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ABSTRACT

We explore numerically the impact of additive Gaussian noise on the spatiotemporal dynamics of ring networks of nonlocally coupled chaotic
maps. The local dynamics of network nodes is described by the logistic map, the Ricker map, and the Henon map. 2D distributions of the
probability of observing chimera states are constructed in terms of the coupling strength and the noise intensity and for several choices of the
local dynamics parameters. It is shown that the coupling strength range can be the widest at a certain optimum noise level at which chimera
states are observed with a high probability for a large number of different realizations of randomly distributed initial conditions and noise
sources. This phenomenon demonstrates a constructive role of noise in analogy with the effects of stochastic and coherence resonance and
may be referred to as chimera resonance.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0164008

Random perturbations are inevitable and sometimes perma-
nently present in many real-world systems and thus can signifi-
cantly affect their functioning and characteristics. Investigating
the impact of random influences on the system dynamics enables
one to obtain more stable regimes of operation and to find effi-
cient ways of their control. Despite the generally accepted inter-
pretation of noise as a source of destruction, noise impacts can
sometimes play a counterintuitive beneficial role in the system
behavior by enhancing the degree of order or improving its char-
acteristics. Since real-world systems consist of interacting nodes
with different individual dynamics and coupling topologies and
can demonstrate various complex nonlinear patterns, studying
the robustness of spatiotemporal structures, such as, e.g., chimera
and solitary states,1–4 toward noise influences has become one of
the prominent research directions in different scientific fields.5–9

Recently, it has been shown that introducing noise in complex
networks of coupled nonlinear oscillators can induce new struc-
tures, which cannot exist without noise10–13 and can affect the

lifetime of amplitude chimera states.14–16 Multiplexing noise can
promote and control synchronization of complex structures in
multilayer networks.17,18 It has also been established that noise
sources can increase the probability of observing chimera states
in networks of nonlocally coupled chaotic maps within a rather
wide range of the noise intensity and the coupling strength.19 In
this case, noise plays a constructive role, which deserves to be
studied further in more detail. In the present paper, we explore
numerically the impact of additive white noise on the dynamics
and existence of chimeras in networks of nonlocally coupled logis-
tic maps, Henon maps, and Ricker maps. We elucidate how the
probability of chimera observation depends on the local dynam-
ics of individual nodes, the noise intensity, and the coupling
parameters. Our numerical results show that there is a resonance-
like dependence of the high probability of observing chimeras
with respect to the noise level and the coupling strength. In this
sense, the revealed phenomenon may be referred to as chimera
resonance.
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I. INTRODUCTION

The word “noise” is ordinarily associated with the term
“obstruction.” It was traditionally considered that the presence of
noise can only worsen or even destroy the operation of the sys-
tem. However, many recent research works have shown that noise
can sometimes play a constructive or beneficial role in nonlin-
ear dynamics. Studying the noisy dynamics is highly important
for understanding the processes that take place in real-world sys-
tems and has a significant practical importance for technological,
infrastructural, and communication networks; biological, epidemi-
ological, climate, and social processes; as well as in neurodynamics
and medicine;5–9 etc.

Noise sources in complex dynamical systems are able to induce
completely new regimes and patterns that cannot exist without
noise.5,20–26 These effects were called noise-induced transitions.5 Var-
ious studies have convincingly demonstrated that noise can enhance
the degree of order or coherence in a system or evoke improvement
of its performance.23,25,27 It can lead to the formation of more reg-
ular temporal and spatial structures and noise-induced and noise-
enhanced synchronization effects of various complex spatiotem-
poral patterns in networks21,28–32 and can cause the amplification
of weak signals accompanied by the growth of their signal-to-
noise ratio (stochastic resonance).20,24,33,34 Numerical studies have
shown that noise sources can also be used to stabilize and/or to
effectively control the operating modes of complex systems and
networks.5,6,21,22,26,35–37

Recently, the interest in the study of the noise effect on the
behavior of complex nonlinear systems has significantly increased
with the discovery of special spatiotemporal structures, such as
chimera states1,2,15,38–43 and solitary states.3,44–46 A chimera state rep-
resents an intriguing example of partial synchronization patterns
when spatially localized domains with coherent (synchronized)
and incoherent (desynchronized) dynamics coexist in networks
of coupled nonlinear oscillators.1,2 Chimera states appear along
the transition from complete synchronization (coherence) to fully
desynchronized spatiotemporal dynamics (incoherence).47–49 They
were studied theoretically and numerically1,2,38,40,41,50–56 and were also
observed experimentally.57–65 The performed investigations have
shown that chimera structures can be related to the processes occur-
ring in the brain and are also associated with various manifestations
of the nervous and brain activity of humans and animals.66–68

Solitary states represent another partial synchronization pat-
tern. In this case, an instantaneous spatial profile of the network
dynamics consists of a coherent part and a single or a set of iso-
lated spikes corresponding to elements that behave differently from
the coherent nodes. It has been shown that nonlocal coupling in
a network induces bistable dynamics of individual elements that
leads to the appearance of solitary states.3,4 These states have been
found numerically in a number of networks of oscillators,3,4,44,45,69

discrete-time systems,48,49,53,70 neural models,71–74 models of power
grids,75–77 and also experimentally in a network of coupled
pendula.63

Noise sources can be introduced into complex systems and net-
works in different ways and can have various characteristics and
statistics. They can be added additively to all network elements or
multiplicatively to the control parameters of a network. Noise can

influence the network dynamics via noise-modulated intra- or inter-
layer coupling. The latter is known as multiplexing noise.18,78 The
coupling coefficients can be modulated by both independent noise
sources and a common noise source. It has been found that intro-
ducing noise can induce novel spatiotemporal structures, such as
a coherence-resonance chimera in neural networks10 and a soli-
tary state chimera in networks of chaotic oscillators.79 The presence
of noise sources can either vanish or increase the lifetime of cer-
tain types of chimeras in ring networks of harmonic and chaotic
systems.14–16 It has recently been established that multiplexing noise
can induce and control partial and complete inter-layer synchro-
nization of complex structures in multilayer networks independent
of the characteristics of the dynamics of an individual element and
on the nature of the cluster structure (chimeras of different types
and solitary states) in the layer.17,18 It has also been shown that the

low-frequency multiplexing noise can produce solitary states in net-

works of nonlocally coupled discrete-time systems.18 In Ref. 80, it

has been shown that persistent noise-modulated parameters of local

dynamics or coupling strength in a network of nonlocally coupled

Lozi maps lead to reducing the domains of solitary state existence

with respect to the coupling strength, while solitary states may per-

sist in the case of randomly distributed parameters. Recently, it has

been shown that additive noise in a network of nonlocally coupled
logistic maps cannot only induce the appearance of chimera states
but also maximize the probability of their observation within a finite
range of the coupling strength and for rather strong noise.19 It has
also been established that there is a counterintuitive non-monotonic
dependence of the chimera existence upon noise intensity, which
is reminiscent of the constructive influence of noise known from
coherence resonance. However, it is still unclear how the probability
level of chimera observation in noisy networks of coupled oscillators
can depend on the local dynamics of individual nodes as well as on
the variation of coupling parameters (strength and range). Besides, it
is quite interesting to uncover whether the constructive role of noise
established in Ref. 19 is typical and general for networks of other
nonlinear oscillators.

In the present work, we continue and extend the investiga-
tions started in Ref. 19 and systematically study the impact of
additive Gaussian noise on the dynamics and chimera observa-
tion in networks of nonlocally coupled discrete-time systems. As
individual elements, we use the logistic map, the Henon map, and
the Ricker map. We construct 2D diagrams of typical dynamical
regimes that are observed in noise-free networks depending on the
local dynamics parameters and the coupling strength. After intro-
ducing additive noise, we calculate the probability of observing
chimera states in the three networks when the noise intensity and
the coupling strength are varied. The numerical results are summa-
rized in the 2D distributions of the probability drawn for several
selected values of the local dynamics parameters. It is shown that
the chimera existence demonstrates a resonance-like dependence
on the noise intensity and the coupling strength. Moreover, there
is an optimum noise level at which the interval of the coupling
strength within which chimeras are observed with a high or even
maximum probability is the widest. Thus, this fact constitutes the
constructive role of noise in analogy with stochastic and coherence
resonance.
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II. NETWORKS UNDER STUDY

A. Model equations of the network

The object of our numerical study is a ring network of non-
locally coupled discrete-time systems, which is subjected to addi-
tive noise. The network is described by the following system of
equations:

x(i, n + 1) = F(i, n) +
σ

2R

i+R
∑

j=i−R

[F(j, n) − F(i, n)] + Dξ(i, n),

(1)

y(i, n + 1) = G(i, n),

where x(i, n) and y(i, n) are dynamical variables, i = 1, 2, 3, . . . , N
numbers the elements in the ensemble and N = 1000 is the total
number of elements and n denotes the discrete time. Functions
F(i, n) and G(i, n) are defined by the right-hand sides of the equa-
tions of the respective discrete-time systems, which will be given
below. The elements within the ring are coupled through a nonlo-
cal scheme, i.e., each ith node is linked with 1 < R < N/2 neighbors
on the left and right. The parameter R denotes the coupling range
and σ is the coupling strength between the elements. The influence
of additive noise is determined by the last term in the first equation
of (1), where ξ(i, n) is a Gaussian noise source, and D is the noise
intensity.

B. Models and dynamics of individual elements

As individual elements in the network (1), we consider three
different discrete-time systems, namely, the logistic map,81,82 the
Ricker83 map, and the Henon map.84

The logistic map81,82 is a canonical one-dimensional map
[G(n) = 0 in (1)] that is characterized by chaotic dynamics and
multistability.85 The logistic map is described as follows:

xl(n + 1) = Fl(n) = αlxl(n)(1 − xl(n)), (2)

where xl(n) is the dynamical variable and αl is the control (bifurca-
tion) parameter. The transition to a chaotic attractor in the logistic
map occurs at α̃l ≈ 3.57 via a period-doubling bifurcation cascade,
which is clearly seen in the bifurcation diagram xl(αl) shown in
Fig. 1(a) for the isolated map. The system trajectories diverge to
infinity at αl > 4.0.

The one-dimensional Ricker map83 [G(n) = 0 in (1)] is defined
by the following equation:

xR(n + 1) = FR(n) = xR(n) exp

[

αR

(

1 −
xR(n)

K

)]

, (3)

where xR(n) is the dynamical variable, αR is the control (bifurca-
tion) parameter, and K is the carrying capacity of the environment.
The numerical studies have shown that in the presence of exter-
nal noise, trajectories of the network of nonlocally coupled Ricker
maps diverge to infinity and incoherent dynamics is not observed
in the network as compared with the cases of other individual ele-
ments. Therefore, in the present work, we use a modified Ricker map

proposed in Ref. 86,

xR(n + 1) = FR(n) = αR|xR(n)| exp[−xR(n)]. (4)

This map also demonstrates the transition to chaos via period-
doubling bifurcations at α̃R ≈ 4.77 [Fig. 1(b)]. In this case, the
system trajectories do not diverge to infinity for any value of αR.
The bifurcation diagram for the isolated modified Ricker map (4)
[Fig. 1(b)] shows that the maximum value of the dynamical variable
xR continues to grow linearly in the whole interval of the control
parameter variation. The regions of chaotic behavior alternate with
periodic windows, whose width narrows down as the parameter αR

increases.
The two-dimensional Henon map84 is given by the system of

equations,

xH(n + 1) = FH(n) = 1 − αH(xH(n))
2
+ yH(n),

yH(n + 1) = GH(n) = βHxH(n),
(5)

where xH(n) and yH(n) are the dynamical variables, and αH and
βH are the positive control parameters. The Henon map can be
reduced to the logistic map as βH → 0. When the control param-
eters are varied, a period-doubling bifurcation cascade takes place,
and a nonhyperbolic chaotic attractor85 appears in the Henon map.
The corresponding bifurcation diagram xH(αH) at fixed βH = 0.2
for the isolated Henon map is drawn in Fig. 1(c). Starting with
α̃H ≈ 1.15, the map demonstrates chaotic behavior, and at αH

> 1.61, trajectories diverge to infinity.
It was found38,47,49,53 that when logistic maps or Henon maps

are nonlocally coupled within a ring, the transition from complete
chaotic synchronization to spatiotemporal chaos is accompanied by
the appearance of amplitude and phase chimera states when the
coupling strength decreases.

Due to multistability of the considered networks of chaotic
maps, not all of the initial conditions provide chimera states. The
spatiotemporal dynamics of each network is studied for a set of 50
to 100 different realizations of randomly distributed initial states of
the dynamical variables (x(i, 0), y(i, 0)) and in each case, different
noise realizations. We use the same noise realizations for all coupling
strengths and noise intensities.

C. Quantitative measure

In our research, the changes in the network dynamics are illus-
trated and analyzed by means of instantaneous spatial distributions
of dynamical variables x(i) at a fixed time n (snapshots) and spa-
tiotemporal diagrams x(i, n) of the studied network. The evolution
of complex structures observed in the networks is also estimated
quantitatively by using the cross-correlation coefficient between the
network elements87

C1,i =
〈x̃(1, n)x̃(i, n)〉

√

〈(x̃(1, n))
2
〉〈(x̃(i, n))

2
〉
, i = 2, 3, . . . , N, (6)

where x̃ = x(n) − 〈x(n)〉, 〈x(n)〉 is the average of the x variable over
T = 50 000 iterations. The cross-correlation coefficient (6) indicates
the degree of correlation between the first and all the other nodes of
the network and takes the values within the interval [−1, +1]. Plot-
ting spatial distributions of C1,i values (i = 2, 3, . . . , N) enables one
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FIG. 1. Bifurcation diagrams for isolated maps: (a) the logistic map, (b) the modified Ricker map, and (c) the Henon map at βH = 0.2.

to diagnose the dynamics of the studied network and the type of
observed spatiotemporal structures. The boundary values C1,i = −1
and C1,i = +1 correspond to complete anti-phase and in-phase syn-
chronization, respectively, while C1,i = 0 relates to the incoherent
behavior of the elements (desynchronization). In the regime of a
phase chimera, values of the cross-correlation coefficient can alter-
nate irregularly between +1 and −1 within an incoherent cluster.87

In the case of partial phase shift, values of C1,i lie between [0,1] (or
[−1,0]), and this shift (these C1,i values) indicates the presence of
phase chimeras and solitary nodes. The aforementioned peculiari-
ties of the cross-correlation coefficient allow us to clearly distinguish
phase chimeras and solitary states while simulating the network
dynamics.

III. RESULTS

Our results show that the presence of additive noise of certain
intensities can induce the appearance and observation of chimera
states in the studied networks within a sufficiently wide range of the
nonlocal coupling strength σ . This σ -interval can be the widest at
a certain optimum noise level at which chimera states are observed
with a high probability for a large number of different realizations of
randomly distributed initial conditions. This phenomenon demon-
strates a constructive role of noise in analogy with the effects of
stochastic33,34 and coherence23,25 resonance and may be referred to
as chimera resonance. Note that our systems exhibiting chimera
resonance are not excitable, unlike the classical examples of coher-
ence resonance. However, there are cases when coherence resonance
occurs in non-excitable systems.88 Furthermore, we emphasize that
coherence resonance chimeras, as discussed in Refs. 10–13, are dis-
tinct from the “chimera resonance” introduced in our paper. In our
work, we investigate the influence of noise on a classical type of the
chimera state that is a phase chimera.

A. Network of nonlocally coupled logistic maps

We start with considering the spatiotemporal dynamics of the
ring network of nonlocally coupled logistic maps. In our simulation,
we fix the coupling range at R = 320 and vary the local dynamics
parameter αl ∈ [3.5, 4] and the coupling strength σ ∈ [0.15, 0.55].

We first study the noise-free case when D = 0 in (1).
Figures 2(a) and 2(b) show diagrams of dynamical regimes in the
logistic map network in the (αl, σ) parameter plane for two different
realizations of randomly distributed initial conditions. Four regions
can be distinguished in the diagrams. The red (COH) and gray
(INC) regions correspond to coherent and incoherent dynamics of
the network, respectively. The network dynamics is characterized by
snapshots with profile discontinuities inside the violet region (DC)
and chimera states are observed within the dark-blue region (CS).
Exemplary snapshots of the network dynamics, spatial distributions
of the cross-correlation coefficient (6) and space–time diagrams are
presented in Fig. 3 for each of the aforementioned regions.

The regime diagrams reflect their qualitative similarity but
there are some quantitative differences in the boundaries between
the regions with coherent and incoherent dynamics and between
the regions with coherent dynamics and snapshots with profile dis-
continuities (for αl < 3.7). The αl range in the regime diagrams
[Figs. 2(a) and 2(b)] can be divided into two subranges each corre-
sponding to a different transition from incoherence to coherence as
the coupling strength σ increases. In the first case, when αl < 3.6
[Fig. 2(a)] or αl < 3.65 [Fig. 2(b)], there is a direct transition to
the coherent dynamics of all network elements [Fig. 3(d)], which
occurs for sufficiently weak coupling. In this case, the values of the
control parameter αl correspond to local periodic or weakly chaotic
behavior of individual nodes in time [Fig. 1(a)].

Within the second subrange, αl > 3.6 [Fig. 2(a)] or αl > 3.65
[Fig. 2(b)], the transition to coherence is accompanied by the
appearance of chimera states [Fig. 3(b)] and profiles with discon-
tinuities [Fig. 3(c)] when σ increases. A small region of coherence
(red color) can be noted in the regime diagrams at αl ≈ 3.85 near
the boundary of the region of snapshots with profile discontinuities
(violet color). This “coherent window” corresponds to the exis-
tence of a periodic window in the isolated logistic map [Fig. 1(a)].
Besides, there is a small finite region of snapshots with profile
discontinuities within the coherence region for αl ∈ [3.68, 3.71]
[Figs. 2(a) and 2(b)]. Thus, two ways of transition to coherence
can be distinguished for the second subrange of the αl varia-
tion: (1) “incoherence → chimera state → snapshot with profile
discontinuities → coherence”, (2) “incoherence → chimera state
→ snapshot with profile discontinuities → coherence
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FIG. 2. 2D diagrams of spatiotemporal regimes (a) and (b) and of corresponding
temporal dynamics (c) and (d) for the noise-free network of nonlocally coupled
logistic maps in the (α l , σ ) parameter plane for two different realizations of initial
conditions randomly distributed within the interval [0, 1]. COH is coherence or
complete synchronization between elements, DC corresponds to snapshots with
profile discontinuities, CS is chimera states, and INC is incoherence. The color
scale in (c) and (d) indicates the period of temporal dynamics. Other parameters:
R = 320, N = 1000, D = 0.

(“coherent window”) → snapshot with profile discontinuities
→ coherence.” As a consequence, and it will be shown further, there
are two different impacts of additive noise on the probability of
observing chimera states.

In order to get insight into the temporal dynamics of nonlo-
cally coupled logistic maps, we calculate and plot two-parameter
diagrams of oscillation period distributions, which correspond to
the regime diagrams shown in Figs. 2(a) and 2(b). The obtained dis-
tributions of regular and chaotic dynamics of all network elements
in time are presented in Figs. 2(c) and 2(d). It is seen that within
the coherence region [red color in Figs. 2(a) and 2(b)], the tem-
poral dynamics of the network can be either regular with different
periods or irregular depending on the value of αl. The incoherent
spatial structure of the network [gray color in Figs. 2(a) and 2(b)]
is characterized by periodic and irregular dynamics of the nodes in
time and period-doubling bifurcations occur in the network as the
parameter αl increases [Figs. 2(c) and 2(d)]. Inside the regions of
snapshots with profile discontinuities and of chimera states [violet
and dark-blue colors in Figs. 2(a) and 2(b), respectively], subse-
quent period-doubling bifurcations are realized in time when the
coupling strength σ is decreased.38 Note that if the phase chimera38,41

is observed in the network, the nodes demonstrate regular dynamics
in time with periods T = 2, 4, 8. In the case of amplitude chimera,41

the temporal behavior of the network elements is chaotic.
We now introduce additively a Gaussian noise source Dξ(i, n)

into the logistic map network (1) and analyze how the observation
of chimera states depends on the noise intensity, the local dynamics
parameter and the coupling parameters. In order to get statistically
significant results, we use 50 or 100 different pairs of realizations

FIG. 3. Exemplary snapshots of the x(i) variables (upper row), spatial distributions of C1,i (6) (middle row), and space–time diagrams x(i, n) (lower row) for four typical
regimes in the noise-free network of nonlocally coupled logistic maps [Figs. 2(a) and 2(b)]: (a) incoherence (INC) for σ = 0.16, (b) chimera state (CS) for σ = 0.29, (c)
snapshots with profile discontinuities (DC) at σ = 39, and (d) coherence (COH) at σ = 0.47. Other parameters: α l = 3.8, R = 320, N = 1000, D = 0.
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of initial conditions randomly distributed in the interval [0, 1] and
noise realizations.

Figure 4 shows distribution diagrams for the probability of
observing chimera states in the logistic map network in the (σ , D)
parameter plane for four different values of the local dynamics
parameter αl. The quantity P is the normalized number of initial
realizations P = K/M, where K is the number of initial sets for which
chimeras arise in the network and M is the total number of ini-
tial realizations used. The first two diagrams [Figs. 4(a) and 4(b)]
correspond to the αl values for which the coherent window is
observed within the region of snapshots with profile discontinuities
[see Figs. 2(a) and 2(b)]. In this case, the probability distributions
have two regions with a maximal (or very close to it) probability sep-
arated by a zero-probability region [Figs. 4(a) and 4(b)]. Note that in
the noise-free case, chimera states exist mainly at small values of the
coupling strength: around σ ≈ 0.26 for αl = 3.69 and σ ≈ 0.27 for
αl = 3.7, while only profiles with discontinuities are observed for
larger values of σ . As follows from the distribution diagrams, even
the low-intensity additive noise not only extends the existing inter-
val with a high probability of observing chimeras [yellow and orange
colors in Figs. 4(a) and 4(b)] but also induces the appearance of
chimera states (with a non-zero probability) in the strong coupling
range. With increasing noise intensity, the regions of chimera exis-
tence in the weak coupling range decrease and then disappear when
D ≈ 0.0017 for αl = 3.69 [Fig. 4(a)] and D ≈ 0.0027 for αl = 3.7
[Fig. 4(b)]. The noise-induced chimera observed in the strong cou-
pling range appears to be more stable toward the additive noise and
exists up to D ≈ 0.0056 for αl = 3.69 [Fig. 4(a)] and D ≈ 0.0081 for
αl = 3.7 [Fig. 4(b)]. As the local dynamics parameter αl increases
further, the region of non-zero probability expands with respect to
both the coupling strength and the noise intensity. However, a small
region with P ≈ 0.5 can still exist in the strong coupling range when
αl lies near the coherent window [Fig. 4(c)].

For the values of αl when there is no coherent window in the
region with profile discontinuities [Figs. 2(a) and 2(b)], the proba-
bility distribution for the observation of chimera states occupies a
single region in the (σ , D) parameter plane. A typical distribution is
shown in Fig. 4(d), it is seen that chimeras can be observed in the
noisy network with a maximum and non-zero probability [yellow
region in Fig. 4(d)] within a rather wider interval of the coupling
strength σ . This σ -interval is gradually narrowing as D increases
up to D ≈ 0.014 for αl = 3.8 [Fig. 4(d)]. Besides, for weak noise,
the region with high probability expands toward larger values of the
coupling strength σ .

As follows from the presented diagrams [Figs. 4(c) and 4(d)],
the width of the noise intensity D range of a non-zero probabil-
ity changes as the coupling strength increases within the σ -interval
corresponding to the observation of chimeras with a high probabil-
ity. This D-range first gradually expands, achieves its maximum at a
certain value of σ , e.g., at σ ≈ 0.33 for αl = 3.75 [Fig. 4(c)] and at
σ ≈ 0.35 for αl = 3.8 [Fig. 4(d)], and then gradually decreases when
σ approaches the right boundary of the σ -interval.

It can also be noticed from the distribution diagrams [Figs. 4(c)
and 4(d)] that there is a certain optimum noise level (Dopt) at which
the width of the σ -interval corresponding to the high probabil-
ity of observing chimeras (P > 0.95) is the largest. In our cases,
at Dopt ≈ 0.0028 σ ∈ [0.28, 0.36] for αl = 3.75 [Fig. 4(c)] and at

FIG. 4. Distribution diagrams for the probability P of observing chimera states in
the (σ ,D) parameter plane in the logistic map network for different values of the
local dynamics parameter α l : (a) α l = 3.69, (b) α l = 3.7, (c) α l = 3.75, and (d)
α l = 3.8. The diagrams are plotted using M = 50 different pairs of realizations
of random initial conditions and noise realizations. Other parameters: R = 320,
N = 1000.

Dopt = 0.0032 σ ∈ [0.29, 0.36] for αl = 3.8 [Fig. 4(d)]. Thus, the σ -
interval can be significantly increased by appropriately tuning the
additive noise intensity to a certain non-vanishing value. Such an
effect demonstrates a constructive role of additive noise, which is
clearly manifested and typical for the phenomena of stochastic33,34

and coherence23,25 resonance. In this context, the revealed peculiar-
ity of the influence of noise on the observation of chimera states
may be called chimera resonance. This resonance-like effect is not an
exclusive feature of the dynamics of the noisy network of nonlocally
coupled logistic maps but, as will be described below, is typically
realized in networks of other chaotic discrete-time systems in the
presence of additive noise.

The evolution of the logistic map network dynamics both with-
out and in the presence of noise with increasing intensity is illus-
trated in Fig. 5 for weak [Figs. 5(a)–5(c)] and strong [Figs. 5(d)–5(f)]
coupling between the nodes. In the first case (at σ = 0.28), the
additive noise first induces the expansion of incoherence clusters
of a phase chimera [compare Figs. 5(a) and 5(b)] and appearance
of an amplitude chimera [Fig. 5(b), 750 < i < 1000] and a soli-
tary state chimera [Fig. 5(b), 270 < i < 410]. The further increase
of noise intensity leads to the incoherent dynamics [Fig. 5(c)], i.e.,
the chimera state is destroyed. A more interesting impact of noise
is observed for strong coupling, e.g., for σ = 0.38 [Figs. 5(d)–5(f)]
when the noise-free network dynamics is characterized by a snap-
shot with profile discontinuities [Fig. 5(d)]. Weak additive noise
causes the oscillators located near the profile discontinuities to jump
to the other coherent branch and thus induces the formation of inco-
herence cluster, i.e., noise promotes the appearance of a chimera
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FIG. 5. Snapshots of the x(i) variables (upper row), spatial distributions of
the cross-correlation coefficient (middle row), and spatial distributions of the
cross-correlation coefficient (lower row) for the logistic map network for different
values of the noise intensity and for weak (a)–(c) and strong (d)–(f) coupling: (a)
D = 0, σ = 0.280, (b) D = 0.001 65, σ = 0.280, (c) D = 0.0055, σ = 0.280,
(d) D = 0, σ = 0.380, (e) D = 0.004, σ = 0.380, (f) D = 0.0112, σ = 0.380.
Other parameters: α l = 3.8, R = 320, N = 1000. The insets in (e) top row show
blow-ups.

state [Fig. 5(e)]. With a higher noise intensity, the spatial profile is
smeared out (in spite of slight noise-induced fluctuations of ampli-
tudes of the network nodes), which is clearly seen in the distribution
of cross-correlation coefficients [Fig. 5(f)].

We now consider in more detail how the probability P of
observing chimeras changes when the noise intensity and the cou-
pling parameters (strength σ and range R) are varied and the local
dynamics parameter is fixed at αl = 3.8. The dependence of P vs σ is
presented in Fig. 6(a) for five different values of the noise intensity
D. It is clearly seen that in all cases, the plots have a resonant-like
shape. When D = 0, a non-zero probability exists within the inter-
val σ ∈ [0.238, 0.401]; however, its maximum value P = 1 is never
reached. With introducing additive noise of a very low intensity,

the σ -interval within which the chimeras are observed can slightly
decrease, but there appears a finite σ -range in which the probability
of chimera existence is maximum (P ≈ 1) [the plot for D = 0.002 in
Fig. 6(a)]. A further increase in the noise intensity essentially nar-
rows the σ -interval of the high probability of chimera observation
[the cases of D = 0.008, D = 0.011, D = 0.013 in Fig. 6(a)]. Besides,
both the location of the σ -interval and the resonant value of σ cor-
responding to the maximum probability shift toward larger values
of coupling strength σ .

The 2D diagrams of probability distributions (Fig. 4) can be
analyzed using selected sections of the parameter σ . For our cal-
culations, the diagram for αl = 3.8 presented in Fig. 4(d) is used.
Figures 6(b) and 6(c) show dependences of the probability P on
the noise intensity D for 10 different values of σ . In this case, it is
more convenient to divide the entire σ -interval of chimera observa-
tion into two subintervals corresponding to weak [σ ∈ [0.23, 0.31],
Fig. 6(b)] and strong [σ ∈ (0.31, 0.4], Fig. 6(c)] coupling. In the
case of weak coupling, there is a finite range with respect to D
where the probability P is almost constant, for example, this is
D ∈ [0, 0.0055] for σ = 0.29 [green curve in Fig. 6(b)]. For larger σ ,
e.g., σ = 0.30, 0.31 [red and blue curves in Fig. 6(b), respectively],
the value of P increases and can achieve its maximum value (P ≈ 1),
which remains unchanged over a rather wide range with respect to
D. The probability begins to rapidly vanish after a certain value of
D, which depends on the coupling strength. The described peculiar-
ities are also observed for the case of strong coupling [Fig. 6(c)]. It is
clearly seen that there is a certain (resonant) value of σ for which the
D-range of the high probability of observing chimeras is the widest
[green line at σ = 0.34 in Fig. 6(c) for which D ∈ [0.001, 0.0105])].
Comparing all the plots shown in Figs. 6(b) and 6(c), one can con-
clude that there are coupling strengths (e.g., σ = 0.32, 0.34, 0.36,
0.37) for which additive noise with even a very low noise intensity
(D 6 0.001) can significantly increase the probability of observing
chimeras even up to 1, while without noise this probability is very
small.

In order to verify the generality of the revealed effect of chimera
resonance, we have carried out numerical simulations for several
values of the coupling range R in the logistic map network. Cal-
culations were performed using 100 different pairs of random ini-
tial conditions realizations and noise realizations and the obtained
results are presented in Figs. 7(a)–7(c). The dependence of the max-
imum probability Pmax on the noise intensity D is shown in Fig. 7(a)
for five different values of R (see legend in the figure). Note that
without noise (D = 0) Pmax does not exceed 0.98 (for R = 300) for
all the considered cases of R and only the introduction of additive
noise into the network can increase the maximum value of P to 1.
This absolute maximum is preserved within a finite and rather wide
D-range [0.001, 0.011]. The coupling strength σ corresponding to
the maximum probability of chimera observation grows as the noise
intensity D increases [Fig. 7(b)], and this is valid for all selected val-
ues of R. However, when the noise intensity exceeds the value of
0.014, the chimera states are destroyed. Thus, we cannot speak about
σ(Pmax) since the probability of observing chimeras is equal to 0.
As a consequence, all the curves shown in Fig. 7(b) terminate. It is
worth noting that the dependence of σ(Pmax) is a non-monotonic
function of D and a dip in the curves shown in Fig. 7(b) occurs
around D ≈ 0.006. In order to get insight into this peculiarity, we
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FIG. 6. Dependences of the probability P of observing chimera states in the logistic map network (a) on the coupling strength σ for five different values of the noise intensity
D, (b) and (c) on the noise intensity D for different values of σ . The graphics are plotted using M = 100 different pairs of realizations of random initial conditions randomly
distributed in the interval [0, 1] and noise realizations. Other parameters: α l = 3.8, R = 320, N = 1000.

include the distribution diagram shown in Fig. 4(d) as the inset in
Fig. 7(b), where the green curve shows how the value of σ(Pmax)

changes as D increases (this green curve relates to R = 320 and
fully corresponds to the green curve in the main picture). It is seen
that at first σ(Pmax) increases monotonically for D ≤ 0.002 and then
slightly decreases when 0.002 < D < 0.006. It can be mentioned
that the shape of the probability distribution significantly changes
at D = 0.006 [see the inset in Fig. 7(b)]. As a consequence, when
D > 0.006, the coupling strength σ(Pmax) again continues to grow
monotonically as a function of D and vanishes abruptly at the noise
level, which relates to the disappearance of chimera states.

The effect of chimera resonance is well illustrated in Fig. 7(c)
that shows the impact of additive noise of different intensity on

the width of the σ -interval at the mean probability level (upper
five curves σ mean

w ) and at the level of 0.95 of the maximum
probability (lower five curves σ max

w ) for five different values of the
coupling range R. The probability levels are schematically marked in
the two resonant curves P(σ ) shown in the insets in Fig. 7(c). The
presented dependences have a resonant-like form and give evidence
that there is a certain optimum noise level D (different for different
R) at which the width of the σ -interval corresponding to the maxi-
mum probability of observing chimeras is the largest. It can also be
noted that the width of the largest σ mean

w and σ max
w intervals decreases

as the coupling range R decreases. The maximum width of both σ -
intervals is observed for R = 340 and the minimum—for R = 280
[blue and black curves in Fig. 7(c), respectively].

FIG. 7. (a) The maximum probability of chimera observation Pmax vs the noise intensity D for five different values of the coupling range R, (b) the coupling strength σ(Pmax),
at which the maximum chimera probability is observed, vs the noise intensity D for five different values of R [see the legend in (a)], and (c) the width of the σ -interval at the
mean probability level (upper five curves σmean

w ) and at the level of 0.95 of the maximum (lower five curves σmax
w ) vs the noise intensity D for five different values of R [see the

legend in (a)]. The probability levels (σmean
w and σmax

w ) are schematically marked in the two resonance curves P(σ ) shown in the insets in (c). The graphics are plotted using
M = 100 different pairs of realizations of random initial conditions randomly distributed in the interval [0, 1] and noise realizations. Other parameters: α l = 3.8, N = 1000.
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We should note that as was shown in Ref. 38 almost no chimera
states can be observed in ensembles with larger values of R. Hence,
it is difficult to obtain significant results on the noise influence for
very large values of R. On the other hand, at smaller values of R pat-
terns with a wave number k > 1 occur,38 and there is a scaling law
between R and the coherent profiles with wave number k.48 In this
case, we assume that adding noise leads to the same effects, except
that distribution diagrams for the probability may have different
structures [differences like, e.g., between Figs. 4(a) and 4(d)]. Addi-
tionally, we believe that the effect of chimera resonance will persist
in the presence of additive noise in networks of different sizes (larger
or smaller than N = 1000). The main point is to choose an appro-
priate, rescaled coupling range R so that “well pronounced” phase
chimeras occur.

B. Network of nonlocally coupled Henon maps

We now proceed to analyze the impact of additive noise on
the probability of observing chimera states in a network of nonlo-
cally coupled Henon maps (5). As in Sec. III A, we first construct
2D diagrams of dynamical regimes [Figs. 8(a) and 8(b)], which
typically exist in the noise-free network and the corresponding dia-
grams of temporal behavior [Figs. 8(c) and 8(d)] in the (αH, σ )
parameter plane for two different realizations of initial conditions
randomly distributed in the intervals x(i, 0) ∈ [−0.5, 0.5] and y(i, 0)

FIG. 8. 2D diagrams of spatiotemporal regimes (a) and (b) and of corresponding
temporal dynamics (c) and (d) for the noise-free network of nonlocally coupled
Henon maps in the (αH , σ ) parameter plane for two different realizations of initial
conditions randomly distributed in the intervals x(i, 0) ∈ [−0.5, 0.5] and y(i, 0) ∈

[−0.15, 0.15]. COH is coherence or complete synchronization between elements,
DC corresponds to snapshots with profile discontinuities, CS is chimera states,
and INC is incoherence. The color scale in (c) and (d) indicates the period of
temporal dynamics. Other parameters: βH = 0.2, R = 320, N = 1000, D = 0.

FIG. 9. Distribution diagrams for the probability P of observing chimera states
in the (σ ,D) parameter plane for the Henon map network for different values of
the local dynamics parameter αH : (a) αH = 1.22, (b) αH = 1.35, (c) αH = 1.4,
and (d) αH = 1.6. The diagrams are plotted using M = 50 different pairs of real-
izations of random initial conditions and noise realizations. Other parameters:
βH = 0.2, R = 320, N = 1000.

∈ [−0.15, 0.15]. We fix βH = 0.2 (5) and the nonlocal coupling
range R = 320.

As in the case of the logistic map network (Sec. III A), the net-
work of nonlocally coupled Henon maps demonstrates four typical
dynamical regimes when αH and σ are varied [Figs. 8(a) and 8(b)].
When αH ∈ [1.0, 1.15], only coherent dynamics is observed in the
Henon map network for the whole range of σ ∈ [0.1, 0.6]. In this
case, the elements oscillate periodically in time with T = 4 and
T = 8, i.e., there is a period doubling in time38,47 as 1.0 < αH < 1.15
[Figs. 8(c) and 8(d)]. Such temporal behavior is in full accordance
with the dynamics of the uncoupled Henon map [Fig. 1(c)]. A tran-
sition from incoherence to coherence occurs through the existence
of chimera states when αH ∈ [1.15, 1.6]. With this, two different
routes of the transition can be clearly distinguished with increasing
coupling strength, namely, with the presence of “coherent win-
dow” (1.27 < αH < 1.43) and without it (αH < 1.27 and αH > 1.43)
[Figs. 8(a) and 8(b)]. As in the case of the logistic map ensemble,
the elements of the Henon map ring demonstrate periodic dynam-
ics mainly with T = 8 within the “coherent window” [Figs. 8(c)
and 8(d)], and the coherent window is much wider than in the logis-
tic map. Inside the coherence region located above the region of
snapshots with profile discontinuities at σ > 0.42, there are 2- and
8-periodic oscillations, while at σ > 0.48, the temporal dynamics of
the elements becomes practically chaotic [black region in Figs. 8(c)
and 8(d)]. Note that there is a wide periodic window within the
interval 1.432 < αH < 1.46 for the isolated Henon map [Fig. 1(c)].
Within the same range of αH variation, the Henon map network
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FIG. 10. 2D diagrams of spatiotemporal regimes (a) and (b) and temporal dynam-
ics (c) and (d) for the noise-free network of nonlocally coupled modified Ricker
maps in the (αR, σ ) parameter plane for two different realizations of initial con-
ditions randomly distributed within the interval [−1, 1]. COH is coherence or
complete synchronization between elements, DC corresponds to snapshots with
profile discontinuities, SS is solitary states, CS is chimera states, and INC is inco-
herence. The color scale in (c) and (d) indicates the period of temporal dynamics.
Other parameters: R = 320, D = 0, N = 1000.

demonstrates an earlier transition to coherent dynamics with respect
to σ than for larger values of αH [Figs. 8(a) and 8(b)].

We now add external noise to the Henon map network and
study its influence on the probability of appearing and existing
chimera states as the noise intensity D and the coupling strength
σ are varied. Figure 9 shows distribution diagrams for the proba-
bility of observing chimera states in the Henon map network in the
(σ , D) parameter plane for four different values of the local dynam-
ics parameter αH. As is seen from the diagrams of spatiotemporal
regimes [Figs. 8(a) and 8(b)], each of the two routes of “inco-
herence–coherence” transition occupies a rather wide range with
respect to the parameter αH. Our simulations show that this fact can
lead to the appearance of one [Figs. 9(a) and 9(d)] or two [Figs. 9(b)
and 9(c)] regions with a high probability P of chimera observation.
For a small value of αH and for any noise intensity D, chimera states
can exist only for weak coupling [Fig. 9(a)]. When αH increases,
a second region corresponding to the high probability of chimera
observation appears in the region of larger values of the coupling
strength [Figs. 9(b) and 9(c)]. With this, the two-region probabil-
ity distributions are more extended in size than in the case of the
logistic map network [compare Figs. 9(b) and 9(c) and Figs. 4(a)
and 4(b)]. As is seen from Figs. 9(b) and 9(c), the two regions of
the high probability are separated by a “channel” (the violet region)
which is related to a low probability of chimera existence. The width
of this channel decreases as αH successively increases and eventually
(at αH = 1.6) there is a single region of high probability of observ-
ing chimeras [Fig. 9(d)], as in the case of αH = 1.22 [Fig. 9(a)].
However, for large values of αH, this region is shifted toward the
range of strong coupling, and the resonant value of σ at which

FIG. 11. Snapshots of the x(i) variables (upper row), spatial distributions of the cross-correlation coefficient (middle row), and space–time diagrams x(i, n) (lower row) for
different values of the local dynamics parameter αR and the coupling strength σ in the noise-free network of modified Ricker maps: (a) αR = 20.3, σ = 0.2875 (chimera
state), (b) αR = 38.3, σ = 0.1875 (solitary state), (c) αR = 38.3, σ = 0.2 (coexistence of chimera and solitary state), (d) αR = 38.3, σ = 0.418 75 (solitary state). Other
parameters: R = 320, D = 0, N = 1000. The insets in (a) top row show blow-ups.
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FIG. 12. Distribution diagrams for the probability P of observing chimera states
in the (σ ,D) parameter plane for the modified Ricker map network for different
values of the local dynamics parameter αR: (a) αR = 17.5, (b) αR = 20.0, (c)
αR = 21.0, (d) αR = 22.0, (e) αR = 30.0, and (f) αR = 44.0. The diagrams are
plotted using M = 50 different pairs of realizations of random initial conditions
and noise realizations. Other parameters: R = 320, N = 1000.

chimeras are observed within a sufficiently wide range of the noise
intensity also becomes larger (σ ≈ 0.35 for αH = 1.6) as compared
with the case of small values of αH (σ ≈ 0.195 for αH = 1.22). Note
that at αH = 1.6 chimeras are observed within a significantly wider
region with respect to the noise intensity D, than at αH = 1.22 [com-
pare Figs. 9(a) and 9(d)]. We suppose that these peculiarities may
be caused by a highly developed chaotic dynamics observed in the
isolated Henon map at αH = 1.6.

The probability distributions of chimera observation obtained
for the noisy network of nonlocally coupled Henon maps also
demonstrate and verify the effect of chimera resonance. There is a
certain optimum noise level at which the σ -interval corresponding
to the high probability of existing chimeras is the largest. For exam-
ple, at Dopt ≈ 0.0022 σ ∈ [0.158, 0.207] for αH = 1.22 [Fig. 9(a)] and
at Dopt ≈ 0.002 and σ ∈ [0.338, 0.401] for αH = 1.6 [Fig. 9(d)]. Note
that in the case of two-region (bimodal) probability distributions
there exist two different optimum noise intensities which are related
to the two widest σ -intervals.

C. Network of nonlocally coupled modified Ricker

maps

Finally, we analyze numerically the dynamics of the third net-
work of nonlocally coupled modified Ricker maps (4) both without
and in the presence of additive noise (1). Our calculations show that
this network can exhibit both chimeras and solitary states when the
local dynamics parameter αR is varied. In analogy with the previ-
ously considered networks (Secs. III A and III B), we construct 2D
diagrams of spatiotemporal regimes and temporal dynamics distri-
butions in the (αR, σ ) parameter plane for the noise-free network of
Ricker maps. The results are shown in Fig. 10. Along with the same
four regions with typical regimes (incoherence, coherence, snap-
shots with profile discontinuities, and chimera states), which are
also observed in the logistic map and Henon map networks, two
new regions appear in the (αR, σ ) plane [yellow-colored regions in
Figs. 10(a) and 10(b)], which correspond to the existence of solitary
states at weak and strong coupling. The Ricker map is a modified
logistic map, so it is plausible that the Ricker map demonstrates
a nonhyperbolic chaotic attractor like the logistic map. In Ref. 53,
it was shown that chimera states appear in ensembles of elements
with a nonhyperbolic chaotic attractor, but solitary states are typi-
cal for networks of oscillators with quasihyperbolic chaotic attractor.
However, note that increasing the local parameter αR of the Ricker
map leads to fewer, narrow periodic windows [Fig. 1(b)], and in this
case, the Ricker map is characterized by highly developed chaotic
behavior. The latter may promote the appearance of solitary states in
networks of coupled Ricker maps for weak nonlocal coupling (when
the local dynamics of individual elements dominates). Our investi-
gations have shown that indeed solitary states are more likely than
chimera states at αR > 100 (at the studied values of the coupling
strength 0 < σ < 0.55).

A chimera state regime is exemplified in Fig. 11(a) by a
snapshot of the x(i) variables, a spatial distribution of the cross-
correlation coefficient (6), and a space–time diagram x(i, n). The
chimera states observed in the Ricker map network and the logis-
tic map network differ only in the amplitude of oscillations of
individual elements.

As can be seen from the diagrams in Figs. 10(a) and 10(b),
the αR range can be divided into two subranges each related to a
different route of the transition from incoherence to coherence as
the coupling strength σ increases. The abrupt change to coherence
occurs within the first subrange (αR < 17.2). The second subrange
(αR > 17.2), in which the chimera states are observed in the Ricker
map network, corresponds to the transition to coherence through
both the presence of “coherent window” (17.2 < αR < 22) and with-
out it (αR > 22). However, it is worth noting that the second route
is also accompanied by the appearance of solitary states (before
the appearance of chimera states) which are observed in the Ricker
map network at decreasing values of the coupling strength as the
parameter αR increases [Figs. 10(a) and 10(b)].

Solitary states begin to appear in the Ricker map network at
αR > 23.4 [Figs. 10(a) and 10(b)]. The solitary nodes demonstrate
regular dynamics in time with periods T = 4, T = 8, and T > 8
for weak coupling and with T = 3 and T = 6 for strong coupling
[Figs. 10(c) and 10(d)]. Solitary state regimes are exemplified in
Figs. 11(b) and 11(d) for weak and strong coupling, respectively.
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FIG. 13. Snapshots of the x(i) variables (upper row), spatial distributions of the cross-correlation coefficient (middle row), and space–time diagrams x(i, n) (lower row) for
the modified Ricker map network at σ = 0.333 corresponding to a snapshot with profile discontinuities at D = 0 (a) and for different noise intensities: (b) D = 0.008 25, (c)
D = 0.0165, and (d) D = 0.033. Other parameters: αR = 44.0, R = 320, N = 1000. The insets in (b) top row show blow-ups.

Note that at the transition from solitary states to chimeras with
increasing coupling strength the coexistence of both regimes can
be observed [Fig. 11(c)], but in our work, we classify this regime as
chimera states.

We now turn to analyze the impact of additive noise on the
probability of observing chimera states in the Ricker map network.
Numerical results are summarized in the 2D distribution diagrams
for the probability P in the (σ , D) parameter plane (Fig. 12). It has
been noted earlier that at αR < 17.2 there are no chimera states in
the network [Figs. 10(a) and 10(b)]. Introducing additive noise of
even low intensity induces the appearance of chimera states (with
a high probability) in the range of strong coupling. As can be seen
from the distribution in Fig. 12(a) for αR = 17.5, there is a single
and rather wide region with respect to both the coupling strength
σ and the noise intensity D within which the probability P of
observing chimeras is essentially equal to 1. Note that at D = 0,
the probability of chimera observation vanishes for all values of σ

[black and dark-violet color in Fig. 12(a)], and only external noise
even with an extremely low intensity can increase significantly the
probability P.

For larger values of αR ≥ 18.5, the region with a high-
probability of chimera observation is split into two parts separated
by a channel within which P ≈ 0.5 [Figs. 12(b) and 12(c)]. Let us
recall that within this channel the probability vanishes in the case of
the logistic map network [Figs. 4(a) and 4(b)] and is P ≈ 0.2 for the
Henon map network [Figs. 9(b) and 9(c)]. As αR increases, the chan-
nel narrows and eventually degenerates into a small “island” with a
lower probability value [Fig. 12(d)].

The presented probability distributions for the Ricker map net-
work also verify the manifestation of chimera resonance with respect

to both the σ -interval and the D-range corresponding to a high
probability of chimera observation. Note that unlike the logistic map
and Henon map networks, in this case chimera states exist even for
sufficiently strong noise up to D ≈ 0.15.

Our numerical studies show that the existence of solitary states
within a narrow region in the (αR, σ ) parameter plane for strong
coupling [yellow region around σ ≈ 0.4 in Figs. 10(a) and 10(b)]
and for large values of αR can affect the distributions of the prob-
ability of observing chimera states already at a low noise intensity.
To illustrate this peculiarity two distribution diagrams are presented
in Figs. 12(e) and 12(f) for large values of αR. As can be seen, at
low noise levels D ≈ 0.025, D ≈ 0.019 and for sufficiently strong
coupling σ ∈ [0.39, 0.45], σ ∈ [0.27, 0.44] [Figs. 12(e) and 12(f),
respectively] the region with a high probability of chimera existence
is cut by a triangular region in which incoherent dynamics takes
place. The appearance of this region with P = 0 is associated with
the presence of solitary states in the Ricker map network at a strong
coupling strength. This triangular region is expanded as the local
dynamics parameter αR increases within the range where the soli-
tary state exists in the network. It has been shown earlier in Ref. 19
that a sufficiently low noise level is needed to suppress solitary states
and to induce a transition to incoherent dynamics. Thus, in the con-
sidered Ricker map network, the additive noise with low and high
intensities can induce chimera states inside the region in which only
snapshots with profile discontinuities exist. An intermediate noise
intensity shifts the control parameters to a narrow region of the
existence of solitary states and destroys the network dynamics, lead-
ing to incoherence. These features cause a gap in the distribution
diagrams for the probability of chimera observation for large values
of αR [Figs. 12(e) and 12(f)].
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FIG. 14. Snapshots of the x(i) variables (upper row), spatial distributions of the cross-correlation coefficient (middle row), and space–time diagrams x(i, n) (lower row) for the
Ricker map network at σ = 0.378 corresponding to solitary states at D = 0 (a) and for different noise intensities: (b) D = 0.002 75, (c) D = 0.019 25, and (d) D = 0.033.
Other parameters: αR = 44.0, R = 320, N = 1000. The inset in (b) top row show blow-ups.

Figures 13 and 14 illustrate the impact of additive noise of
different intensity on the dynamics of the modified Ricker map
network for two selected values of the coupling strength, one cor-
responding to a snapshot with profile discontinuities [Fig. 13(a)]
and the other corresponding to solitary states [Fig. 14(a)] in the
noisy-free network of Ricker maps. In the first case (Fig. 13),
a low noise intensity induces the appearance of phase chimeras
with narrow incoherent clusters [Fig. 13(b), 401 < i < 412, 958
< i < 969]. When D increases [0.0123 < D < 0.023, Fig. 12(f)],
we enter the zero-probability region and the network demon-
strates the incoherent regime [Fig. 13(c)]. Finally, at D > 0.023,
we return again to the region with the high probability of
chimera observation and the phase chimera exists in the network
[Fig. 13(d)].

A similar evolution of the network dynamics occurs in the
presence of noise when solitary states exist in the noise-free case
[Fig. 14(a)]. A low noise intensity D / 0.001 has almost no effect
on the regime in the network, the number of solitary nodes can
vary slightly. As the noise level slightly increases, solitary nodes
disappear and the network dynamics is characterized by a snap-
shot with profile discontinuities or by phase chimeras with narrow
incoherent clusters [Fig. 14(b), incoherent cluster 199 < i < 204].
A further increase in the noise intensity, as in the case of σ = 0.333
(Fig. 13), first leads to entering into the region with zero probabil-
ity of observing chimeras [0.0095 < D < 0.026, Fig. 12(f)], inside
which incoherent dynamics occurs in the network [Fig. 14(c)], and
then again to the existence of chimera states [Fig. 14(d)]. Thus, in
the solitary state regime which is observed in the noise-free net-
work, a gradual increase in the noise intensity (0.0095 < D < 0.026)

suppresses solitary nodes and leads to the stable observation of
chimera states at a sufficiently high noise level.

IV. CONCLUSION

In this paper, we have presented numerical results on the influ-
ence of additive Gaussian noise on the spatiotemporal dynamics and
especially on the probability of observing chimera states in three
different ring networks of nonlocally coupled chaotic discrete-time
systems. The individual nodes are described by the logistic map,
the modified Ricker map, and the Henon map. For each noise-
free network, we have constructed two-dimensional diagrams of
spatiotemporal regimes in the “local dynamics parameter vs cou-
pling strength” parameter plane and analyzed the peculiarities of the
transition from incoherence to complete synchronization as the cou-
pling strength increases. We have found that for all three networks,
there is a coherent window inside the region with profile discontinu-
ities in the diagrams of dynamical regimes, and this feature has led
to a significant effect on the probability of observing chimera states
in the presence of noise.

To analyze the role of additive noise we have plotted 2D dis-
tribution diagrams for the probability of chimera existence in terms
of the coupling strength σ and the noise intensity D. Our numerical
simulation has shown that in the presence of noise of certain inten-
sities, chimera states can be induced in the networks studied and
moreover, the probability of their observation can be significantly
increased up to its maximum level (equal to 1) within a rather large
interval of the coupling strength σ . The region in the (σ , D) param-
eter plane that corresponds to a high or even maximum probability
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of observing chimeras can have a different shape depending on the
local dynamics parameter of individual nodes in each considered
network. In particular, this region is split into two subregions with
respect to both σ and D if the values of the local dynamics parameter
relate to the coherent window in the network dynamics. Within the
channel separating the subregions, the probability of chimera obser-
vation is either zero (for the logistic map network) or rather low
(about 0.2 or 0.5 for the Henon map network and the Ricker map
network, respectively). However, after exiting the coherent window
with changing local dynamics parameters, the two subregions merge
into a single one that has been observed for all the three networks
under consideration.

It has been established that there is an optimum non-vanishing
noise level at which the σ -interval corresponding to a high or
even maximum probability of chimera observation is the largest.
The observed phenomenon gives evidence of a beneficial and con-
structive role of noise in analogy with stochastic and coherence
resonance. In this context, the revealed effect has been called
chimera resonance. The value of the coupling strength σ at which
chimera states are observed with the maximum probability non-
monotonically increases as the noise intensity D grows within the
range of chimera existence and decreases as the nonlocal coupling
range R decreases. We have also found that there is a finite range of
the noise intensity D within which chimera states are observed with
a high or even maximum probability. This D-range is the widest at a
certain “resonant” value of the coupling strength σ .

In addition to the presence of the coherent window in the dia-
grams of dynamical regimes of the networks studied, the shape of
the probability distribution of observing chimeras can also be essen-
tially affected by the existence of solitary states in a network. In our
case, this has been observed for the modified Ricker map network.
It has been shown that at low noise levels and for sufficiently strong
coupling σ the region with a high probability of chimera existence is
cut by a triangular region within which incoherent dynamics takes
place in the network.

Our results once again show the counterintuitive constructive
role of noise in the dynamics of complex networks and the possi-
bility of using external noise as an effective tool for controlling the
formation and stability of the observed spatiotemporal structures.
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