
 
 
 
Originally published as:  
 
Bukh, A. V., Shepelev, I. A., Elizarov, E. M., Muni, S. S., Schöll, E., Strelkova, G. I. (2023): 
Role of coupling delay in oscillatory activity in autonomous networks of excitable 
neurons with dissipation. - Chaos, 33, 7, 073114. 
 
DOI: https://doi.org/10.1063/5.0147883 
 
  
 
 

https://publications.pik-potsdam.de/cone/persons/resource/eckehard.schoell
https://doi.org/10.1063/5.0147883



View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  JULY 05 2023

Role of coupling delay in oscillatory activity in autonomous
networks of excitable neurons with dissipation 
Special Collection: Control of self-organizing nonlinear systems

A. V. Bukh  ; I. A. Shepelev  ; E. M. Elizarov  ; S. S. Muni  ; E. Schöll  ; G. I. Strelkova  

Chaos 33, 073114 (2023)
https://doi.org/10.1063/5.0147883

 12 D
ecem

ber 2023 12:44:21

https://pubs.aip.org/aip/cha/article/33/7/073114/2901135/Role-of-coupling-delay-in-oscillatory-activity-in
https://pubs.aip.org/aip/cha/article/33/7/073114/2901135/Role-of-coupling-delay-in-oscillatory-activity-in?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/cha/article/33/7/073114/2901135/Role-of-coupling-delay-in-oscillatory-activity-in?pdfCoverIconEvent=crossmark
https://pubs.aip.org/cha/collection/1188/Control-of-self-organizing-nonlinear-systems
javascript:;
https://orcid.org/0000-0002-4786-6157
javascript:;
https://orcid.org/0000-0002-7240-9150
javascript:;
https://orcid.org/0009-0008-8309-6197
javascript:;
https://orcid.org/0000-0001-9545-8345
javascript:;
https://orcid.org/0000-0002-7318-2672
javascript:;
https://orcid.org/0000-0002-8667-2742
javascript:;
https://doi.org/10.1063/5.0147883
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2281281&setID=592934&channelID=0&CID=837567&banID=521596642&PID=0&textadID=0&tc=1&scheduleID=2201582&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fcha%22%5D&mt=1702385061385853&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fcha%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0147883%2F18029484%2F073114_1_5.0147883.pdf&hc=92d62fcde8df2b63f669cd368bae7d313d59afd4&location=


Chaos ARTICLE pubs.aip.org/aip/cha

Role of coupling delay in oscillatory activity in
autonomous networks of excitable neurons with
dissipation

Cite as: Chaos 33, 073114 (2023); doi: 10.1063/5.0147883

Submitted: 27 February 2023 · Accepted: 19 June 2023 ·

Published Online: 5 July 2023 View Online Export Citation CrossMark

A. V. Bukh,1 I. A. Shepelev,1,2 E. M. Elizarov,1 S. S. Muni,3 E. Schöll,4 and G. I. Strelkova1,a)

AFFILIATIONS

1Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
2Almetyevsk State Petroleum Institute, 2 Lenina Street, Almetyevsk 423458, Tatarstan, Russia
3Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur,

West Bengal 741246, India
4Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany; Bernstein Center for Computational

Neuroscience Berlin, 10115 Berlin, Germany; and Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany

Note: Control of self-organizing nonlinear systems.
a)Author to whom correspondence should be addressed: strelkovagi@sgu.ru

ABSTRACT

We study numerically effects of time delay in networks of delay-coupled excitable FitzHugh–Nagumo systems with dissipation. Generation
of periodic self-sustained oscillations and its threshold are analyzed depending on the dissipation of a single neuron, the delay time, and
random initial conditions. The peculiarities of spatiotemporal dynamics of time-delayed bidirectional ring-structured FitzHugh–Nagumo
neuronal systems are investigated in cases of local and nonlocal coupling topology between the nodes, and a first-order nonequilibrium phase
transition to synchrony is established. It is shown that the emergence of an oscillatory activity in delay-coupled FitzHugh–Nagumo neurons is
observed for smaller values of the coupling strength as the dissipation parameter decreases. This can provide the possibility of controlling the
spatiotemporal behavior of the considered neuronal networks. The observed effects are quantified by plotting distributions of the maximal
Lyapunov exponent and the global order parameter in terms of delay and coupling strength.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0147883

Excitability is a common property of many physical and biolog-
ical systems. Systems consisting of coupled excitable elements
have been widely studied as models for many natural phenomena,
such as the communication between neurons in the brain. Since
the work of Hodgkin and Huxley1 and the development of the
basic mathematical model by FitzHugh2 and Nagumo et al.,3 the
reported research on the subject has grown enormously. Delays
are inherent in neuronal networks due to finite conduction veloc-
ities and synaptic transmission. Recently, many researchers have
investigated the effects of time delays in neuronal networks and
found many delay-induced phenomena. In particular, it has been
established that time-delayed coupling can be used as a pow-
erful tool for stabilizing various complex spatiotemporal pat-
terns and for controlling different types of synchronization in
one- and multilayer networks. In the present work, we consider
the FitzHugh–Nagumo oscillator that represents a paradigmatic

model for neuronal excitability. The considered two-variable sys-
tem of equations includes an additional parameter, which takes
into account the dissipation of a neuron and, thus, differs from
the simplified FitzHugh–Nagumo model. Starting from a pair of
delay-coupled FitzHugh–Nagumo oscillators and proceeding via
simple ring neuronal networks with delayed coupling, we analyze
how the spatiotemporal dynamics of the networks depends on
the parameter of dissipation, the delay time, the coupling param-
eters, and randomly distributed initial conditions. We provide
linear stability analyses and plot distributions of the maximal
Lyapunov exponent and the global order parameter depending
on the delay time and the coupling strength. Furthermore, we
establish nonequilibrium phase transitions from multiple clus-
ters to full synchronization. The presented results are compared
with the previously obtained findings for networks of simplified
FitzHugh–Nagumo models.
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I. INTRODUCTION

Excitable systems play important roles in understanding and
modeling various natural phenomena, such as, for example, the
transmission of impulses between neurons in the brain, the car-
diac arrhythmia, the appearance of organized structures in the
cortex of egg cells, etc.4–6 Generation of a single spike in the elec-
trical potential across the neuron membrane is a typical example
of excitable behavior. Such excitable units usually appear as con-
stitutive elements of complex systems and can transmit excitations
between them. The phenomenological FitzHugh–Nagumo set of
equations, which is a two-dimensional simplification of the four-
variable Hodgkin–Huxley model, has been proven to be a successful
model for the description of the spike generation of the neuronal
axon.2,3 A biological neuron is a dissipative object (unit) in which
a single spike activity decays rather quickly due to high electrical
resistance. Accordingly, the higher the dissipation in the neuron,
the greater the energy required to excite the spike. The dissipa-
tive nature of spike generation in neurons was described in Refs. 7
and 8 for some neuronal models. The presence of dissipation in the
FitzHugh–Nagumo neuron is an essential condition for the occur-
rence of self-sustained oscillations in the neuron, i.e., one of the
main modes of operation of the neuron. Effects related to dissipa-
tion in the FitzHugh–Nagumo neuron were considered in Refs. 9
and 10.

Time delays are a fundamental part of almost all biological phe-
nomena. The finite propagation speed of the action potential along
the axons of neurons and time lapses in information transmission
(synaptic process) and reception (dendritic process) between neu-
rons produces time delays in real neurons and their networks.11

The time required for neuronal communication can be signifi-
cantly prolonged due to the physical distance between sending and
receiving units,12,13 a finite velocity of signal transmission,14 mor-
phology of dendrites and axons,15,16 and information processing
time of the cell.17 Thus, time delays can play a crucial role in the
dynamics of neuronal networks and should be taken into account
in mathematical modeling and analysis.18,19 The role of delay in
signal transmission in brain circuits is also worth to be noted.20

Neglecting realistic time delays in mathematical models can lead
to discrepancies between theoretical and experimental findings and,
thus, prevents insight into relevant physiological mechanisms.

Many recent studies have been devoted to delay-induced
phenomena21–25 and effects of time delays on the synchroniza-
tion dynamics of neuronal networks.26–37 It is a well-known, and
often used, fact that time delay can destabilize a stationary point
and introduce oscillatory behavior. The case of two delay-coupled
FitzHugh–Nagumo systems has been examined in detail showing
that stable periodic oscillations may coexist with a stable steady
state.23,38–40 The bifurcation phenomenon is fully induced by the
delay τ and represents a new form of oscillatory synchronization
exhibiting a period close to 2τ . It has been reported that delay-
enhanced synchronization may be essential for information trans-
mission in neuronal networks.17,41 It has also been revealed that
coupling delays present in the electrical or chemical synaptic con-
nections can influence the synchronization of neuronal firing.42,43 In
Ref. 44, the synchronization phenomenon in a time-delayed chaotic
system with unknown and uncertain parameters was studied, and

an intermittent adaptive control scheme was developed to guarantee
synchronization between neurons. It has been investigated how the
phase lag synchronization between the neurons of different brain
regions is governed by the spatiotemporal organization of the brain
by using self-sustained time-delayed chaotic oscillators.19

With the discovery of special patterns of partial synchroniza-
tion, called chimera states,45,46 in networks of nonlocally coupled
systems, a remarkable part of research was addressed to the effects
of time delays on birth, stability, and control of chimera struc-
tures in various complex networks.47–57 It has been shown that in
networks with fractal connectivity, desired spatiotemporal patterns
can be stabilized by varying the time-delayed coupling between the
nodes.53,57 It has been demonstrated that delay allows one to con-
trol amplitude chimeras51 and coherence-resonance chimeras by
adjusting delay time and feedback strength.52 The interlayer delay
in multilayer networks might act as a general organizing force to
synchronize spatiotemporal patterns between layers. Recently, it
has been shown that relay synchronization of chimeras in multi-
plex (triplex) networks can be controlled by time-delayed intra- and
interlayer coupling.54,55

In our work, we use the paradigmatic example of the
FitzHugh–Nagumo system in the form and for the parameter range
when the system displays excitable behavior. The form of the
used equations differs from the simplified and usually considered
FitzHugh–Nagumo system23,39 since it takes into account a param-
eter that is responsible for the dissipation of a neuron. The larger
this parameter, the less the dissipation. In our numerical simulation
of delay-coupled FitzHugh–Nagumo oscillators, we choose two dif-
ferent values of the dissipation parameter, one of which is close to
the boundary of bistability and the other one is close to the bor-
derline of the self-sustained oscillatory region. We first consider
two delay-coupled neurons and then extend our numerical simu-
lation to a ring network with local and nonlocal coupling topology
between the neurons. We study the interplay between dissipation in
the single unit, the delay time, the coupling parameters, and initial
conditions in forming the spatiotemporal dynamics of the networks.
The numerical simulations performed and the results obtained can
be straightforwardly generalized to the dynamics of delay-coupled
simplified FitzHugh–Nagumo models.23,39,58

II. SYSTEM UNDER STUDY

As an object of our study, we consider the FitzHugh–Nagumo
oscillator, which represents one of the simplest neuron models and
is widely used in numerical simulations. This two-variable system
is a paradigmatic model for neural excitability and is described as
follows:

ε
dx

dt
= x − x3/3 − y,

dy

dt
= γ x − y + β ,

(1)

where x is the fast variable (activator) and represents the volt-
age across the cell membrane and y is the slow recovery variable
(inhibitor), which corresponds to the recovery state of the resting
membrane of a neuron. All the control parameters are dimension-
less. The small parameter ε > 0 is the ratio of the activator to
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FIG. 1. Diagram of dynamical regimes of the single neuron (1) in the (γ ,β)
parameter plane for ε = 0.01. Regions I–III correspond to the bistable (gray
color), self-sustained oscillatory (pink color), and excitable regions (white color),
respectively. In our paper, we consider two sets of parameters of the single neu-
ron marked by red dots, which correspond to the excitable regime (γ = 0.5 and
γ = 0.7 with β = −0.5).

inhibitor time scales. The parameter β determines the asymmetry,
and the parameter γ is responsible for dissipation in the neuron. In
an analog circuit of the FitzHugh–Nagumo oscillator (1), the param-
eter γ is directly proportional to a ratio of two resistances R0/R6,
where R6 is the resistance of the oscillatory circuit.59 The value of
R6 determines the amount of dissipation in the circuit. If the R6

value increases, the dissipation increases, and hence, the parame-
ter γ decreases and vice versa. Both parameters β and γ also define
the dynamical behavior of the neuron. Note that the form of the
FitzHugh–Nagumo equation (1) differs from the original form,2,60,61

but it is also investigated in a number of works.62–64 An analog elec-
trical FitzHugh–Nagumo neuron, which is described by the system
of equations, such as (1), was used in Ref. 59 to analyze its spiking
responses on pulse stimulation.

The FitzHugh–Nagumo neuron model (1) enables us to con-
sider a variety of different dynamical behaviors, namely, excitable,
self-sustained oscillatory, and bistable regimes. The ranges of exis-
tence of each dynamical regime are highlighted in the bifurcation
diagram in the (γ , β) parameter plane shown in Fig. 1. The bista-
bility region is labeled as I, the self-sustained oscillatory region is II,
and the excitability region is denoted as III. The solid lines in the dia-
gram in Fig. 1 correspond to the fold bifurcation of the equilibrium
points for γ . 0.72 and to the Hopf bifurcation for γ & 0.72. The
relevant values for fold bifurcations can be estimated analytically
approximately as follows:65

β = ±
2

3

√

1 − γ (1 − γ ) .

The location of the bifurcation lines in Fig. 1 is independent of the
parameter ε. Inside region III (Fig. 1), the neuron settles to the
excitable regime when there are no self-sustained oscillations with-
out an external force or perturbation. A single stimulus of a certain
intensity can excite the neuron activity, but it quickly decays and the
system returns to the equilibrium.65

In the following, in order to study how the parameter of dissi-
pation can affect the dynamics of delay-coupled FitzHugh–Nagumo

FIG. 2. Phase portraits (a) and (b) and time series (c) and (d) for the system (1)
at γ = 0.5 (a) and (c) and γ = 0.7 (b) and (d) with ε = 0.01 and β = −0.5.
The x and y null-isoclines are depicted as red dashed and green dotted curves,
respectively. Several phase trajectories approaching the stable node N for differ-
ent initial conditions are plotted in black. The arrows show the direction of motion.
The vertical red lines in the time series plots (c) and (d) show the time when the
maximum spike amplitude is achieved.

neurons, we choose two different values of γ marked by red dots in
Fig. 1. One of them, γ = 0.5, is close to the boundary of bistability
(Fig. 1) and the other one, γ = 0.7, is closer to the boundary of the
self-sustained oscillatory regime. We recall that the second case cor-
responds to smaller dissipation in a single neuron. Throughout the
paper, we fix the values of ε = 0.01 and β = −0.5. This corresponds
to the excitable regime observed in a single FitzHugh–Nagumo
oscillator within a rather wide range of γ ∈ [0.2, 1.1] (see Ref. 65).
Figures 2(a) and 2(b) show phase trajectories approaching the sta-
ble node N from a set of different initial conditions for the system
(1) for fixed β and ε and for the two chosen values of γ . As can
be seen, in the case of smaller dissipation [Fig. 2(b)], the phase tra-
jectories starting with different initial states lie more closely and
densely to each other as compared with the case of larger dissipa-
tion [Fig. 2(a)]. Some of the trajectories shown in Fig. 2 move along
the big excitability loop in the directions indicated by the arrows.
As can be seen from the time series plotted in Figs. 2(c) and 2(d),
the time for achieving a maximum spike amplitude is smaller when
dissipation is low (tmax = 1.23 for γ = 0.7). As a consequence, the
trajectories converge toward the stable node N more slowly. In the
case of a higher level of dissipation [Fig. 2(c)], a larger time is taken
to show the maximum spike amplitude (tmax = 1.55 for γ = 0.5),
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and the trajectories approach the stable node faster than compared
with a smaller dissipation.

III. TWO DELAY-COUPLED FITZHUGH–NAGUMO

NEURONS

Since time delay is inevitable due to the finite propagating
speed in the signal transmission between the neurons, we start
with considering two identical FitzHugh–Nagumo neurons with
time-delayed coupling and explore how the self-sustained oscilla-
tory activity of this system depends on the delay time, the coupling
strength, and the parameter of dissipation of the single neuron.

For bidirectional delayed coupling between the two FitzHugh–
Nagumo oscillators, we have the following system of equations:

ε
dx1

dt
= x1 − x3

1/3 − y1 + σ(x2(t − τ) − x1),

dy1

dt
= γ x1 − y1 + β ,

ε
dx2

dt
= x2 − x3

2/3 − y2 + σ(x1(t − τ) − x2),

dy2

dt
= γ x2 − y2 + β ,

(2)

where xi and yi, i = 1, 2 are the dynamical variables defined in
Eq. (1) for a single neuron. The coupling strength between the
oscillators is determined by the parameter σ , and τ > 0 represents
the time delay in signal transmission. This system with the simpli-
fied FitzHugh–Nagumo oscillator form ẏi = xi + β has already been
studied in Refs. 23, 39, and 56.

A. Delay-induced oscillations

The dynamics of the system (2) is explored for the parame-
ter values indicated in Sec. I. For numerical simulation within this
work, we use the Runge–Kutta method with time step h = 0.005.
The maximum Lyapunov exponent is defined here as

3(t0, T) :=
1

T
ln

‖ξ(t0 + T)‖

‖ξ(t0)‖
(3)

and represents the finite-time growth rate of a small pertur-
bation ξ(t0) introduced in the variational differential equations.
The initial conditions are given in the form of two random
values in both neurons. The initial states (history function) of
the coordinates are chosen as follows: x1,2(t ∈ [−τ ; 0]) = x0

1,2 and
y1,2(t ∈ [−τ ; 0]) = y0

1,2, where x0
1,2 ∈ [1, 2] and y0

1,2 ∈ [0, 1] to induce
the in-phase oscillatory regime and from the ranges x0

1 ∈ [1, 2],
y0

1 ∈ [0, 1], x0
2 ∈ [−2, −1], y0

2 ∈ [−1, 0] to obtain the anti-phase
oscillatory regime. Without delay and for any values of the coupling
strength σ , the two neurons demonstrate oscillations during only a
very short transient time, after which they switch to the same equi-
librium point without any oscillations. When the delayed coupling
is introduced between the neurons, periodic self-sustained oscil-
lations are excited in the system starting with a certain threshold
of the coupling strength (σ ≈ 0.2 for γ = 0.5, τ & 1 and σ ≈ 0.1
for γ = 0.7, τ & 1). Depending on initial conditions, the neurons

demonstrate both complete in-phase synchronization and complete
anti-phase synchronization with each other.

The neuronal dynamics is illustrated in Fig. 3 for two different
values of the dissipation parameter (γ = 0.5 and γ = 0.7), the time
delay (τ = 1 and τ = 5), and for the anti-phase states. In this case,
the initial conditions are chosen in such a way that only one neu-
ron is excited (x0

1 ∈ [1, 2], y0
1 ∈ [0, 1], x0

2 ∈ [−2, −1], y0
2 ∈ [−1, 0]).

Panels (a1)–(b2) in Fig. 3 show results for γ = 0.5, and (c1)–(d2)
illustrate regimes for γ = 0.7. Time series for variables xi(t), i = 1, 2
(black and orange curves, respectively) are plotted in panels with
index 1, and the corresponding projections of phase portraits for
both neurons are pictured in panels with index 2. It is seen that
despite the excitable regimes of the isolated neurons and the absence
of any external forces, the delayed coupling leads to the emergence
of periodic self-sustained oscillations (the maximal Lyapunov expo-
nent 3 is equal to 0). This is a well-known result and has been
reviewed in Ref. 23. The temporal behavior for both neurons reflects
anti-phase spike oscillations [Figs. 3(a1)–3(d1)]. They are charac-
terized by a slow motion around the equilibrium (in the isolated
neuron) and a fast motion along a limit cycle that is illustrated
in Figs. 3(a2)–3(d2) for different values of the parameters. Simi-
lar results for two delay-coupled FitzHugh–Nagumo neurons in the
simplified form have been obtained numerically23 and analytically.56

Besides, the oscillations of the first and second neurons correspond
to the same limit cycle. For a larger value of γ = 0.7 [Figs. 3(c1),
3(c2), 3(d1), and 3(d2)], the size of the limit cycle extends in the
y axis, while it remains almost unchanged along the x axis. It is
related to the slope of the y-nullcline as γ grows. Hence, the x- and
y-nullclines intersect for larger values of the y variable, and the oscil-
lation amplitude in this variable becomes larger (compare Figs. 3
and 2).

We now analyze how the neuronal dynamics changes if we vary
the time delay τ in the system (2). Comparison of the time series
plotted in Figs. 3(a1) and 3(c1) for τ = 1 and in Figs. 3(b1) and 3(d1)
for τ = 5 gives evidence that the oscillation period increases when
the time delay becomes larger. As can be seen from the plots, this
result is independent of the parameter of dissipation. Our calcula-
tions show that the oscillation period T strongly depends on the
delay τ as shown analytically in the simplified FitzHugh–Nagumo
model.23,56 Moreover, we reveal that the period is always equal to
2τ for the chosen initial conditions. This effect is rather easy to
explain.29,39 Since the initial conditions are chosen randomly, only
a single neuron is excited, while the other one is quiescent after a
short time. After the time delay, the second (quiescent) neuron gets
a signal from the first (excited) neuron and is also excited. In turn,
the first neuron switches to the quiescent regime until it receives a
signal from the second neuron via the coupling. Hence, the oscil-
lations in the system are anti-phase to each other, and the period
is strictly equal to the doubled time delay. It should be noted that
the emergence of delay-induced oscillations has a threshold charac-
ter. This means that the oscillations occur only when the coupling
strength σ exceeds a certain threshold. It is reasoned by the follow-
ing fact. The intensity of a signal that a neuron receives from its
neighbor is equal to σA, where A is the oscillation amplitude. This
signal can be considered an external periodic force. In this case, the
neuron demonstrates its activity only if the external force amplitude
is larger than a certain threshold level. It is worth noting that the
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FIG. 3. Anti-phase oscillations for the two delay-coupled FitzHugh–Nagumo neu-
rons (2) for γ = 0.5 [panels (a1), (a2), (b1), and (b2)] and γ = 0.7 [panels
(c1), (c2), (d1), and (d2)] and for the time delay τ = 1 [panels (a1), (a2), (c1),
and (c2)] and τ = 5 [panels (b1), (b2), (d1), and (d2)]. Time series for the first
(i = 1, black curves) and second (i = 2, orange curves) neurons are shown in
panels (a1), (b1), (c1), and (d1). The corresponding phase portrait projections are
illustrated in panels (a2), (b2), (c2), and (d2). Initial conditions correspond to the
case when only one neuron is excited. Other parameters: σ = 0.3, ε = 0.01,
and β = −0.5.

dynamics shown in Fig. 3 is reminiscent of the reverberation of the
activity between the two nodes. An interesting application could be
the relation with the propagation of the signals in layered neuronal
networks explored in Ref. 66.

The next question is what changes will happen if both neurons
are initially excited? In this case, the neurons begin to oscillate in-
phase starting with a certain value of σ . Examples of the time series
xi(t), i = 1, 2, are depicted in Fig. 4 for two values of dissipation
γ = 0.5 [Figs. 4(a) and 4(b)] and γ = 0.7 [Figs. 4(c) and 4(d)] and
for the time delay τ = 1 [Figs. 4(a) and 4(c)] and τ = 5 [Figs. 4(b)
and 4(d)]. It is seen that now both neurons oscillate synchronously
in-phase. In the case of smaller dissipation [Figs. 4(c) and 4(d)],
the form of spikes in the time series becomes more pronounced
and sharper for both time delay values as compared with the corre-
sponding spike sequences for larger dissipation [Figs. 4(a) and 4(b)].
Comparing the time series obtained for the same time delay in
Figs. 3(a1) and 3(c1) (anti-phase oscillations) and Figs. 4(a) and 4(b)
(in-phase oscillations) indicates that the frequency is doubled for
the anti-phase oscillations. At the same time, the projections of
phase portraits are completely equal to the previous cases depicted
in Figs. 3(a2) and 3(b2). The observed differences occur due to a dif-
ferent mechanism of delay-induced oscillations. For the first choice

FIG. 4. In-phase oscillations for the two delay-coupled FitzHugh–Nagumo neu-
rons (2) for γ = 0.5 (a) and (b) and γ = 0.7 (c) and (d). Time series for the first
(i = 1, black curves) and second (i = 2, orange curves) neurons are plotted for
τ = 1 (a) and (c) and τ = 5 (b) and (d). Initial conditions correspond to the case
when both neurons are initially excited. Other parameters: ε = 0.01, σ = 0.5,
and β = −0.5.
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FIG. 5. Dependences of the period Ti (a) and frequency fi (b) for two neurons
(i = 1, 2) on the time delay τ for anti-phase oscillations (red curves) and in-phase
oscillations (black curves) in the system (2) for γ = 0.5. Functions T(τ ) = τ and
f(τ ) = 1/τ are shown by squares and T(τ ) = 2τ and f(τ ) = 1/2τ by circles.
Other parameters: ε = 0.01, σ = 0.5, and β = −0.5.

of initial conditions, the neurons are excited consistently, one after
another, with the oscillation period T = 2τ . For the second case of
initial conditions, both neurons are activated simultaneously with
the period being equal to the delay. For the general discussion of
such exchange of pulses, including delayed feedbacks with different
delay times, see Ref. 29.

We now evaluate how the period and the frequency of oscilla-
tions depend on the delay for both types of initial conditions men-
tioned above. The calculated dependences are plotted in Fig. 5 for
γ = 0.5 and for anti-phase (red curves) and in-phase (black curves)
oscillations. As follows from the graphs in Fig. 5(a), the period Ti

of oscillations in both neurons labeled with i = 1, 2 is strictly equal
to the doubled time delay 2τ for the anti-phase oscillations and to
τ for the in-phase oscillatory regime. In both cases, the period Ti

increases monotonically and linearly as the delay time τ grows. In
turn, the frequency fi presents the function inverse of the time delay
1/(2τ) for the anti-phase oscillations and 1/τ for the in-phase oscil-
lations [Fig. 5(b)]. This is in line with the results in Refs. 23, 29,
39, and 56. Moreover, our calculations show that both the period
and the frequency of oscillations are defined only by the delay and
are independent of the coupling strength σ and the parameter γ .
However, there is a certain threshold with respect to σ when the
oscillations are excited, and this value depends on the delay and the
control parameters; see analytical results in Refs. 29 and 56. Our cal-
culations show that the dissipation parameter γ can influence the
threshold for the neural activity in the system (2). Dependences of
the σ threshold value on γ are plotted in Fig. 6 for fixed delay time
τ = 5 and for the in-phase and anti-phase oscillations. The parame-
ter γ is varied within the region of excitable dynamics (region III in
Fig. 1). It is seen that both dependences coincide, and the threshold
value gradually decreases as the parameter γ increases, i.e., as the
dissipation level in the neuron decreases.

To evaluate the region of existence of delay-induced oscilla-
tions in the system (2), we calculate the maximal Lyapunov exponent
3 and plot its values in the (τ , σ ) parameter plane for two different

FIG. 6. Dependence of the threshold for the oscillation excitation σth vs the dis-
sipation parameter γ in the system of two delay-coupled neurons for in-phase
(red curve with dots) and anti-phase (green dashed curve with dots) oscillations
at τ = 5. Other parameters: ε = 0.01 and β = −0.5.

values of γ = 0.5 and γ = 0.7. The corresponding diagrams are
presented in Figs. 7(a) and 7(b) for anti-phase oscillations and in
Figs. 7(c) and 7(d) for in-phase oscillations.

Obviously, the values of 3 must be negative when there are
no oscillations and zero or positive (only for chaos) for the oscil-
latory regime. In our case, the delay-induced oscillations are always
non-chaotic. Hence, the maximal Lyapunov exponent is always zero.
Thus, the distribution of 3 in the (τ , σ) parameter plane enables
one to distinguish the quiescent (red color, negative values of 3)
and the oscillatory (yellow color, 3 = 0) regimes and, thus, to define
the boundary between them. The diagrams show that there is a
threshold for the oscillation excitation with respect to both the cou-
pling strength σ and the delay τ . When τ = 0, neither anti-phase
nor in-phase stable oscillations can be excited even for very strong
coupling. Apparently, the shortest time delay is determined by a
minimal duration of a spike impulse in the neuron under excita-
tion by the delayed coupling. In return, the threshold with respect
to σ is caused by a minimal amplitude of the influence of the neigh-
boring neuron through the delayed coupling. The smaller the delay,
the stronger the coupling strength must be, up to a certain value
of τ ; after that, the threshold with respect to σ does not change. It
should be noted that, as is clearly seen from Fig. 7 and is verified by
our calculations, the σ threshold is substantially lower for larger val-
ues of γ . Increasing γ decreases the neuron dissipation, and thus, a
lower amplitude of excitation is needed to induce oscillations in the
FitzHugh–Nagumo neuron. The diagrams of the maximal Lyapunov
exponent in Fig. 7 give evidence that the threshold for the oscillatory
regime with respect to the delay is larger for in-phase oscillations
than that for anti-phase ones, while the σ threshold is practically the
same for both cases. Note that negative values of the maximal Lya-
punov exponent in the quiescent region decrease with an increase in
the duration of the delay τ .

B. Linear stability analysis of the equilibrium

Let the unique fixed point be x∗ = (x∗
1 , y∗

1 , x∗
2 , y∗

2). The fixed
point is given by solving simultaneously two nonlinear equations for
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FIG. 7. Distributions of the maximal Lyapunov exponent 3 in the (τ , σ ) parameter plane for anti-phase oscillations (upper row) and in-phase oscillations (lower row) at
γ = 0.5 (a) and (c) and γ = 0.7 (b) and (d). Other parameters: ε = 0.01, β = −0.5.

each pair (x∗
1 , y∗

1) = (x∗
2 , y∗

2),

x1 −
x3

1

3
− y1 = 0,

γ x1 − y1 + β = 0,

x2 −
x3

2

3
− y2 = 0,

γ x2 − y2 + β = 0.

(4)

The equilibrium point in the excitable regime is given by
x∗

1 = x∗
2 and y∗

1 = y∗
2 . Linearizing system (2) around the fixed point

x∗ by setting x(t) = x∗ + δx(t), one obtains

δẋ =
1

ε
Aδx(t) +

σ

ε
Bδx(t − τ), (5)

where

A =







ξ −1 0 0
γ ε −ε 0 0
0 0 ξ −1
0 0 γ ε −ε






, (6)

B =







0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0






, (7)

where we have introduced ξ := 1 − x∗2

1 − σ = 1 − x∗2

2 − σ < 0
since x∗

1
2 > 1. The ansatz

δx(t) = exp(λt)u, (8)

where u is an eigenvector of the Jacobian matrix A, leads to the fol-
lowing characteristic equation for the eigenvalues λ, given by setting
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the determinant

det

(

A

ε
+

σ

ε
B exp(−λτ) − λIN×N

)

= 0.

Expanding the matrices inside the determinant, we get
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξ

ε
− λ −

1

ε
σ e−λτ 0

γ −1 − λ 0 0

σ e−λτ 0
ξ

ε
− λ −

1

ε
0 0 γ −1 − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (9)

Because of the symmetry between 1 and 2, the determinant can be
factorized in analogy with the simplified model23 into

[(

ξ

ε
− λ

)

(−1 − λ) +
γ

ε

]2

−

(σ

ε
e−λτ (−1 − λ)

)2

= 0, (10)

which gives the characteristic equation

λ2 − λ

(

ξ

ε
− 1

)

−
ξ

ε
+

γ

ε
± (λ + 1)

σ

ε
e−λτ = 0. (11)

This transcendental equation has infinitely many complex solutions
λ. Figure 8 shows the largest real part of λ vs τ . Obtaining ξ from
the above equation does not admit a simple form as with Ref. 23.
For all values of τ , the real part is negative and the modulus of the
real part of the eigenvalue decreases monotonically as τ increases.
Asymptotically for large τ , the eigenvalues are given by the quadratic
characteristic equation

λ2 + λ

(

|ξ |

ε
+ 1

)

+
|ξ | + γ

ε
= 0,

where we have used that ξ < 0. Its solutions

λ1,2 = −
1

2

(

|ξ |

ε
+ 1

)

(

1 ∓

√

1 − 4ε

(

|ξ | + γ

(|ξ | + ε)2

)

)

(12)

have always negative real parts. Hence, the equilibrium is always sta-
ble. For both γ = 0.5 [in Fig. 8(a)] and γ = 0.7 [in Fig. 8(b)], we

FIG. 8. Real part of eigenvalues λ vs the delay time τ for γ = 0.5 (a) and
γ = 0.7 (b). The equilibrium point of the system (4) for two coupled
FitzHugh–Nagumo units is stable for all parameter values shown. The curve shifts
slightly upward with increasing σ (see blow-up in the insets). The parameters are
set as ε = 0.01,β = −0.5.

FIG. 9. Phase projections in the (x1, x2) coordinate plane for the system (2) at
γ = 0.5 (a) and γ = 0.7 (b) with ε = 0.01 and β = −0.5. In the planes, the
stable equilibrium E, the in-phase (dotted red line), and the anti-phase (green
curve) periodic orbits are shown.

plot Re(λ) vs τ . Increasing γ does not seem to affect the stability of
the equilibrium point with respect to τ . Thus, the equilibrium point
coexists with limit cycle oscillations, and there is multistability in the
two coupled FitzHugh–Nagumo neurons. This property is verified
numerically and illustrated in Fig. 9 for two values of the parameter
γ . It is seen that there are three stable regimes in the phase plane,
i.e., the equilibrium point N and two limit cycles, one correspond-
ing to in-phase oscillations (dotted red line) and the other one to
anti-phase oscillations (green curve).

IV. DYNAMICS OF A RING OF FITZHUGH–NAGUMO

NEURONS WITH TIME-DELAYED COUPLING

Knowing the features of the emergence of oscillations in the
two FitzHugh–Nagumo neurons with delayed coupling, we extend
our studies to a ring of excitable FitzHugh–Nagumo neurons with
delayed coupling. This network is described by the following system
of equations:

ε
dxi(t)

dt
= xi(t) − x3

i (t)/3 − yi(t) +
σ

2P

i+P
∑

j=i−P

[xj(t − τ) − xi(t)],

(13)

dyi(t)

dt
= γ xi(t) − yi(t) + β , i = 1, . . . , N,

xi+N(t) = xi(t), yi+N(t) = yi(t),

where the index i of the dynamical variables xi and yi, i = 1, . . . , N
determines the position in the network and N = 50 is the total num-
ber of elements. The parameter P is the coupling range and denotes
the number of neighboring nodes where the ith oscillator is coupled
with from each side. Here, we consider the case when all the oscil-
lators are identical, and each of them interacts (through the variable
x) with one node from the left and one from the right. Thus, P = 1
corresponds to local coupling between the nodes. The boundary
conditions are periodic, and the initial states are fixed for each neu-
ron as follows: xi(t ∈ [−τ ; 0]) = x0

i and yi(t ∈ [−τ ; 0]) = y0
i , where

x0
i and y0

i are randomly uniformly distributed within the intervals:
xi(0) ∈ [−2, 2], yi(0) ∈ [−1, 1]. The other parameters have the same
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meaning as for the system (2). Delay-coupled networks of simpli-
fied FitzHugh–Nagumo systems have been studied numerically and
analytically for a ring and for more general topologies in Refs. 30,
56, and 67.

A. Delay-induced oscillations

We vary the coupling strength σ and the delay time τ in the
coupling term as in the case of the two coupled FitzHugh–Nagumo
neurons described above. Interestingly, the delay-induced oscilla-
tions in the ring equation (13) can only be in-phase synchronized
for any initial conditions under consideration, and stable anti-phase
oscillations are not observed.

We start with analyzing how the threshold of the oscillation
excitation depends on the coupling strength and the delay. We also
calculate distributions of the maximal Lyapunov exponent 3 in
the (τ , σ ) parameter plane, which are presented in Fig. 10 for two
different values of the dissipation parameter γ .

Our simulations show that all delay-induced oscillations in the
neural network (2) are regular [3 = 0 within the whole region of
oscillation existence (Fig. 10)]. Comparing the diagrams constructed
for the two delay-coupled FitzHugh–Nagumo neurons (Fig. 7) and
the neural network (Fig. 10) with delayed coupling gives evidence
of a similarity in the emergence of oscillations with respect to
the coupling strength and the delay in both cases. The maximal
Lyapunov exponent 3 decreases with decreasing delay in the non-
oscillatory regime as in the case of two coupled neurons. However,
the threshold with respect to σ is slightly larger for the network.
Thus, compared to the two coupled neurons, the region of self-
sustained oscillations decreases both with respect to the dissipation
parameter γ and delay τ . Since the scenario of oscillation excitation
is very similar for γ = 0.5 and γ = 0.7, we continue our numerical
studies of the neural network dynamics for the case of γ = 0.5.

We now fix the delay time to τ = 5 and explore the evolu-
tion of the ring dynamics as the coupling strength σ increases.

When σ is sufficiently small, the initial fluctuations cannot induce
oscillations in the network (13) (red and orange colors in the dis-
tribution in Fig. 10). Delay-induced oscillations occur when 3 ≈ 0
(light-yellow colors in the diagrams in Fig. 10). However, unlike the
case of two coupled neurons, only a part of the network begins to
demonstrate oscillations, while the rest remains quiescent. This is
similar to a bump state in neuroscience.68,69 The transient process
for σ = 0.3 is illustrated by a space-time plot in Fig. 11(a1). It is
seen that the transient process lasts a sufficiently long time within
several dozens of periods. There are one wide and three narrow clus-
ters, which demonstrate the oscillatory dynamics at the initial stage.
However, in the course of time, the size of the clusters changes and
the wide cluster significantly narrows, and one of the small clusters
completely disappears. As a result, only three clusters are observed
asymptotically, which is shown in the space-time plot in Fig. 11(a2),
where the vertical time scale is expanded for better visualization.
Note that the neurons in the two clusters are excited in-phase with
each other, while their instantaneous phases do not coincide with
those for the neurons in the third cluster. Apparently, the oscilla-
tion period is not strictly equal to the time delay, T = τ , but is very
close to it, T ≈ τ . Furthermore, the period can slightly change in
different clusters independently from each other. This leads to an
advance or delay of the instantaneous phases over a long observation
time. The rest of the ring oscillators remain quiescent. Moreover,
the oscillators of the clusters with oscillating dynamics demonstrate
their activity during a sufficiently short time and are at rest most of
the time between pulses caused by the delay, which is characteristic
for the FitzHugh–Nagumo oscillator dynamics. The instantaneous
spatial profile at the moment of oscillation excitation is shown in
Fig. 11(a3). The neurons are not excited simultaneously but with
a certain time lag. The neurons belonging to the quiescent cluster
and interacting with the edge elements of the oscillatory clusters are
also perturbed during the pulse excitation, but this perturbation is
still insufficient to excite the neurons. Apparently, increasing the
coupling strength σ can lead to the excitation of other neurons.

FIG. 10. Distributions of the maximal Lyapunov exponent 3 in the (τ , σ ) parameter plane for two different values of the dissipation parameter γ = 0.5 (a) and γ = 0.7
(b) for random initial conditions in the network (13). Other parameters: ε = 0.01, β = −0.5, P = 1, N = 50.
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FIG. 11. Delay-induced oscillations observed within the region with 3 ≈ 0 in the diagram in Fig. 10(a) for three increasing values of the coupling strength: σ = 0.3
(a1)–(a3), σ = 0.4 (b1)–(b3), and σ = 0.5 (c1)–(c3). The evolution of the network (13) dynamics is illustrated by space-time plots for the transient process within t ∈ [0, 250]
[left column, (a1)–(c1)] and the asymptotic process [middle column, (a2)–(c2)] within t ∈ [2475, 2500] and by snapshots for the xi variables [right column, (a3)–(c3), red curves].
The dotted line in (c3) corresponds to the quiescent regime. Note that the time scales in the left and middle columns are different. Other parameters: τ = 5, γ = 0.5,
ε = 0.01, β = −0.5, P = 1, N = 50.

We increase the coupling strength to σ = 0.4. The correspond-
ing space-time plots and the snapshot of the ring dynamics are
presented in Figs. 11(b1)–11(b3). As can be seen from the plots,
increasing σ causes the change in the transient time of the process.
The initial spatial distribution of the clusters is very similar to the
case of σ = 0.3 [Fig. 11(a1)]. However, the sizes of the oscillatory
clusters do not practically change in time, and the transient process
becomes sufficiently short. At the same time, the oscillation period
in different clusters continues to change slightly around the delay
time τ , and the neurons are not activated simultaneously. The stable
regime is exemplified by the space-time plot pictured in Fig. 11(b2).
The width of the oscillatory cluster remains the same as at the ini-
tial stage of oscillations. The instantaneous phases of oscillations in
different clusters are shifted with respect to each other, and their
phase differences are not constant in time, as in the case of σ = 0.3.

The snapshot of the system state taken for the stable regime at the
moment of oscillation excitation [Fig. 11(b3)] gives evidence that
the neurons are also excited with a certain lag as in the previous
case.

We continue to increase the coupling strength between the
FitzHugh–Nagumo neurons in (13) and now consider the case of
σ = 0.5. As follows from the space-time plot for the transient pro-
cess presented in Fig. 11(c1), the oscillations originate in the same
way as in the two previously considered cases due to the same set
of initial conditions. However, all the oscillatory clusters expand
over time. This effect is related to the fact that the edge neurons
of the oscillatory clusters interact with the quiescent neurons. Since
the coupling strength is sufficiently large, this interaction excites the
quiescent neurons, and thus, they join with the oscillatory clusters.
In turn, these neurons subsequently excite the adjacent elements.
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Thus, all the neurons of the network (13) begin to demonstrate the
oscillatory dynamics, which is observed over a sufficiently long time.
This asymptotically stable regime is illustrated by the space-time plot
shown in Fig. 11(c2). The neurons are not excited simultaneously,
and there is a short time lag at the initial state of excitation. The oscil-
lation period is strictly equal to T = τ . The instantaneous phases of
all the nodes are close to each other but not equal, which shows a
snapshot of the system state in Fig. 11(c3). The instantaneous pro-
file shows a certain spatial distribution of the xi values at the moment
of neuron excitation.

Our numerical simulations show that the duration of the tran-
sient process can depend on the number of initially excited neurons.
This fact is illustrated in Fig. 12 where the space-time plots are
depicted for the cases when one, two, random (about 30 nodes),
and all the network neurons (N = 50) are initially excited. The
numerical results testify that there is a critical number of initially
excited neighboring neurons, which allows the ring to demonstrate
the oscillatory behavior. All the network neurons remain in the qui-
escent state if only a single neuron is initially excited [Fig. 12(a)]
and show a gradual propagation of oscillation activity when at least
two neighboring neurons are initially excited [Fig. 12(b)]. How-
ever, in this case, the transient process is rather long, as is seen in
Fig. 12(b), while all the neurons are excited more rapidly when ran-
domly chosen neighboring neurons or all the neurons are initially
excited [Figs. 12(c) and 12(d)].

In order to demonstrate how the coupling strength σ affects
the number of excited (firing) neurons, we calculate distributions of
the ratio of the number of firing nodes Nf to the whole number of
neurons in the network N [Figs. 13(a) and 13(d)], the global order

parameter

r =

〈
∣

∣

∣

∣

∣

1

N

∑

i

ei2i

∣

∣

∣

∣

∣

〉

t

,

where 2i = arctan(yi/xi) denotes the geometric phase of the ith
unit,49 in the (τ , σ) parameter plane [Figs. 13(b) and 13(e)], and
spatial distributions of minimal values of xi variables in the (i, σ)

plane [Figs. 13(c) and 13(f)]. The notation 〈. . . 〉t means averaging
over time. The calculated dependences are plotted in Fig. 13 for
two values of the dissipation parameter γ = 0.5 [Figs. 13(a)–13(c)]
and γ = 0.7 [Figs. 13(d)–13(f)]. The distributions Nf/N(τ , σ) are
obtained using ten different sets of random initial conditions for
averaging the results.

As follows from the diagrams shown in Figs. 13(a) and 13(d)
and Figs. 13(b) and 13(e), two different threshold values with respect
to the coupling strength σ can be distinguished. Only a small part of
the neurons are excited when the first threshold, σth, min, is exceeded.
Below this value, all the neurons are quiescent and the order param-
eter r is very close to 1 [Figs. 13(b) and 13(e)]. As is seen from
the diagrams, the first threshold value is rather large for the case
of zero and very small delay times (τ < 2), rapidly decreases up to
a certain level as the delay time increases (τ > 4) and then remains
unchanged and independent of the delay time. Note that this thresh-
old value is higher for larger dissipation [it is about 0.21 for γ = 0.5,
Figs. 13(a) and 13(b)] and lower for smaller dissipation [it is about
0.1 for γ = 0.7, Figs. 13(d) and 13(e)].

When σ exceeds the first threshold value σth, min, the number of
firing neurons Nf begins to increase. This process can be divided into

FIG. 12. Delay-induced oscillations observed within the region with 3 ≈ 0 in the diagram in Fig. 10(a) for one (a), two (b), random (about 30 nodes) (c), and 50 (d) initially
excited neurons with σ = 0.5. The evolution of the network (13) dynamics is illustrated by space-time plots. Other parameters: τ = 5, γ = 0.5, ε = 0.01, β = −0.5,
P = 1, and N = 50.
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FIG. 13. Diagrams for the ratio of the number of firing nodes Nf to the whole number of neurons (a) and (d) and for the global order parameter r (b) and (e) in the (τ , σ)

parameter plane and spatial distributions of minimal values of variable x (quiescent: red, oscillatory: yellow) (c) and (f) for the delay time τ = 5 in the network (13) for two
different values of the dissipation parameter γ = 0.5 (a)–(c) and γ = 0.7 (d)–(f). Other parameters: ε = 0.01, β = −0.5, P = 1, and N = 50.

two stages: first, the number Nf increases slightly (first stage) and
then very abruptly (second stage). The first stage takes part within
a certain finite range of the coupling strength σ and is related to
partial synchronization [light green color in Figs. 13(b) and 13(e)].
This range is short in the case of τ = 1, while it expands for a larger
delay [Figs. 13(a), 13(b), 13(d), and 13(e)]. Moreover, for τ > 2, this
σ -range is twice wider for larger dissipation [Figs. 13(a) and 13(b)]
than in the case of smaller dissipation [Figs. 13(d) and 13(e)]. A sin-
gle or several clusters of neurons with the oscillating synchronous
dynamics are formed within this σ -range. The process of cluster
formation is well illustrated by the spatial distributions of mini-
mal values of the x coordinate shown in Figs. 13(c) and 13(f) for
fixed τ = 5. It is seen that the synchronous clusters are distributed
randomly along the network space and have varying widths. Our cal-
culations have indicated (not shown in this paper) that this property
depends on random initial condition distributions.

The σ -range corresponding to the first stage is bounded by the
second threshold value, σth, all, where all the neurons are excited and
Nf = N [full synchronization in Figs. 13(b) and 13(e)]. Note that
this transition occurs abruptly, and the second threshold is inde-
pendent of τ starting with τ > 1 [Figs. 13(a) and 13(d)]. Similar as
for the first threshold value described above, the value of σth, all is
larger for larger dissipation [it is about 0.48 for τ > 1 and γ = 0.5,
Figs. 13(a) and 13(b)] and smaller for smaller dissipation [it is about
0.19 for τ > 1 and γ = 0.7, Figs. 13(d) and 13(e)]. Panels (c) and
(f) in Fig. 13 show that this two-stage process describes a first-order
nonequilibrium phase transition from the quiescent state to full syn-
chronization via partial cluster synchronization with increasing σ

for fixed τ = 5. This is similar to nucleation phenomena found
in equilibrium and nonequilibrium systems, which have recently
become a focus of research on synchronization of networks.70 The
final step is an abrupt single-step transition to full synchrony.

In order to get more insight into the effect of dissipation on
the dynamics of the FitzHugh–Nagumo neuron network, we cal-
culate dependences of the two threshold values σth,min and σth,all vs
the dissipation parameter γ when γ is varied within the region of
excitable dynamics (region III in Fig. 1). The numerical results are
plotted in Fig. 14. It is seen that increasing γ (decreasing the dissipa-
tion) leads to a gradual and nonlinear decrease in the thresholds of
oscillation excitation. Besides, these values are visibly different for
0.4 < γ < 0.9, but when the dissipation parameter becomes very
large, γ > 0.9 (very low dissipation), and approaches the boundary
of the self-sustained oscillatory regime, the threshold values almost
coincide and vanish.

B. Linear stability analysis of the equilibrium

The variational equation for a ring network of delay-coupled
FitzHugh–Nagumo systems is given by

δẋ =
1

ε
Aδx(t) +

σ

ε
Bδx(t − τ), (14)

where x = (x1, y1, x2, y2, . . . , xN, yN) and N is the size of the ring
network considered. Here, N is set to be 50.

The analysis is similar to the one performed for the simpli-
fied FitzHugh–Nagumo model.30 For the network (14), we get the
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FIG. 14. Dependences of the threshold values σth,min (red curve with dots) and
σth,all (green dashed curve with dots) vs the dissipation parameter γ at τ = 5
for randomly distributed initial conditions in the network (13). Other parameters:
ε = 0.01, β = −0.5, P = 1, N = 50.

FIG. 15. Real part of the eigenvalues 3 vs delay time τ for γ = 0.5 (a) and
γ = 0.7 (b). The equilibrium point of system (14) for the ring of coupled
FitzHugh–Nagumo units is stable for all parameter values shown. The curve shifts
slightly upward with increasing σ (see blow-up in the insets). The parameters are
set as ε = 0.01,β = −0.5.

(a) (b)

(c) (d)

FIG. 16. Distributions of the maximal Lyapunov exponent 3 in the (τ , σ ) parameter plane for the network (13) for four different values of the coupling range P: (a) P = 2,
(b) P = 3, (c) P = 4, and (d) P = 5. Other parameters: ε = 0.01, β = −0.5, γ = 0.5, and N = 50.
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following expressions for the matrices A and B:

A =























ξ −1 0 0 . . . 0 0
γ ε −ε 0 0 . . . 0 0
0 0 ξ −1 . . . 0 0
0 0 γ ε −ε . . . 0 0
...

. . . . . .
...

...
0 . . . 0 0 . . . ξ −1
0 . . . 0 0 . . . γ ε −ε























, (15)

B =























0 0 1 0 0 . . . 1 0
0 0 0 0 0 . . . 0 0
1 0 0 0 1 . . . 0 0
0 0 0 0 0 . . . 0 0
...

. . . . . .
...

1 0 . . . 1 0 0 0
0 0 0 0 0 . . . 0 0























, (16)

where ξ = 1 − x∗
1

2 − σ . We apply the ansatz δx(t) = exp(λt)u to
(14), which gives the following eigenvalue problem:

(

A

ε
+

σB

2ε
exp(−λτ)

)

u = λu. (17)

To obtain the values of λ, we solve the determinant
∣

∣

∣

∣

A

ε
+

σB

2ε
e−λτ − λIN×N

∣

∣

∣

∣

= 0.

We also observe a similar trend in the Re(λ) vs τ plot for the ring of
FitzHigh–Nagumo units as in Sec. III B. For all values of τ , the real
part is negative and the modulus of the real part of the eigenvalue
decreases as τ increases and then tends to a fixed negative value
for larger τ . Hence, the equilibrium point of the system is stable.
With an increase in σ as shown in different colors in Fig. 15, the
curve slightly shifts upward. With an increase in γ to 0.7, we see that
the shape of the curve is similar. In conclusion, the quiescent equi-
librium is always stable. Therefore, the equilibrium point coexists

FIG. 17. Delay-induced oscillations in the case of nonlocal coupling shown in asymptotic spatiotemporal diagrams for a system (13) at (a) P = 2, σ = 0.42; (b) P = 2,
σ = 0.48; (c) P = 5, σ = 0.46; and (d) P = 5, σ = 0.48. Other parameters: ε = 0.01, β = −0.5, and N = 50.
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with limit cycle oscillations in regions where the oscillatory regime
is observed, and there is multistability.

V. INFLUENCE OF NONLOCAL COUPLING ON

DELAY-INDUCED OSCILLATIONS

To determine the effects of nonlocal coupling, we study the
oscillations in the oscillatory ring network (13) when each neuron
interacts with P neighbors from the left and from the right. We vary
the coupling range within P ∈ [2, 5] and calculate distributions of
the maximal Lyapunov exponent 3 in the (τ , σ ) parameter plane
within the same intervals of τ and σ variations as in Fig. 10. Numer-
ical results are shown in Fig. 16 for the fixed value of γ = 0.5.
If we compare these diagrams with those for the local coupling
[Fig. 10(a)], we can see that introducing nonlocal coupling leads to a
significant increase in the threshold values for inducing oscillations
with respect to both the delay time τ and the coupling strength σ .
Interestingly, there is a large difference between the threshold level
for the cases P = 1 [Fig. 10(a)] and P = 2 [Fig. 16(a)]. However, a
further growth of the coupling range P leads only to a weak increase
in the thresholds with respect to σ and τ .

At the same time, the dynamical regimes do not undergo any
qualitative changes in comparison with the case of local coupling
P = 1 illustrated in Fig. 11. The pulse duration and spatial features
remain very similar. The spatiotemporal dynamics of these regimes
are illustrated by space-time plots for P = 2 and P = 5 in Figs. 17(a)
and 17(b) and 17(c) and 17(d), respectively. The left column in
Fig. 17 demonstrates the case when only a part of the ring is fir-
ing (lower values of the coupling strength), while the right column
corresponds to the case when the whole system fires. Thus, the first
case is similar to that one shown in Fig. 11(b2) and the second col-
umn looks like the regime in Fig. 11(c2) for the system with local
coupling P = 1. As was shown,58 it is typical for nonlocal coupling
that multiple clusters are found for a small coupling range and single
clusters for a larger coupling range.

VI. CONCLUSIONS

Our detailed numerical analysis of the dynamics of the net-
works of delay-coupled FitzHugh–Nagumo oscillators with dis-
sipation has shown qualitative and, in some cases, quantita-
tive similarities with the dynamics of delay-coupled simplified
FitzHugh–Nagumo models.23,29,39,56 However, a number of specific
differences have been established, which are due to the dissipation
parameter γ in the considered neuron model.

Our numerical simulations of the dynamics of two delay-
coupled FitzHugh–Nagumo oscillators have demonstrated that the
threshold of inducing both in-phase and anti-phase periodic oscil-
lations in the system with respect to the coupling strength σ sub-
stantially depends on the dissipation parameter γ when the delay
time τ increases. The larger γ and, thus, the smaller the dissipa-
tion in the neuron, the less the σ threshold. The smaller dissipation
means that a substantially lower amplitude of excitation is needed
to induce oscillations in the FitzHugh–Nagumo neurons. Starting
with a certain value of τ , the σ threshold remains unchanged as
the delay time increases. The threshold for the oscillatory regime
with respect to the delay time τ does not depend on the dissipation

parameter, and as our calculations have shown, it is larger for induc-
ing in-phase oscillations than that for anti-phase oscillations. The
same peculiarity in the σ threshold is observed for the ring network
of locally delay-coupled FitzHugh–Nagumo oscillators. However, in
this case, the dissipation parameter γ also has a significant effect on
the τ threshold value for the occurrence of oscillations. When the
dissipation is low (γ is large), the delay-induced oscillations emerge
in the network for smaller values of τ as compared with the case
of large dissipation. A sufficiently high level of dissipation prevents
neurons to switch to the self-oscillatory mode; i.e., stronger coupling
is needed to excite neurons.

We have analyzed in detail the transition of locally delay-
coupled FitzHugh–Nagumo neurons from the quiescent to the oscil-
latory state for two different values of the dissipation parameter γ

when the coupling strength σ and the delay time τ are varied. For
this purpose, we have calculated and constructed the distributions
of the global order parameter and the ratio of the firing neurons to
the whole number of the network nodes. Both two-parameter dia-
grams have indicated the presence of two different threshold values
with respect to σ . The first value corresponds to the case when only
a small part of the neurons are excited, i.e., synchronous clusters
are formed, and the second one—when all the neurons demon-
strate self-sustained oscillations, i.e., full synchrony is reached. It
has been established that both threshold values of σ are substantially
smaller (at least twice) for weaker dissipation than for stronger dis-
sipation. The intermediate region with respect to σ (starting with
a small delay time τ ≈ 2) where the network neurons are conse-
quently excited is three times narrower for large γ as compared with
the case of smaller γ . With this, we have established a first-order
nonequilibrium phase transition from the quiescent state to the fully
synchronous state via cluster formation with increasing coupling
strength. The second, abrupt transition from clusters to full syn-
chrony is a single-step transition where multiple clusters abruptly
merge into one at a certain threshold coupling strength; it is sim-
ilar to nucleation phenomena recently observed in transitions to
synchrony in power grids71 and adaptive neuronal networks.70

We believe that the results presented in this work for networks
of delay-coupled FitzHugh–Nagumo neurons with dissipation will
contribute to the insight into synchronization transitions by general-
izing previous results obtained for the simplified FitzHugh–Nagumo
networks.
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