf bifurcation point. In Secs. III and IV, we
present two solutions of bursting and the bursting multistability. We
investigate the fast subsystem phase portraits in Sec. V to explain the
mechanism of transitions between two limit cycles. We also explore
the robustness of the double-Hopf effect on bursting multistability.

II. MODEL AND ITS DYNAMICAL PROPERTIES

The considered system is constructed by connecting two iden-
tical BVP oscillators with a resistor–inductor component34 shown in
Fig. 1. We introduce a periodically changing current source to the
circuit IG = iG sin(εt). The dynamics of the circuit is described by
the following five-dimensional system of equations:

L
di1

dt
= v1 − ri1,

C
dv1

dt
= −i1 − g(v1) − i3 + iG sin(εt),

L
di2

dt
= v2 − ri2,

C
dv2

dt
= −i2 − g(v2) + i3,

L0

di3

dt
= v1 − v2 − R0i3,

(2)

where L, L0, C, and R0 are positive parameters and i1,2,3 and v1,2

represent the currents and voltages, respectively. The relationship
between currents and voltages through nonlinear conductance is
given by the function g(v) = d1v + d3v

3 + d5v
5.
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FIG. 2. Bifurcation diagrams for system (3). (a) Hopf bifurcations of the equilibrium in the (w,ω) plane. (b) One-parameter bifurcation diagram for ω = 1.1 and varying w.
(c) One-parameter bifurcation diagram for ω = 1.0 and varying w. The black curves in (b) and (c) refer to the equilibrium points and the blue and light blue curves represent

two different limit cycles. DH±1: double-Hopf bifurcations; HB±1 and HB±2: Hopf bifurcations for ω = 1.1; LC
(1)

and LC
(1)
: branches of limit cycles. Other parameters are

σ = 0.5,α = −1.0,β = −1.0, γ = 0.7,ω0 = 1.0, σ0 = 0.2011. Details of bifurcation diagrams are shown in Appendixes B and C.

Similar to Ref. 34, we rescale system (2) as follows:

ẋ1 = ωy1 − σx1,

ẏ1 = −αy1 − βy3
1 − γ y5

1 − ωx1 − ω0x3 + w,

ẋ2 = ωy2 − σx2,

ẏ2 = −αy2 − βy3
2 − γ y5

2 − ωx2 + ω0x3,

ẋ3 = −σ0x3 + ω0(y1 − y2),

(3)

where w = A sin(εt), A = iG√
C
, x1,2 =

√
L i1,2, y1,2 =

√
C v1,2, x3

=
√

L0 i3, ω = 1√
LC

, ω0 = 1√
L0C

, σ = r
L
, σ0 = R0

L0
, α = d1

C
, β = d3

C2 ,

and γ = d5
C3 .

For the non-excited system (iG = 0), a double-Hopf bifurcation
and two coexisting periodic orbits have been reported for a particu-
lar set of parameters.35 Furthermore, single-scroll and double-scroll
chaotic attractors have been shown in Ref. 36. In addition, other
bifurcations of the equilibrium point and limit cycle can occur in the

FIG. 3. Two bursting solutions in the codimension-1 case. (a)–(c) The two-mode bursting attractor, timeseries, and the overlap of the phase portrait, and the bifurcation
diagram for A = 3.60. (d)–(f) The single-mode bursting attractor, timeseries, and the overlap of the phase portrait and the bifurcation diagram for A = 6.0. Other parameters
are ω = 1.1, σ = 0.5,α = −1.0,β = −1.0, γ = 0.7,ω0 = 1.0, σ0 = 0.2011, ε = 0.005.
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FIG. 4. Two bursting solutions in codimension-2 case. (a)–(c) The two-mode bursting attractor, timeseries, and the overlap of the phase portrait and the bifurcation diagram
for A = 2.80. (d)–(f) The single-mode bursting attractor, timeseries, and the overlap of the phase portrait and the bifurcation diagram for A = 2.0. Other parameters are:
ω = 1.1, σ = 0.5,α = −1.0,β = −1.0, γ = 0.7,ω0 = 1.0, σ0 = 0.2011, ε = 0.005.

neighborhood of the double-Hopf bifurcation, such as homoclinic
and Neimark–Sacker bifurcations,33 leading to complex dynamics.

For the excited system (3), we first consider the excitation term
w as the control parameter and the other parameters fixed at σ

= 0.5, α = −1.0, β = −1.0, γ = 0.7, ω0 = 1.0, and σ0 = 0.2011. The
two-parameter bifurcation diagram in the (w, ω) plane in Fig. 2(a)
shows the Hopf bifurcations of the equilibrium. We see that two
pairs of symmetric Hopf bifurcations divide the parameter plane
into five regions. The Hopf lines are tangent at point DH±1 with
w = 1.4437, ω = 1.000, implying a pair of double-Hopf bifurca-
tions. The corresponding eigenvalues are λ1 = −0.4057,
λ2,3 = ±1.5739i, and λ4,5 = ±0.9552i.

To study the effect of the double-Hopf bifurcation, we ana-
lyze the case ω = 1.0, for which the double-Hopf occurs, and
ω = 1.1, for which only codimension-1 bifurcations take place.
Figures 2(b) and 2(c) show the one-parameter bifurcation diagrams
for the branches of equilibria and limit cycles. Details of the dynam-
ical behaviors in each case are given in Appendixes A–D. The
two bifurcation diagrams have certain similarities: The equilibrium
branches lose stability via a pair of symmetric Hopf (double-Hopf)
bifurcations. The limit cycles branch LC(2) of relatively small ampli-
tude undergoes period-doubling and fold bifurcations and then dis-
appears at Hopf (double-Hopf) bifurcations. The limit cycle branch
LC(1) of larger amplitude coexists with LC(1) for a certain interval
and loses its stability via fold bifurcations of limit cycles.

The main difference between the scenarios of Figs. 2(b)
and 2(c) is that the two branches of the limit cycles emerge from the

double-Hopf bifurcation in Fig. 2(c), whereas each branch emerges
from the single Hopf bifurcation in Fig. 2(b). There is also a coex-
istence of stable equilibria and limit cycles in Fig. 2(c). In the
following, we will show how the above mentioned features lead to
substantially different properties of the bursting solutions in the
system with slow periodic excitation.

III. SINGLE-MODE AND TWO-MODE BURSTING

We fix the excitation frequency at ε = 0.005 in system (3) so
that the parameter w becomes a non-autonomous slowly varying
term that crosses the two Hopf bifurcations or the double-Hopf
bifurcation, respectively. As a result of such a crossing, bursting
solutions appear in both cases: ω = 1.0 and ω = 1.1.

We first illustrate the two bursting solutions in the codimension-
1 case for ω = 1.1. Figure 3 shows the phase portraits and
corresponding timeseries of two types of bursting attractors:
Figs. 3(a)–3(c) for two-mode bursting, and Figs. 3(d)–3(f) for single-
mode bursting. The main difference is that the two-mode bursts
contain two parts, each with a different amplitude and frequency.
We identify the connected parts of the bursts with similar amplitude
and frequency as “spiking states.” One can see from the timeseries
that the two-mode bursting attractor has four spiking states and two
quiescent states, namely, SPi, i = 1, 2, 3, 4 and QSi, i = 1, 2, whereas
the single-mode bursting attractor has two spiking states SPi,
i = 1, 2. The frequency of spiking states SP2,4 in two-mode bursts
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FIG. 5. The bursting multistability. (a) Bursting solutions for different excitation amplitude A. One can observe single-mode (red trajectories) and two-mode bursting (blue
trajectories). (b) Distribution of two bursting solutions in the (A, ε) plane in the codimension-1 case. (c) Distribution of two bursting solutions in the (A, ε) plane in the
codimension-2 case. Red points represent the single-mode bursting while blue the two-mode bursting.

is larger than the frequency in SP1,3, suggesting the transitions from
one limit cycle of the fast subsystem to another.

To further clarify the transitions, we show the overlap of
the phase portrait and the bifurcation diagram in Fig. 3 (right
column). In the two-mode bursting regime, the trajectory moving
along the large-amplitude oscillations LC(1) is then attracted by the
smaller-amplitude oscillations in LC(2), which is bifurcated from
super-critical Hopf bifurcations HB±2 and HB±1, respectively. In
contrast, the trajectory of the single-mode bursting settles to the
equilibrium after moving along LC(1).

Similarly, two types of bursting solutions are present in the
codimension-2 case as shown in Fig. 4. A more pronounced tran-
sition between the spiking states SP1 and SP2 is observed, suggesting
that different transition mechanisms may be involved compared to
the codimension-1 case. Figure 4 (right column), combining the
bifurcation diagram and the trajectories, further clarifies that the
two solutions of bursting oscillations in the double-Hopf case are
related to the bistability of the equilibrium and the limit cycle LC(2)

from double-Hopf bifurcation point DH±1.

From the two solutions of bursting in the codimension-1 and
codimension-2 cases, we can conclude that the appearance of single-
mode and two-mode bursting is due to the coexistence of stable
attractors in the fast subsystem, while the bifurcation mechanisms
of this coexistence are different. In Sec. IV, we will discuss the emer-
gence and the coexistence of the two different bursting regimes in
more detail.

IV. BURSTING MULTISTABILITY

In this section, we consider the effects of the excitation ampli-
tude A and the frequency ε on the emergence of bursting oscillations
in system (3). Note that variations in ε can affect the transition delay
between different states in a slow–fast system and, thus, determine to
which attractor of the fast subsystem the trajectory will converge.38

Figure 5(a) shows the bursting timeseries for the same
excitation frequency ε = 0.005 but different excitation amplitudes
A in the codimension-2 case. Two solutions of bursting appear for
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FIG. 6. The bursting solutions and their projections on subspaces. (a) The
solution x̃(t) of the two-mode bursting for A = 3.0. (b) The solution x̃(t)
of the single-mode bursting for A = 3.2. (c) and (d) The projections of
two bursting solutions on subspaces defined by (6). Blue lines represent

oscillations according to LC
(1)
, and red lines represent oscillations accord-

ing to LC
(2)
. Other parameters are σ = 0.5,α = −1.0,β = −1.0, γ = 0.7,

ω0 = 1.0, σ0 = 0.2011,ω = 1.0, ε = 0.005.

different values of the excitation amplitude, e.g., the two-mode
bursting appears for A = 3.1, A = 3.3, and A = 4.0.

Importantly, the distribution of the single- and two-mode
bursting is different for the codimension-1 and codimension-2 cases
[cf. Figs. 5(b) and 5(c)]. The blue squares denote the two-mode
bursting, and the red dots represent the single-mode bursting that
are observed for different values of A and ε. In the codimension-
1 case, two-mode bursting is always found for a sufficiently small
excitation frequency ε < 0.02. As the excitation frequency increases,
the single-mode bursting is predominantly observed. The distri-
bution in the codimension-1 case shows that the appearance of
single-mode and two-mode bursting depends strongly on the rate
of change ε, suggesting that different slow passage effects influence
the choice of the attractor for the fast subsystem, similar to the rate-
induced tipping.39 In the codimension-2 case, we still observe the
influence of slow passage effects at relatively high excitation frequen-
cies—there are fewer blue squares in the distribution. However, the
two solutions of bursting always appear with the variation of the
excitation amplitude A, for all excitation frequencies. This interest-
ing observation implies that the single-mode bursting coexists with
the two-mode bursting for the double-Hopf case, at least for the
range of the considered values of ε. We call this phenomenon as
bursting multistability and will study it in more detail below.

V. SLOW–FAST ANALYSIS OF TRANSITIONS BETWEEN

ATTRACTORS OF THE FAST SUBSYSTEM

This section investigates transitions between attractors of the
fast subsystem with a slow change of w. We will also explain, why the

single- and two-mode bursting coexist in the case of double-Hopf
for arbitrary slow change rate ε.

As one can see from the bifurcation diagrams in Fig. 2, the
phase portraits of the five-dimensional system (3) contain one, two,
or three stable coexisting attractors depending on the value of the
parameter w. One of them is the equilibrium, and the other two
are limit cycles. In the following, we construct such a coordinate
transformation that maps each stable attractor into a point in a two-
dimensional plane (ξ1, ξ2). Here, ξ1 and ξ2 are two new coordinates
playing the role analogous to the normal form coordinates in the
case of double-Hopf bifurcation,33 i.e., (ξ1, ξ2) = (0, 0) corresponds
to the equilibrium and (ξ ∗

1 , 0) and (0, ξ ∗
2 ) to the two limit cycles with

nonzero ξ ∗
1,2. To construct the coordinates (ξ1, ξ2), we do not use

the normal form theory, but the singular value decomposition and
appropriate projections. As a result, the numbers ξ1 and ξ2 can be
computed not only in a neighborhood of the double-Hopf point but
also globally.

For a trajectory segment of the bursting oscillations, denoted
by

x(t, t + 1t) = {x(τ ), τ ∈ (t, t + 1t)},

the corresponding time series of the slowly varying parameter is
w(t, t + 1t). We also denote by φ(1)

w (t) and φ(2)
w (t), the limit cycles

from the branches LC(1) and LC(2), respectively. xE(w) is the coordi-
nate of the equilibrium point computed in Appendix A.

First, we shift the coordinates so that the equilibrium point is
moved to the origin

x̃(t) = x(t) − xE(w(t)),

φ̃(1)
w (t) = φ(1)

w (t) − xE(w),

φ̃(2)
w (t) = φ(2)

w (t) − xE(w).

(4)

For the next step, we introduce the three-dimensional sub-
spaces V(1)

w and V(2)
w , corresponding to the two limit cycles φ(1)

w (t)
and φ(2)

w (t). The construction is based on the singular value decom-
position (SVD). For any w, these subspaces can be defined as

V(1)
w = 〈v1(w), v2(w), v3(w)〉,

V(2)
w = 〈v′

1(w), v′
2(w), v′

3(w)〉,
(5)

where the v1,2,3(w) and v′
1,2,3(w) are mutually orthogonal leading left

singular vectors from SVD of φ(1)
w (t) and φ(2)

w (t), respectively. More
precisely, let

M(1)
w =

[

φ(1)
w (0), φ(1)

w (h1), φ
(1)
w (2h1), . . . , φ(1)

w (T(1)
w )

]

and

M(2)
w =

[

φ(2)
w (0), φ(2)

w (h2), φ
(2)
w (2h2), . . . , φ(2)

w (T(2)
w )

]

be the 5 × N-dimensional matrices containing the discretized peri-
odic solutions φ(1)

w (t) and φ(2)
w (t), with the stepsizes hi = T(i)

w /N,
periods T(i)

w , and N is the number of the discretization points. The
stable and unstable limit cycles at each w(t) as well as their periods
are obtained from the parameter continuation using MATCONT.40

Furthermore, periodic solutions from the family of stable limit cycle
can be obtained by a direct computation of the fast subsystem.

The matrices M(1)
w and M(2)

w contain the elements we
need to describe V1

w and V2
w. The corresponding SVD gives
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FIG. 7. The fast subsystem phase portraits. The dots represent the bursting trajectory (orange), equilibrium points(black), and limit cycles (dark blue and light blue). The
colored boxes represent stable attractors. (a) Codimension-1 case with increasing w(t); (b) codimension-2 case with increasing w(t); (c) codimension-1 two-mode case with
decreasing w(t); (d) codimension-1 single-mode case with decreasing w(t); (e) codimension-2 two-mode case with decreasing w(t); (f) codimension-2 two-mode case with
decreasing w(t).

M(i)
w = U(i)

w 6(i)
w (V(i)

w )
∗
, where U(i)

w is a 5 × 5 unitary matrix and 6(i)
w

the diagonal matrix containing the singular values in the descending
order. The vectors v1,2,3(w) are defined as the first three columns of
U(1)

w and v′
1,2,3(w) as the first three columns of U(2)

w .
At this point, we assume that the triple v1(w), v2(w), v3(w) are

linearly independent, as well as v′
1(w), v′

2(w), v′
3(w) for all w, which

was the case in our simulations.
We define the coordinates ξ1 and ξ2 as the distances to the

corresponding subspaces as

ξ1(x(t)) =
∥

∥x̃(t) − x(t)|V(1)

∥

∥ ,

ξ2(x(t)) =
∥

∥x̃(t) − x(t)|V(2)

∥

∥ ,
(6)

where

x(t)|V(1) = 〈x̃(t), v1〉v1 + 〈x̃(t), v2〉v2 + 〈x̃(t), v3〉v3,

x(t)|V(2) = 〈x̃(t), v′
1〉v′

1 + 〈x̃(t), v′
2〉v′

2 + 〈x̃(t), v′
3〉v′

3.
(7)

The similar coordinates for the limit cycles are given

ξ1(φ
(i)
w ) =

∥

∥φ(i)
w (w) − φ(i)

w (w)
∣

∣

V(1)

∥

∥ ,

ξ2(φ
(i)
w ) =

∥

∥φ(i)
w (w) − φ(i)

w (w)
∣

∣

V(2)

∥

∥ ,
(8)

with φ(i)
w (w)

∣

∣

V(1) and φ(i)
w (w)

∣

∣

V(2) defined in a similar way as in (7).
The geometric meaning of the coordinates ξ1, ξ2 are the dis-

tances to the subspaces containing the limit cycles φ(1)
w (t) and φ(2)

w (t)
from the branches LC(1) and LC(2), respectively. The reason for
choosing the 3D subspaces V(1) and V(2) (as opposed to 2D) is that

Chaos 33, 083137 (2023); doi: 10.1063/5.0157718 33, 083137-7

Published under an exclusive license by AIP Publishing

 08 D
ecem

ber 2023 12:22:24

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 8. The real part of two pairs of conjugate eigenvalues in the neighborhood
of double-Hopf bifurcation DH−1.

the 2D subspace spans the periodic solutions well only in the vicinity
of the Hopf bifurcation. Far from the bifurcation, as in our example,
the shapes of the limit cycles become more complex, which is more
appropriate to embed in a 3D subspace.

Figure 6 shows one period of the bursting solution x̃(t) as well
as its the projection on (ξ1(t), ξ2(t)) plane for two bursting solutions.
The blue curves as well as the light blue curves represent two dif-
ferent spiking modes, while the black lines represent the quiescent
movements close to the equilibrium.

One can observe that the blue oscillations come close to the
vertical axis ξ1 = 0, while the light blue oscillations stick to the hor-
izontal axis ξ2 = 0, which corresponds to the movements close to
subspaces V(1) and V(2), respectively. Furthermore, the single-mode
bursting only exhibits oscillations close to the vertical axis, which
is in agreement with the projection procedure. Similarly, we can
project the limit cycles on the ξ1, ξ2 plane. For simplicity, here we use
dots on the axes to show the positions of the limit cycles correspond-
ing to w in Fig. 7. Note that the parameter w changes periodically
from −A to A for the bursting solution, and the positions of the
limit cycles change along the corresponding axes, we only take the
maximum value of ξ1(φ

(i)
w ) and ξ2(φ

(i)
w ), shown by the dots on the

axes in Fig. 7.
Now, using the projections onto the plane (ξ1, ξ2), we will

demonstrate that, for sufficiently small ε, the bursting episode
always (for both codimension-1 and codimension-2 cases) starts
with the LC(1) fast oscillations, when the absolute value of w
decreases, or equivalently |x1| decreases, see Figs. 3(c) and 3(f), 4(c)
and 4(f), and 5(a). This is described by Cases 1 and 2 below.

Case 1: codimension-1 case with increasing w(t) from the min-
imal value is shown schematically in Fig. 7(a). For positive w, the
scenario is symmetric. The phase point is firstly attracted by the sta-
ble equilibrium in (I) and then moves to the “dark blue” limit cycle
LC(1) in (III) because it is the only stable attractor in the fast vector
field. This transition is delayed with respect to the stability loss of the

equilibrium as it is expected in the case of a slowly changing
parameter,41,42 see (II).

Case 2: codimension-2 case with increasing w(t) from the mini-
mal value is shown schematically in Fig. 7(b). When w moves from
(I) to (III), the phase state stays at the equilibrium branch in (I) and
can be attracted by two coexisting limit cycles in (III), since these are
two stable attractors remaining after the equilibrium loses its stabil-
ity. However, the trajectory approaches the “dark blue” limit cycle
LC(1). The reason for such a behavior can be explained by the depen-
dence of the real parts of the eigenvalues of the equilibrium shown
in Fig. 8. There, the eigenvalues corresponding to the destabiliza-
tion of the “dark blue” limit cycle are shown in the dark blue color
and otherwise in the light blue. We observe that the real parts of the
eigenvalues from Fig. 8 corresponding to both limit cycles are tan-
gent, but the second derivative for the eigenvalues in the direction of
the “dark blue” limit cycle is larger. As a result, the standard theory
for delayed exchange of stability can be applied, leading to the orbit
jumping in the direction of the “dark blue” limit cycle. We do not go
into further detail here and refer to, e.g., Refs. 41–46.

The next cases correspond to the tails of the bursting
episodes, i.e., when |w| decreases. In the both codimension-1 and
codimension-2 cases, the single- and two-mode can be realized.

Case 3: codimension-1 two-mode case with decreasing w(t)
in w ∈ (−2.0, −3.0) is shown schematically in Fig. 7(c). When w
decreases from (III) to (I), the phase point is first attracted by LC(2)

in (III), behaving in one spiking state SP3 to SP4 in Fig. 3(b). When
w decreases to (II), due to the disappearance of LC(2), the phase
point turns to monostable LC(1) and finally settles down to the stable
equilibrium in (I), resulting in the quiescent state.

Case 4: codimension-1 single-mode case with decreasing w(t)
in w ∈ (−2.0, −3.0) is presented in Fig. 7(d). Unlike the scenario
in Case 3, the phase point is attracted to LC(1) in (III), leading to
small-amplitude oscillations. When it goes to (II) since no other
bifurcation LC(1) of takes place, the phase point remains on LC(1)

and settles down to the equilibrium in the case (I). Apparently, a
stronger slow passage effect delays the ending of oscillations accord-
ing to LC(1), causing phase point to be attracted to LC(1) in (III),
which leads to the disappearance of a burst of the LC(2) spiking state
compared to case 3. We do not prove the latter conjecture in more
rigor as it is outside of the scope of this paper.

The slow passage effect in such slowly excited system is deter-
mined by the excitation frequency and the excitation amplitude,
i.e., single-mode for larger A and ε while two-mode for smaller A
and ε, which is consistent with the distributions shown in Fig. 5(b).
However, it works differently in Fig. 5(c), implying different tran-
sition patterns at the codimension-2 bifurcation point. To explain
the details, we also describe the fast subsystem phase portraits at the
codimension-2 double-Hopf bifurcation point in the following cases
5 and 6.

Case 5: codimension-2 single-mode case with decreasing w(t) in
w ∈ (−1.0, −2.2) is in Fig. 7(e). Similar to codimension-1 cases, the
phase point stays on the stable limit cycle LC(1) in (IV). When w goes
from (IV) to (III), due to the delay effect, the phase point continues
to oscillate according to LC(1) at the double-Hopf bifurcation point
and gradually settles down on a stable equilibrium, shown in (II).

Case 6: codimension-2 two-mode case with decreasing w(t) in
w ∈ (−1.0, −3.0) is presented in Fig. 7(f). The phase point in (IV)
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FIG. 9. The distribution of bursting multistability. (a) and (b) the power spectra of the two-mode bursting and the single-mode bursting in codimension-2 case for A = 3.90
and A = 4.90, excitation frequency fixed at ε = 0.002; (c) the heatmap with variation of ω in frequency band (0.11, 0.13); (d) the average power with variation of ω in
frequency band (0.11, 0.13).

goes from LC(1) to a semi-stable equilibrium in (III) at the bifurca-
tion point. Since only the stable attractor LC(2) exists in the vector
field, it then jumps to LC(2) in (II), corresponding to the transitions
between the two spiking states SP3 and SP4 in Fig. 4(b). When w
decreases to phase (I), the point settles down to the equilibrium.

In codimension-2 cases, the delay effects still exist, resulting in
different positions of the phase point at the double-Hopf bifurca-
tion, which further determines which attractor to turn to. Specif-
ically, A and ε can affect the number of oscillations according to
LC(1), see segments for w ∈ (−1.443, −1.200) in Figs. 7(e) and 7(f),
which further changes the position of phase point when w reaches
the bifurcation point. As a result, there is always a chance that
the phase point visits the semi-stable equilibrium in (III), causing
the two-mode bursting. Note that a relatively small excitation ampli-
tude, or a relatively small excitation frequency, would increase the

frequency of spiking oscillations, corresponding to a larger prob-
ability of the phase point to be attracted to the semi-stable point,
which matches a denser distribution on the left side of Fig. 5(c).
We refer to such a property as the mixing double-Hopf effect, i.e.,
the double-Hopf bifurcation leads to the coexistence of both single-
and two-mode bursting for small ε, as it is observed in the left
side of Fig. 5(c).

VI. ROBUSTNESS OF THE DOUBLE-HOPF MIXING

EFFECT

In Secs. III–V, we only consider two-parameter sets, namely,
ω = 1.1 for codimension-1 Hopf bifurcations and ω = 1.0 for
codimension-2 double-Hopf bifurcations. Here, we investigate the
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robustness of the observed mixing effect when the parameter value
deviates from the exact value ω = 1.0 of codimension-2 bifurcation.

To distinguish two-mode bursting from single-mode bursting,
we employ the power spectra analysis to the bursting timeseries
(Fig. 9). From the power spectra, we find that the two-mode bursting
has an additional peak in the frequency band (0.11, 0.13), corre-
sponding to oscillations according to LC(2). Therefore, we obtain
the distribution of two bursting solutions by computing the fre-
quency spectra for different values of ω in Fig. 9(c). Here, we fix the
excitation frequency at ε = 0.002 and pick one random excitation
amplitude A from (3.8, 6.0) for each ω.

The dark blue stripes in the frequency range (0.116, 0122) in
Fig. 9 represent the two-mode bursting, while the yellow stripes rep-
resent the single-mode bursting. The left part of the figure Fig. 9
shows the interchanging stripes of both kinds, which indicate the
bursting multistability in the range of ω from ω = 1.0 to ω ≈ 1.06.
In addition, when ω & 1.06, all stripes are in dark blue, implying
only two-mode bursting.

To further verify the robustness of the double-Hopf effect, we
also compute the average power for each bifurcation parameter w in
the frequency band (0.11, 0.13) [Fig. 9(d)]. Therefore, we clearly see
the two groups of average power from ω = 1.0 to ω ≈ 1.06.

Thus, we have shown that the double-Hopf mixing effect takes
place not only at the parameter values exactly at the double-Hopf
bifurcation, but also in a small neighborhood of it, i.e., the effect is
robust under a variation of parameters.

VII. CONCLUSION AND DISCUSSION

The present paper has been aimed at highlighting the dis-
tinction between bursting emerging due to codimension-1 or
codimension-2 bifurcations of the fast subsystem. In this paper,
we have studied the bursting oscillations in a coupled BVP oscil-
lator with a slow-varying periodic excitation. We have presented
two solutions of bursting oscillations with double-Hopf bifurca-
tion, i.e., the single-mode bursting and the two-mode bursting. As
a comparison, we have also performed a perturbation to the param-
eter set to obtain the two bursting solutions with codimension-1
Hopf bifurcation. Specifically, codimension-1 Hopf bifurcation and
codimension-2 double-Hopf bifurcation can both cause multistabil-
ity and further result in two bursting solutions, while codimension-2
double-Hopf bifurcation can lead to stable coexistence of two burst-
ing solutions, namely, bursting multistability, which we called the
double-Hopf mixing effect. We find that the delay effect works dif-
ferently in two cases. That is, when we increase the excitation
frequency, the stronger delay effect appears, resulting in the sin-
gle distribution of single-mode bursting in the codimension-1 case.
However, for the codimension-2 case, although the delay effect
leads to the reduction of two-mode bursting, the coexistence of two
bursting solutions still exists. To understand the transition mecha-
nism between different stable attractors as well as the mechanism
of bursting multistability, we have employed the fast subsystem
phase portraits. Furthermore, we have explored the robustness of
the double-Hopf effect on bursting multistability.

This work sheds some light on complex slow–fast dynam-
ics in slow–fast systems with codimension-2 bifurcations. Other

codimension-2 bifurcations, such as the fold–Hopf and the pitch-
fork–Hopf bifurcations, may require further investigation due to the
different multistabilities they possess. Another possible extension is
that our result can be helpful to explore rate-induced tipping with
codimension-2 bifurcations. We also hope to extend this study to cli-
mate systems so that it may help to better understand the multiroute
tipping scenarios close to double-Hopf bifurcation.

The observed bursting solutions contain several very challeng-
ing tipping scenarios and delayed exchange effects as ingredients, so
it would be worthwhile to study some of the scenarios in more detail
in the future.
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APPENDIX A: BIFURCATION ANALYSIS OF THE

GENERALIZED AUTONOMOUS SYSTEM

For the excited system (3), we fix the excitation frequency
at a relatively small value, which is far less than the natural fre-
quency, implying two scales involved in the frequency domain. Due
to this order gap between two frequencies, when the state variables
oscillate according to the natural frequency, the excitation term w
remains nearly constant. For example, in any period TN related
to the natural frequency ωN, w changes from wt0 = A sin(εt0) to
wtN = A sin[ε(t0 + TN)], suggesting that wt0 ≈ wtN . Based on above
analysis we can regard the whole excitation term w as a slow-varying
parameter varying from −A to A, and, thus, we can obtain the
equilibrium branches as well as the bifurcations in fast subsystems.

The equilibrium points can be expressed in the form

xE =
(

x1, y1, x2, y2, x3

)

=
(

ω Y1

σ
, Y1,

ω Y2

σ
, Y2,

ω0 (Y1 − Y2)

σ0

)

,

(A1)
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where the relation between Y1 and Y2 can be described as














−γ Y1
5 − β Y1

3 − α Y1 −
ω2Y1

σ
−

ω0
2 (Y1 − Y2)

σ0

+ w = 0,

−γ Y2
5 − β Y2

3 − α Y2 −
ω2Y2

σ
+

ω0
2 (Y1 − Y2)

σ0

= 0.

(A2)

Then, the stability of equilibrium points can be obtained by
employing the characteristic equation, which can be expressed via
introducing functions f(λ) and g(λ) for easy calculation, written in
the form

F(λ) ≡ f(λ)g(λ) = λ5 + c1λ
4 + c2λ

3 + c3λ
2 + c4λ + c5 = 0, (A3)

where

f(λ) = λ2 + a1λ + a2,

g(λ) = λ3 + b1λ
2 + b2λ + b3,

c1 = a1 + b1

= S1 + S2 + 2 σ + σ0,

c2 = a1b1 + a2 + b2

= σ 2 + (2 S1 + 2 S2 + 2 σ0) σ + (S1 + S2) σ0

+ S1 S2 + 2 ω2 + 2 ω0
2,

c3 = a1 b2 + a2 b1 + b3

=
(

(2 S2 + 2 σ0) S1 + 2 S2 σ0 + 2 ω2 + 4 ω0
2
)

σ

+ (S1 + S2 + σ0) σ 2 +
(

ω2 + ω0
2
)

S2 + 2 ω2σ0

+
(

S2 σ0 + ω2 + ω0
2
)

S1,

c4 = a1 b3 + a2 b2

=
(

(S1 + S2 + 2 σ0) ω2 + 2 S1 S2 σ0 + 2 ω0
2 (S1 + S2)

)

σ

+
(

(S1 + S2) σ0 + S1 S2 + 2 ω0
2
)

σ 2

+ ω2
(

ω2 + (S1 + S2) σ0 + 2 ω0
2
)

,

c5 = a2b3

=
(

S1 S2 σ0 + ω0
2 (S1 + S2)

)

σ 2

+
(

(S1 + S2) σ0 + 2 ω0
2
)

ω2σ + ω4σ0,

with S1 = 5 γ Y1
4 + 3 β Y1

2 + α and S2 = 5 γ Y2
4 + 3 β Y2

2 + α.
According to the Routh–Hurwitz criterion, all solutions of (A3)

would have negative real parts when the conditions are met,



























c1 > 0,
c5 > 0,
c1c2 − c3 > 0,
−c1

2c4 + (c2c3 + c5) c1 − c3
2 > 0,

−c1
2c4

2 − c1c2
2c5 + c1c2c3c4

+2 c1c4c5 + c2c3c5 − c3
2c4 − c5

2 > 0.

(A4)

With the variation of parameter w, the stability of equilibrium
points E may change because of the appearance of different bifurca-
tions in the vector field. When F(λ) has a pair of purely imaginary

roots, the Hopf bifurcation may take place, resulting in the transi-
tion from fixed point to a limit cycle. For the case when f(λ) has
conjugate imaginary roots while the roots of g(λ) are all negative,
the corresponding set can be expressed as

HB1 : a1 = 0, a2 > 0, b1 > 0, b3 > 0, b1b2 − b3 > 0, (A5)

and the associated oscillation frequency can be calculated at
ΩH = √

a2. While when g(λ) has a pair of purely imaginary roots
and f(λ) has all negative roots, the Hopf bifurcation appears on
the set

HB2 : a1 > 0, a1a2 − 1 > 0, b2 > 0, b1b2 − b3 = 0, (A6)

which may cause the oscillations with the frequency ΩH =
√

b2.
Furthermore, a codimension-2 bifurcation with two pairs of purely
imaginary roots may take place, leading to two coexisting peri-
odic oscillations in the phase space. The associated characteris-
tic equation should have the form F(λ) = (λ2 + ϕ2

1)(λ
2 + ϕ2

2)(λ

+ ϕ3) = 0, where ϕ1,2 6= 0, ϕ3 > 0, implying that a double-Hopf
bifurcation occurs on the set

DH : a1 = 0, a2 > 0, b1 > 0, b2 > 0, b1b2 − b3 = 0. (A7)

Therefore, the characteristic equation F(λ) can be simplified in the
form

F(λ) = (λ2 + a2)(λ
2 + b2)(λ + b1), (A8)

with two pairs of purely imaginary roots ±i
√

a2 and ±i
√

b2 as well
as a negative root −b1.

APPENDIX B: DYNAMICAL BEHAVIORS WITH

CODIMENSION-1 HOPF BIFURCATIONS

When ω = 1.1, the slow-varying parameter w crosses all the
regions back and forth on the parameter plane, resulting in the
occurrence of four Hopf bifurcations, see Fig. 2(a). Details of equi-
librium branches, limit cycles, and the corresponding bifurcations
are plotted in Fig. 10.

Since the equilibrium branches as well as those bifurcations
keep symmetry on w, we only present the dynamics for w < 0. When
w < −2.8937, only stable equilibrium point on EB−2 exists, shown
in Fig. 10(e). With the increase of w, super-critical Hopf bifurcation
at HB−2 for w = −2.8937 takes place, resulting in unstable equilib-

rium point EB−1 as well as stable limit cycle LC(1)
−2, see Fig. 10(c).

For w = −2.6549, fold bifurcation of limit cycle LC2 occurs, lead-

ing to stable limit cycle LC(2)
−2 that coexists with LC(1)

−2. For further

variation of w, LC(2) continues to evolve via twofold bifurcations
of limit cycle for w = −2.5062 and w = −2.4884, which cause the

appearance of stable LC(2)
0 as well as the disappearance of stable

LC(2)
−2, respectively. Meanwhile, the unstable LC(2)

−3 disappears via
sub-critical Hopf bifurcation at HB−2 when w = −2.1892, which
also results in the unstable equilibrium branches EB0.

When w increases to w = −2.4172, the period of LC(2)
0 is

doubled due to period-doubling bifurcation and the sequence of
period-doubling bifurcation occurs until w = −2.0828. Another
type of bifurcation of limit cycle, namely, Neimark–Sacker bifur-

cation, takes place for w = −2.3213, yielding that the stable LC(1)
−2

loses the stability. Further stability changes of LC(1) involves several
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FIG. 10. Details of bifurcation diagram and the
locally enlarged parts for codimension-1 case in
Fig. 2(b).

fold bifurcations of limit cycle and it may finally become stable at
w = −2.0305, shown in Fig. 10(a).

Here, we summarize the complex dynamical behaviors with
variation of parameter w in Table I, from which one may

find that different stable attractors coexist in many intervals
of w, implying that there may be different forms of oscilla-
tions coexisting with different initial values are taken in each
interval.
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TABLE I. Evolution of the dynamics with the variation ofw in the codimension-1 case.

Variation of w The dynamical behavior

w < −2.8937 Stable equilibrium branch EB−2

w = −2.8937 Super-critical Hopf bifurcation HB−2

w ∈ (−2.8937, − 2.6549) Stable limit cycle LC(1)
−2 and unstable

EB−1

w = −2.6549 Fold bifurcation of limit cycle LC(2)

connecting LC(2)
−2 and LC(2)

−3

w ∈ (−2.6549, − 2.5062) Stable LC(1)
−2 and LC(2)

−2 unstable LC(2)
−3

and unstable EB−1

w = −2.5062 Fold bifurcation of limit cycle LC(2)

connecting LC(2)
0 and LC(2)

−1

w ∈ (−2.5062, − 2.4884) Stable LC(1)
−2, LC(2)

−2 and LC(2)
0 unstable

LC(2)
−3 and LC(2)

−1 unstable EB−1

w = −2.4884 Fold bifurcation of limit cycle LC(2)

connecting LC(2)
−1 and LC(2)

−2

w ∈ (−2.4884, − 2.4172) Stable LC(1)
−2 and LC(2)

0 unstable LC(2)
−3

and unstable EB−1

w = −2.4172 Period-doubling bifurcation of LC(2)

w ∈ (−2.4884, − 2.4172) Period-2 of LC(2)
0 and stable LC(1)

−2

unstable LC(2)
−3 and unstable EB−1

w = −2.3213 Neimark–Sacker bifurcation of LC(1)

connecting LC(1)
−2 and LC(1)

−1

w ∈ (−2.3213, − 2.1892) Period-2 of LC(2)
0 unstable LC(2)

−3 and

LC(1)
−1 unstable EB−1

w = −2.1892 Sub-critical Hopf bifurcation HB−1

w ∈ (−2.1892, − 2.0828) Period-2 of LC(2)
0 unstable LC(1)

−1 and
unstable EB0

w = −2.0828 Reverse period-doubling bifurcation of
LC(2)

w ∈ (−2.0828, − 2.0305) Stable LC(2)
0 unstable LC(1)

−1 and unstable
EB0

w = −2.0305 Fold bifurcation of limit cycle LC(1)

connecting LC(1)
−1 and LC(1)

0

w ∈ (−2.0305, 0] Stable LC(1)
0 , LC(2)

0 and unstable EB0

APPENDIX C: DYNAMICAL BEHAVIORS WITH

DOUBLE-HOPF BIFURCATIONS

So far, we have obtained the complex dynamics with
codimension-1 Hopf bifurcations when parameter w crosses all
regions for ω = 1.1 in Appendix B. While when ω = 1.0, the slow-
varying parameter travels across three regions, which may lead to
different dynamics since double-Hopf bifurcations take place. we
also summarize the complex dynamics with double-Hopf bifurca-
tions in Table II and plot the details in Fig. 11.

Here, we only present the dynamics for w < 0 because of
the symmetry. When w < −2.1412, only stable equilibrium points
on EB−1 exists, shown in Fig. 11(b). With the increase of w, the

unstable LC(2)
−1 and the stable LC(2)

−1 meet at w = −2.1412, yielding

the occurrence of the fold bifurcation of limit cycle LC(2). When
w = −2.0858, the period-doubling bifurcation of LC(2) takes place,

TABLE II. Evolution of the dynamics with the variation of w in the codimension-2

case.

Variation of w The dynamical behavior

w < −2.1412 Stable equilibrium branch EB−1

w = −2.1412 Fold bifurcation of limit cycle LC(2)

connecting LC(2)
−1 and LC(2)

0

w ∈ (−2.1412, − 2.0858) Stable limit cycle LC(2)
0 unstable LC(2)

−1

and stable EB−1

w = −2.0858 Period-doubling bifurcation of LC(2)

w ∈ (−2.0858, − 1.9763) Period-2 of LC(2)
0 unstable LC(2)

−1 and
stable EB−1

w = −1.9763 Fold bifurcation of limit cycle LC(2)

connecting LC(2)
−3 and LC(2)

−2

w ∈ (−1.9763, − 1.9727) Period-2 of LC(2)
0 , stable LC(2)

−2 unstable

LC(2)
−1, LC(2)

−3 and stable EB−1

w = −1.9727 Fold bifurcation of limit cycle LC(2)

connecting LC(2)
−2 and LC(2)

−1

w ∈ (−1.9727, − 1.8564) Period-2 of LC(2)
0 unstable LC(2)

−3 and
stable EB−1

w = −1.8564 Reverse period-doubling bifurcation of

LC(2)
0

w ∈ (−1.8564, − 1.4441) Stable LC(2)
0 unstable LC(2)

−3 and unstable
EB−1

w = −1.4441 Double-Hopf bifurcation DH−1

w ∈ (−1.4441, − 1.3998) Stable LC(2)
0 , LC(1)

−4 unstable EB−1

w = −1.3998 Fold bifurcation of limit cycle LC(1)

connecting LC(1)
−3 and LC(1)

−2

w ∈ (−1.3998, − 1.3882) Stable LC(1)
−4, LC(1)

−2, LC(2)
0 unstable LC(1)

−3

and unstable EB0

w = −1.3882 Fold bifurcation of limit cycle LC(1)

connecting LC(1)
−4 and LC(1)

−3

w ∈ (−1.3882, − 1.3167) Stable LC(1)
−2, LC(2)

0 unstable EB0

w = −1.3167 Fold bifurcation of limit cycle LC(1)

connecting LC(1)
−1 and LC(1)

0

w ∈ (−1.3167, − 1.2657) Stable LC(1)
−2, LC(1)

0 , LC(2)
0 unstable LC(1)

−1

and unstable EB0

w = −1.2657 Fold bifurcation of limit cycle LC(1)

connecting LC(1)
−2 and LC(1)

−1

w ∈ (−1.2657, 0] Stable LC(1)
0 , LC(2)

0 unstable EB0

resulting in period-2 limit cycle LC(2)
0 . The unstable LC(2)

−1, with fur-
ther increase of w, changes the stability via another fold bifurcation

of LC(2) at −1.9727, causing stable LC(2)
−2 to coexist with period-

2 LC(2)
0 . Another fold bifurcation of LC(2) occurring at −1.9763

may further change the stability of LC(2)
−2, leading to unstable LC(2)

−3.

Further changes of LC(2) takes place because of the reverse period-

doubling bifurcation at w = −1.8564, which restores the LC(2)
0 to

period-1 type.
When w increases to w = −1.4441, double-Hopf bifurcation

DH−1 occurs, resulting in the appearance of unstable equilibrium

points EB0 as well as stable LC(1)
−4, together with the disappearance
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FIG. 11. Details of bifurcation diagram and the locally enlarged parts for the codimension-2 case in Fig. 2(c).

of unstable LC(2)
−3, shown in Fig. 11(d). Further variation of w causes

the LC(1)
−4 to evolve via the folds of limit cycle, more specifically, the

folds of LC(1) at w = −1.3998 and w = −1.3882 changes the stabil-

ity, leading to stable LC(1)
−2 and unstable LC(1)

−3. Similarly, the folds

of LC(1) at w = −1.3167 and w = −1.2657 connect two stable limit
cycles LC(1)

−2 as well as LC(1)
0 with unstable LC(1)

−1. Therefore, when

w > −1.4441, there coexist stable limit cycles LC(2)
0 and LC(1)

−4, which
may lead to different forms of oscillations.

APPENDIX D: TERMINOLOGY

Here, we list important terminology in Table III.
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TABLE III. Terminology involved.

Name Description

Bursting oscillations Oscillations that alternates with
large-amplitude and small-amplitude

oscillations or at rest
Spiking state Large-amplitude oscillations in

bursting oscillations
Quiescent state Small-amplitude oscillations or at rest

in bursting oscillations
Bursting multistability Two bursting solutions coexist with

different excitation amplitude and
excitation frequency

Single-mode bursting Bursting oscillations with single spiking
state

Two-mode bursting Bursting oscillations with the
appearance of two spiking states

Double-Hopf mixing effect Double-Hopf bifurcation leads to the
appearance of bursting multistability
for the range of considered excitation

frequency.
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