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Forecasting the El Niño type well before the spring
predictability barrier
Josef Ludescher 1✉, Armin Bunde2 and Hans Joachim Schellnhuber1

El Niño events represent anomalous episodic warmings, which can peak in the equatorial Central Pacific (CP events) or Eastern
Pacific (EP events). The type of an El Niño (CP or EP) has a major influence on its impact and can even lead to either dry or wet
conditions in the same areas on the globe. Here we show that the difference of the sea surface temperature anomalies between the
equatorial western and central Pacific in December enables an early forecast of the type of an upcoming El Niño (p-value < 10−3).
Combined with a previously introduced climate network-based approach that allows to forecast the onset of an El Niño event, both
the onset and type of an upcoming El Niño can be efficiently forecasted. The lead time is about 1 year and should allow early
mitigation measures. In December 2022, the combined approach forecasted the onset of an EP event in 2023.
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INTRODUCTION
El Niño events are part of the El Niño-Southern Oscillation
(ENSO)1–6, which can be perceived as a self-organized quasi-
periodic pattern in the tropical Pacific ocean-atmosphere system,
featured by rather irregular warm ("El Niño”) and cold ("La Niña”)
excursions from the long-term mean state. Depending on the
location of the peak warming of the sea surface temperature
anomaly (SSTA), one usually distinguishes between Eastern Pacific
(EP) and Central Pacific (CP) El Niño events. The EP events exhibit
their largest SSTA warming in the eastern equatorial Pacific, while
the CP events exhibit their largest warming westwards in the
central equatorial Pacific. Although several studies have suggested
the existence of a continuum between EP and CP events, e.g.,7,8,
most studies of El Niño’s spatial diversity follow a splitting into two
distinct groups. The shift of the location of the maximum SSTA
during CP El Niños, compared to EP El Niños, towards the CP
drives substantial shifts in atmospheric convection and circulation
responses, which alter the location and intensity of temperature
and precipitation impacts associated with El Niño around the
globe8–16. In addition, since there is a strong correlation between
the strength of an El Niño (e.g., Niño3.4 index, see below) and the
longitude of the maximal warming8, EP events tend to be stronger
and thus lead to more severe impacts around the globe.
For instance, large EP events typically lead to strongly increased

precipitation along the coast of Ecuador and Northern Peru,
resulting in massive floodings and landslides, while CP events only
lead to dry conditions in these already dry areas and also to dryer
conditions in the Peruvian Andes (see, e.g.,17,18). In India,
particularly, CP events may lead to monsoon failures and thus to
major droughts19. For more extensive discussions of the impacts
of both El Niño types, we refer to, e.g.,10,11,16. These examples
demonstrate that for mitigating the societal impact of an El Niño
event by more targeted mitigation measures, it is crucial to have
early operational forecasts not only for the event itself but also for
the type of the event.
Currently, type forecasts based mainly on the warming pattern

have quite limited lead times. For instance, Hendon et al.20 found
that the coupled ocean-atmosphere seasonal forecast model of

the Australian Bureau of Meteorology is limited to less than
1 season in predicting the SSTA pattern of EP and CP events. In a
more recent and comprehensive study, Ren et al.21 analyzed 6
operational climate models and found that only 2–3 can
distinguish at 1 month lead time between CP and EP events.
Zhang et al.22 focused on hindcasts of the Climate Forecast
System version 2 (CFSv2). They found that the skill of the CFSv2
model was comparable to the one reported by Ren et al.21 and
concluded that the CFSv2 model was broadly representative of
the state of-the-art forecast systems.
For comparison, without distinction between CP and EP events,

the current forecasts in operation (which are hampered by the
spring barrier) have a typical reliable lead time of about
6 months6,23. GCM forecasts with 12–24 months lead time are
also possible24–26 but with considerably less skill (see Method
Section). Forecasts based on a climate network27–29 approach
have a lead time of about 1 year (see also Methods Section)30,31.
Since EP El Niños tend to be stronger than CP El Niños, forecasts

of the El Niño strength can also be regarded as an indirect forecast
for the type. Such forecasts of the El Niño strength are made, for
instance, by several models of the North American Multi-Model
Ensemble (NMME) with lead times up to 12 months (see Methods
Section). To avoid forecast busts that sometimes afflict NMME-
based objective forecasts and to provide more reliable El Niño
strength forecasts32, the National Oceanic and Atmospheric
Administration relies on subjective expert forecasts that are
objectively translated33 into probabilities that the strength of an El
Niño (Niño3.4 index) will exceed given threshold values. Currently,
these magnitude forecasts are not mapped operationally into
explicit forecasts for the type of an event. The Peruvian
multisector commission for the study of El Niño (ENFEN) provides
operational forecasts for the temperatures in the Niño1+ 2 area
located of the coast of Ecuador and Peru34. A warming in this area
is called a coastal El Niño (”El Niño costero") and tends to coincide
with “global” EP El Niños. Thus, this forecast is highly related to an
EP El Niño forecast. However, coastal El Niños can also be present
without a global El Niño, as was the case during the devastating El
Niño costero of 201735.
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In the present study, we consider the period between 1950 and
present, where reliable data on the El Niño events exist. We show
that from the available SSTA data in the tropical Pacific, a
precursor for CP and EP events can be obtained about 1 year
before the peak of the event with high prediction skill. The type
precursor does not forecast the onset of an El Niño event by itself,
thus it is most useful when combined with other methods that
forecast the onset of an El Niño event, irrespective of its type.
When combined either with dynamical model forecasts in
operation or the recently established climate network approach,
one arrives at significantly better forecasts for the type of an El
Niño event. Recently, in December 2022, the type precursor
combined with the climate network approach forecasted the
onset of an EP event in 202336.

RESULTS
Classification of the El Niño types
To identify the types of the 23 El Niño events between 1950 and
present (here, the El Niño events from 1986–1988 and 2014–2016
are counted as one event each), we have used 11 classification
approaches9,10,37–45. Most of these approaches rely on compres-
sing/projecting the diverse spatial SSTA patterns in the tropical
Pacific into simple scalar numbers, i.e., indices. The choice of
which geographical areas, times of the year, or physical quantities
to regard and how to analyze the data leads to a large set of
possible indices. Figure 1 summarizes the classification according
to the 11 methods. For details, see Supplementary Note 1. For the
majority of El Niño events, in particular the strong ones, there is a
high consensus about the type irrespective of the approach. For
the events in 1969/70 and 1986–1988, there is lacking consensus,
so we keep them as unidentified. For more details, see
Supplementary Note 1.

Precursor for the type of the next El Niño event
Due to the mostly easterly winds of the Walker circulation, the
climatological background state of the equatorial Pacific is
characterized by a temperature gradient from the cold tongue
in the east to the warm pool in the west. Accordingly, the simplest
conceptual models of ENSO, for instance, the recharge-oscillator
model developed by Jin46, divide the Pacific into two regions, the
western Pacific and the EP. The models are able to describe the
occurrence of the canonical EP events but not of CP events47.
Since CP El Niños are located in the CP, it appears natural to

extend the two-region conceptional models by including the CP
as a third region. This region is important for the development of

CP events since the zonal advective feedback is most effective
here47,48. Such three-region models were developed by Fang and
Mu47 and Chen et al.49 and indeed allow for the occurrence of
both EP and CP events49. Within their model, Chen et al.49 found
that the zonal SST difference between the WP and CP influenced
the frequency of CP events on decadal scales suggesting that the
occurrence of CP events may be related to the zonal SST
difference between the WP and CP. Here, we follow this idea but
study the interannual fluctuations of the zonal temperature
difference between the WP and CP.
To be specific, we consider the monthly zonal SSTA difference

ΔTWP-CP between two equal-sized areas in the west Pacific (120E-
165E, 5N-5S) and the CP (165E-150W, 5N-5S) (see Fig. 2). For the
total area covering the central and western Pacific, we follow Fang
and Mu47. Then, we divide the whole domain between 120E and
150W into two equal-sized areas. We would like to note that also
Ashok et al.10 used 165E as the western edge of the CP when
defining the El Niño Modoki Index (EMI). Modifying the meridional
width of the two areas or using an unequal partitioning as Fang
and Mu47 leads to little to no impact (see Supplementary Figs.
2–5). To account for the different effects of climate change in both
regions, we use a trailing 30 year climatology, i.e., we calculate the
temperature anomalies based only on the past of the considered
point in time.
Figure 3 shows the difference ΔTWP-CP(t) between the mean

SSTA in both areas, as a function of time t (maroon line), starting in
1950 and ending at present. The blue line is the Oceanic Niño
Index (ONI), which is defined as the 3-month running-mean SSTA
in the Niño3.4 region (see Fig. 2). The filled areas mark the El Niño
events where the ONI is at least for 5 months greater or equal
0.5∘C. The orange color stands for the 9 EP El Niño events, the
violet color for the 12 CP events, obtained from our consensus
classification. For the El Niño events starting in 1969 and the event
starting in 1986 and ending in 1988, there is no consensus, so they
are marked gray.
The figure shows that ΔTWP-CP(t) looks like a mirror image of the

ONI, running through deep minima right at the peak of an El Niño
event and reaching strong maxima in pronounced La Niña events.
This is to be expected as El Niño episodes lead, e.g., to a warmer
and La Niña episodes to a colder CP. However, a closer inspection
reveals that in the last months of a year preceding an El Niño onset,
ΔTWP-CP(t) tends to be positive when the upcoming event is an EP
event and negative when it is a CP event. In the following, we will
use this feature as a precursor for the type of an upcoming El Niño,
with a lead time of about 1 year.
To be specific, we focus on the December values of ΔTWP-CP(t)

for each year between 1950 and 2021. When a December value is

Fig. 1 Classification of the type of El Niño events. The table summarizes the classification according to 11 approaches. The numbers in the
first row indicate the last two digits of the El Niño onset years. Eastern Pacific El Niños are marked ‘E’ and shown in orange. Central Pacific El
Niños are marked `C' and shown in blue. El Niño events marked by ‘M’ are not identified as pure EP or CP events, see Supplementary Note 1.
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positive, we expect that an upcoming El Niño will be an EP event,
otherwise a CP event. Figure 3 shows that the type forecast based
on this precursor is correct for all nine EP El Niños. There are three
“false alarms”, in 1962, 2008, and 2017, where an EP type is
forecasted, but a CP type is observed in the following year. In
contrast, all 9 CP type forecasts were correct. Accordingly, when
ΔTWP-CP(t) is negative in December, we can be highly certain that a
potentially upcoming event will be a CP event, i.e., a possibly
disastrous EP event in the following year can be excluded with
high probability. Otherwise, when ΔTWP-CP(t) is positive in
December, an upcoming El Niño will be an EP event with 75
percent probability. In December 2022, ΔTWP-CP(t)= 1.21 °C. Thus,
the El Niño that started in 2023 will probably be an EP event.

In total, 18 out of 21 events were correctly forecasted. When
random guessing with the past occurrence probabilities of EP and
CP El Niño events, the p-value for correctly predicting 18 of 21
events is p= 9.1 × 10−4, i.e., the predictions by our precursor are
highly significant. For the calculation of the p value, see the
Methods Section.
Our choice of December as the calendar month to evaluate

ΔTWP-CP(t) is motivated by the fact that the climate network-based
approach discussed below provides its El Niño forecasts by the
end of the calendar year. Additionally, ENSO is phase-locked to the
seasonal cycle and El Niños and La Niñas tend to peak around
December. The same prediction skill is obtained when, instead of
December(D), the 3-month averages NDJ and DJF are considered.
For a more extensive discussion, see Supplementary Figs. 6, 7.
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Fig. 3 SSTA based forecasting scheme for the type of an upcoming El Niño event. The figure shows the anomaly of the monthly sea surface
temperature difference between the equatorial western Pacific (120E–165E, 5N-5S) and central Pacific (165E-150W, 5N-5S) (left scale, maroon
line) and the ONI (right scale, blue dashed line). The shaded areas highlight El Niño episodes, in orange EP El Niños and in violet CP El Niños
according to the consensus (majority classification) from Fig. 1. The classification methods lead to a tie for the 1969/70 El Niño and the 1986-
1988 multiyear El Niño (both in gray). Positive values of ΔTWP-CP(t) at the end of a calendar year serve as a precursor that an upcoming El Niño in
the following year will be of EP type, while negative values serve as a precursor that it will be of CP type. Of the 21 El Niño type forecasts, 18 are
correct: there are nine correct predictions for an EP type (orange circles), three false predictions where instead of an EP type, a CP type
occurred (black diamonds), and nine correct predictions of a CP type (violet circles), resulting in a p-value below 10−3. In December 2022,
ΔTWP-CP(t)= 1.21 °C. Thus, the El Niño that started in 2023 will probably be an EP event, as forecasted in ref. 36. The type precursor does not
forecast the onset of an El Niño event, thus it is most useful when combined with other methods that forecast the onset of an El Niño event,
irrespective of its type. Such onset forecasting methods are available even before the spring barrier, see, e.g., refs. 30,67.

Fig. 2 The areas of the regarded sea surface temperature anomalies (SSTA). The sign of the zonal difference ΔTWP-CP between the SSTA in
the western equatorial Pacific and the SSTA in the central Pacific is predictive of the type of an upcoming El Niño event. The red area
represents the western warm pool, the blue area nearly coincides with the Niño4 area, where CP El Niño events are centered. Varying the
meridional width of the two areas or using an unequal partitioning as in ref. 47 leads to little to no impact (see Supplementary Figs. 2–5). The
dashed green rectangle shows the Niño3.4 area.
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Apart from the zonal SSTA difference, the zonal sea surface
height anomaly (SSHA) difference and the zonal surface air
temperature anomaly difference are strongly related to the Walker
circulation and its fluctuations. Figure 4 shows the difference of
the monthly SSHAs between 1980 and present. The figure shows
that the SSHA is highly correlated with the SSTA and leads to the
same forecasts. As we show in Supplementary Fig. 8, the surface
air temperature anomalies are also highly correlated with the SSTA
and lead to the same forecasting performance. We like to note
that our findings are consistent with Ashok et al.10, where
correlation maps for the EMI with the SSHA and SSTA in the
tropical Pacific have been calculated.
For a better understanding of our findings, we analyse the

spatial and temporal development of the SSTA. Figure 5 shows the
evolution of the equatorial Pacific SSTAs starting in the year before
an El Niño onset and ending in the year after the onset. The
longitude-time diagrams show the SSTA in ∘C averaged between
5N and 5S. Figure 5a and b show the composites over all EP and
CP events as classified by our consensus classification shown in

Fig. 1. Stippling shows significant differences at 90% level to all
not regarded years and was obtained from a two-tailed student’s
t-test.
In the second half of the year, before an EP El Niño starts,

significantly warmer SSTAs are present in the western Pacific and
significantly colder SSTAs in the central Pacific, which are
characteristic for La Niña conditions. The positive SSTAs in the
west can indicate an anomalously deep thermocline here and,
thus, positive warm water volume anomalies. This is confirmed by
the positive sea surface height anomalies (SSHA), which are highly
correlated with the thermocline depth. In the year before the
onset of an EP El Niño, there are pronounced positive SSH
anomalies in the western Pacific, which shows that the thermo-
cline is indeed deeper here (see Supplementary Fig. 9).
In the year before the onset of a CP El Niño, there is already a

mild warming in the central Pacific, which expands eastwards in
the following year and develops into a CP El Niño, see Fig. 5b. For
CP El Niños, the anomalies in the year before the El Niño onset are
not statistically significant at a data point level since the figure also
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Fig. 4 SSHA based forecasting scheme for the type of an El Niño event. Same as Fig. 3 but for the anomaly of the monthly sea surface
height (SSH) difference between west Pacific and central Pacific as predictor for the type of an El Niño. Forecasting based on SSHA leads to the
same forecasts as that based on SSTA.

Fig. 5 Composite evolution of equatorial SSTAs for different subsets of El Niños. a all EP El Niños, (b) all CP El Niños, and (c) the CP El Niños
that were correctly forecasted by ΔTWP-CP. The longitude-time diagrams show the SSTA in ∘C averaged between 5N and 5S. The figure shows
that in the second half of the year before an EP event, there is a warming in the western Pacific while the central Pacific is significantly colder.
In the year before a CP El Niño, there is a mild warming in the central Pacific, which later expands eastward. Subfigure (b) includes the 3 El
Niños that were incorrectly forecasted as EP events. When only correctly forecasted CP events are considered (c), the warm anomalies in the
center Pacific are more pronounced and cold anomalies are present in the western Pacific in the year before the onset. The figures confirm
that ΔTWP-CP, which aggregates these patterns, is predictive of the type of an El Niño in the calendar year before the onset.
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contains the years where our predictor incorrectly forecasted an
EP El Niño. Excluding these years leads to statistically significant
positive anomalies in the central Pacific and negative anomalies in
the western Pacific, see Fig. 5c. Thus, Figure 5 confirms that a
positive sign of ΔTWP-CP is a precursor for EP El Niño events and a
negative sign is a precursor for CP events. The SSTA differences
present in the year before the El Niño onset are significant,
partially even at a data point level (see Supplementary Fig. 10).
Interestingly, the precursor predicted the onset of CP events

accurately, while only 75% of the EP predictions turned out to be
correct. This difference in the EP and CP predictability can result
from stochastic processes, most likely westerly wind events (WWE)
that typically start in boreal spring and are highly relevant for
triggering El Niño events. WWEs can be regarded as state
dependent noise, where warmer sea surface temperatures in the
western and central Pacific favor more WWEs5. It has been noticed
by Jadhav et al.50 that stronger boreal spring through summer
WWEs, with relatively stronger ocean preconditioning (e.g., large
SSHA in the west51), can lead to EP events, while weaker ocean
preconditioning (small SSHA in the west51) and weaker WWE can
generate CP events. For similar arguments, see, e.g.,52–54.
This argument is supported by Fig. 5 and Supplementary Fig. 9,

which show that before an EP El Niño, the western Pacific is
warmer and has a deeper thermocline, i.e., it is in a charged state.
With sufficiently strong WWEs in the following boreal spring, the
system likely develops into an EP El Niño. However, when the
WWE activity is weaker, the upcoming El Niño develops likely in a
CP event. In contrast, before the correctly type forecasted CP El
Niños, the western Pacific is slightly colder, and the thermocline is
somewhat shallower than the climatological average, i.e., it is not
in a charged state. In this case, WWEs can only trigger CP events.
This explains why we do not see incorrect CP forecasts.
Supplementary Fig. 9 also shows the composite of the SSHA

evolution for the 2009 and 2018 El Niños. The type of both events
was forecasted as an EP, but they turned out to be CP events. The
figure shows that the SSHA is positive in the western Pacific the
year before the onset, as it is before EP events, i.e., a charged state
is present. However, in both onset years, there were only weaker
westerly wind anomalies, in particular in the first half of the year,
see Supplementary Fig. 11. The same holds for 1963. Thus, in all
three cases, favorable conditions for an EP event were present in
the year before the onset, but since WWEs are at least partially
stochastic, the insufficient WWE activity probably led to the CP
events.

Forecasting El Niño events and their type
The type precursor does not forecast the onset of an El Niño event
by itself, thus it is most useful when combined with other
methods that forecast the onset of an El Niño event, irrespective
of its type (see, e.g., refs. 55–70). Some of these methods are
available even before the spring predictability barrier, see, e.g.,
refs. 30,67. For simplicity, we discuss here two kinds of forecast:

Dynamical models. Coupled general circulation models (GCM)
are initialized by observations and directly simulate the further
development of physical quantities like the SSTA. When the
predicted development of the ONI, i.e., the SSTA in the Niño3.4
region, also referred to as Niño3.4 index, satisfies the definition of
an El Niño, the models predict the onset of an El Niño event. Since
the predictions of these models are hampered by the spring
barrier, the typical reliable lead time is about 6 months6,23. For
longer lead times, the prediction skill of the models decreases
considerably. For instance, 4 models of the North American Multi-
Model Ensemble (see Methods Section) provide forecasts with
11 months lead time by forecasting the SST in the Niño3.4 area.
We regard reforecasts starting on 1 January. For evaluating the
skill of the four ensemble means, we assume that an ensemble

predicts the onset of an El Niño when the forecasted December
temperature anomaly is equal or above 0.5 °C. At 11 months lead
time, 53% of the El Niño onset “alarms” turned out correct. When
combined with our type precursor, 38% of the EP El Niño forecasts
are correct, while 15% lead to a CP El Niño and 46% to a false
alarm, see Table 1. Similarly, 37.5% of the CP El Niño forecasts are
correct, while 62.5% lead to a false alarm.
A systematical study of the performance of direct El Niño type

prediction relying on the SSTA warming patterns has been done
by Ren et al.21, who focused on six operational GCMs. All models
were initialized in November. Then the predicted temporal and
spatial distribution of the SSTA in December, January and
February is used to forecast whether an El Niño event will come
and whether it will be an EP or CP event. Despite the very short
lead time, only about every second EP or CP event was correctly
forecasted, see Table 1. Combining GCM El Niño onset forecasts
(irrespective of the type) with type forecasts based on the sign of
ΔTWP-CP(t) would lead to much improved type forecasts. The
limited skill in distinguishing between EP and CP events might be
due to the GCMs’ biases in simulating the background mean
state71–74.

Climate network approach. The climate network approach30,31 (at
the time of publication based on data between 1950 and 2011) is
described in the Methods Section. Here we consider, as in Fig. 3,
the period between 1950 and 2022. In its original version (i) (see
Fig. 6a and Supplementary Fig. 12), the approach yields 20 alarms
in the year before the onset of an El Niño event; 15 forecasts are
correct, including 6 of the 8 largest El Niño events (see
Supplementary Fig. 12). Accordingly, 75% of the alarms are
correct.
For the target years 2012–2023, i.e., out of-sample into the

future, the algorithm provided 12 forecasts, 11 of which turned
out to be correct. For instance, it correctly warned of the onset of
El Niños in 201431 and 202336. The total p-value of the predictions
(including learning, hindcasting, and forecasting phase) calculated
from random guessing with the climatological El Niño onset
probability (about 1/3 per year) is p= 1.3 × 10−7.
Combining this approach with our type precursor shown in

Fig. 3, the method correctly forecasts 6 EP events (among them
the four largest ones) and 7 CP events. When the climate network
approach sounded a correct alarm, then also the type of the event

Table 1. Contingency table showing the skill of the forecasting
methods in predicting the type of an El Niño event.

Observed direct ΔTWP-CP ΔTWP-CP ΔTWP-CP

outcome GCM GCM network
v(i)

network
v(ii)

1 month 11 months 11 months 11 months

EP CP EP CP EP CP EP CP

EP 49 31 38 0 67 0 67 0

CP 41 50 15 38 11 70 11 100

Other 10 19 46 63 22 30 22 0

Tabulated are the percentages of events that are observed to occur, given
an approach has forecasted an EP or CP El Niño event. “Other” outcomes
are neutral or La Niña events. The first approach shows the results of a
direct forecast of El Niño and its type based on the SST warming pattern at
a 1 month lead time, as reported by Ren et al.21. The following approaches
combine the type forecast based on ΔTWP-CP with 11 months lead time
onset forecasts of models of the North American Multi-Model ensemble
and the two versions of the climate network, respectively. Sums can
deviate from 100% since the numbers are rounded to full percentages.
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was correctly forecasted, with one exception in 2017. Accordingly,
when an EP event was forecasted, the forecast was about 67%
correct, in 11% of the cases a CP event was observed, and in 22%
of the cases an El Niño did not occur. (The correct alarm in 1985
before the non-identified event starting in 1986 was not counted.)
When a CP event was predicted, 70% of the predicted events were
CP events and 30% no El Niño events.
In its more restricted version (ii) (see Fig. 6b and Supplementary

Fig. 13), the climate network approach sounds 15 alarms, 13 of
which are correct alarms and two false alarms. Compared with
version (i), the two correct alarms for the smallest El Niño events
(1958/59 and 1977/78, both CP events) are missing. Now 86.7% of
the alarms are correct and for all correct alarms, except that one in
2017, the type of the El Niño is correctly forecasted. As in version
(i), 67% of the predicted EP events were EP events, 11% were CP
events, and 22% percent no events. But now, each prediction of a
CP event was correct.
Table 1 compares the performance of the two versions of the

climate network approach with the performance of operational
GCMs when they directly predict the type of an El Niño and when
our type predictor is combined with GCM El Niño onset forecasts
(irrespective of the type). The table shows that our approach,
which is based solely on the zonal SSTA difference between the
equatorial western and central Pacific, when combined with the
climate network approach, considerably outperforms the direct
GCM approach, even though its lead time is one order of
magnitude longer. Also, when the type predictor is combined with
the climate network, it delivers more skillful forecasts at the same
11 months lead time than when it is combined with GCM onset
forecasts.
We would like to note that since the type and magnitude of an

El Niño event are closely related, our type forecast does also
represent an indirect forecast for the magnitude of an event. In
the period between 1950 and 2022, the average of the maximal
ONI value during EP events was 1.79 ± 0.64 °C, while during CP
events, it was 1.05 ± 0.38 °C. Thus, our combined approach can

warn of EP El Niños, which have the potential to become very
strong and lead to more extreme events around the globe.

DISCUSSION
In summary, by studying the zonal SSTA difference between the
equatorial western and central Pacific, we arrived at a precursor
which allows to predict the type of an El Niño event well before
the spring barrier with a high accuracy. The approach relies only
on the sign of the zonal SSTA difference at the end of a year.
When it is positive, an El Niño event arising in the following year
will probably be an EP event, otherwise a CP event. Interestingly,
the precursor predicted the onset of CP events accurately, while
only 75% of the EP predictions turned out to be correct.
We attribute this difference in predictability to stochastic

processes, most likely WWEs that typically start in boreal spring
and are highly relevant for triggering El Niño events. WWEs can be
regarded as state dependent noise, where warmer sea surface
temperatures in the WP and CP favor more WWEs5. It has been
noticed by Jadhav et al.50 that stronger boreal spring through
summer WWEs, with relatively stronger ocean preconditioning
(e.g., large SSHA in the west), can lead to EP events, while weaker
ocean preconditioning (small SSHA in the west) and weaker WWEs
can generate CP events. For similar arguments, see, e.g.,52–54.
Based on this, we interpret the difference in EP/CP predictability

as follows: When the zonal difference of the SSTA (Fig. 3) or the
SSHA (Fig. 4) is positive at the end of a year and sufficiently strong
WWEs occur in boreal spring in the following year, an upcoming
event will most probably be an EP event, but for weaker WWEs, a
CP event may occur with high probability. This can explain the
25% incorrect EP forecasts. On the other hand, when the zonal
difference is negative, the WWEs can only trigger CP events, and
this may explain why we do not see incorrect CP forecasts.
As we have shown in detail, this interpretation is supported by

our analysis of the SSHAs and SSTAs. At the end of the year before
the onset of an EP El Niño, both quantities show positive
anomalies in the western Pacific, i.e., the system is in a charged
state. In contrast, before correctly forecasted CP events, both
quantities are slightly negative, i.e., the system is not in a charged
state. Additionally, in the years in which the incorrect EP forecasts
were made, the SSHA in the western Pacific was positive, however,
during the following onset years, only weak westerly wind
activities were present and the El Niños developed into CP events.
By construction, the type precursor can be combined with any

method that forecasts the onset of an El Niño event. However,
GCM forecasts are hampered by the spring barrier. For instance, at
a lead time of 11 months, only 53% of the regarded single-model
ensemble forecasts of an El Niño onset were correct. In contrast,
75% of the El Niño onset forecasts (irrespective of the type) of the
climate network approach were correct at lead times of at least
11 months.
To take full advantage of the type predictor, we have combined

it with the climate network approach. The climate network sounds
an alarm when its mean link strength exceeds a fixed threshold
and the ONI remains below 0.5 until the end of the year. In this
case, the onset of an El Niño event is forecasted for the next
calendar year. From the perspective of predicting the major
disastrous events, whose probability might increase in a warming
climate75, the combined approach was quite successful. In the last
7 decades, it forecasted the 4 largest El Niño events. In December
2022, the combined approach forecasted the onset of an El Niño
event with 80% probability and, in case of onset, an EP El Niño
with 86% probability, putting Ecuador and Northern Peru at
increased risk of extreme rainfall. We would like to note that the
here presented combined approach can be complemented by an
information entropy-based approach67, which provides direct
forecasts for the magnitude of upcoming El Niño events before
the spring barrier. For 2023, this method forecasted the onset of a
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Fig. 6 Summary of the combined prediction scheme. Shaded areas
mark the El Niño events: EP (orange), CP (violet), not classified (gray).
Alarms of the network-based method (version (i) in (a) and version
(ii) in b) are combined with the forecast based on the temperature
anomaly difference ΔTWP-CP(t) (Fig. 3) and shown as arrows in the
color of the forecasted El Niño type. False alarms of the network-
based method are shown as dashed arrows. The single incorrect
forecast of the type (2017) is marked by an `x'. For better visibility,
we have doubled the height of the 2 smallest CP events, starting in
1958 and 1979. In 2022, both versions forecasted for 2023 the onset
of an EP El Niño, which at present (October 2023) is very likely
to occur.
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moderate-to-strong El Niño with a magnitude of 1.49 ± 0.37∘C36,
which is consistent with the here forecasted onset of an EP El
Niño.
Since our El Niño type prediction approach is based on

temperature anomalies that are obtained from trailing climatol-
ogies, we believe that it remains valid also under the upcoming
climate change conditions. Should the El Niño Southern Oscilla-
tion shift at some point into a different regime, where its general
dynamics changes, then the approach should be reassessed. We
hope that the approach will enable early and more targeted
mitigation methods, either together with the climate network
approach discussed here or with any other early forecasting
approach, and thus help prevent or at least mitigate humanitarian
disasters as consequences of El Niño related extreme weather
impacts.

METHODS
North American Multi-Model Ensemble (NMME)
Four models of the NMME (CanCM4i, GEM5_NEMO, GFDL_SPEAR
and NCAR_CCSM4) provide forecasts with 11 months lead time.
These dynamical models forecast globally a range of physical
quantities like SSTs, in particular, the SSTs in the Niño3.4 area. We
regarded reforecasts starting on 1 January. For evaluating the
forecasts skill of the 4 ensemble means, we assume that an
ensemble predicts the onset of an El Niño when the forecasted
December temperature anomaly is equal or above 0.5 °C. Since
the absolute mean temperatures vary between models, we
calculate the anomalies based on each model’s mean December
temperature over the full period. CanCM4i and NCAR_CCSM4 start
their reforecast in 1982 and the other models in 1991. In total, we
have 36 El Niño onset “alarms” from the individual ensemble
mean forecasts of the 4 models, 19 of which turned out correct,
i.e., 53% of the onset alarms are correct. For instance, all 4 models
correctly forecasted the onset of the 1997/98 El Niño, but 3 out of
4 models gave a false alarm in 2017. The GCM El Niño onset
forecast is then combined with the observation-based ΔTWP-CP

type forecast shown in Fig. 3. As for the climate network, the
correct alarms before the non-identified El Niño event starting in
1986 were not counted.

Climate network approach
The approach exploits the observation that a large-scale
cooperative mode linking the “El Niño basin” (i.e., the equatorial
Pacific corridor) and the rest of the tropical Pacific (see
Supplementary Fig. 14 and refs. 30,76) builds up in the calendar
year before an El Niño event. The emerging cooperativity is
derived from the time evolution of the teleconnections (“links”)
between the surface air temperature anomalies (SATA) at the grid
points (“nodes”) inside and outside of the El Niño basin. The
strengths of these links at a given time t are derived from the
values of the respective cross-correlations for which we consider
time lags between 0 and 200 days. We determine, for each time t,
the maximum, the mean, and the standard deviation around the
mean of the absolute value of the cross-correlation function and
define the link strength Sij(t) as the difference between the
maximum and the mean value, divided by the standard deviation.
Accordingly, Sij describes the link strength relative to the
underlying background noise (signal-to-noise ratio) and thus
quantifies the dynamical teleconnections between nodes i and j.
To obtain the mean strength S(t) of the dynamical teleconnections
in the climate network, we average over all individual link
strengths (for more details, see Supplementary Note 2 and30,76).
The mean link strength S(t) in the network usually rises in the year
before an El Niño event starts and drops with the onset of the
event. This feature serves as a precursor for the event.

The algorithm30 involves as only fit parameter a decision
threshold Θ, which has been fixed in30 during a learning phase
between 1950 and 1980, and tested during a hindcasting phase
between 1981 and 2011. Accordingly, the operational algorithm30

has no free fit parameters. In its original version (i), the algorithm
gives an alarm and predicts an El Niño inception in the following
year whenever S crosses Θ from below while the most recent ONI
is below 0.5 °C. This version aims at providing an El Niño warning
as early as possible. For the target years 2012 - 2023, the algorithm
provided 12 forecasts, out of-sample into the future, 11 of which
were correct. In the modified version (ii), the algorithm considers
only those alarms for which the ONI remains below 0.5 for the rest
of the calendar year. This way, version (ii) neglects not only alarms
during an El Niño episode but also all alarms preceding the
potential onset of an El Niño episode, where the ONI value ≥0.5 °C
at the end of the calendar year. Since ΔTWP-CP is evaluated at the
end of the calendar year, waiting for the additional information
about the development of the ONI does not lead to a delay when
forecasting the onset and type of an El Niño.

Calculating the p-value of the type forecasts
In a series (configuration) of N type forecasts, we have Et correct
(true) EP type forecasts, Em missed EP events, i.e., a CP event was
forecasted, but an EP event turned out, Ct correct CP type
forecasts and Cm missed CP type events. To obtain the statistical
significance of this series, one has to determine the probability wi

that a configuration with the same total number of correct
forecasts Et+ Ct can be obtained by randomly guessing. In
addition, one has to consider all configurations K1, K2,⋯ , Ks with
an equal or higher number of total correct forecasts and
determine the corresponding probabilities w1,w2,⋯ ,ws. Then
the probability p (p-value), that by randomly guessing the same or
better forecasts can be obtained, is given by

p ¼
Xs

i¼0

wi : (1)

Our null hypothesis is that the given forecast configuration can be
obtained by randomly guessing with the climatological El Niño
type probabilities. Of the 21 El Niño events classified in Fig. 1, nine
are EP events, thus the probability of an EP type given an El Niño
(of any type) is present, is q= 9/21; correspondingly, for a CP type
qC= 1− q= 12/21. In the simplest case, when all type forecasts
are correct, there is only one configuration to consider and the
p value is w= q9(1−q)12. More generally, for 9 EP and 12 CP
events, the probability of a configuration is given by,

w ¼ 9

Et

� �
12

Ct

� �
qEt ð1� qÞCtqEmð1� qÞCm ; (2)

with the quantities as defined above. For example, 9 choose Et is
the number of ways (permutations) to rearrange Et forecast out of
9 EP El Niños.
Since there are only 2 El Niño types and two possible outcomes

(correct or false forecast), we have by definition that Et+ Em= 9
and Ct+ Cm= 12. In the case considered here, there are 18 correct
type forecasts and three false type forecasts. There are, in total, ten
configurations that are equal or better: Em= Cm= 0, Em= 1 and
Cm= 0, Em= 0 and Cm= 1, Em= 1 and Cm= 1, Em= 2 and Cm= 0,
Em= 0 and Cm= 2, Em= 2 and Cm= 1, Em= 1 and Cm= 2, Em= 3
and Cm= 0, Em= 0 and Cm= 3. Inserting these configurations into
Eq. (2) and summing up the probabilities yields p= 9.132 × 10−4.
Should the El Niño in 2023 turn out to be an EP El Niño as
forecasted36, the corresponding calculation for 19 correct type
forecasts out of 22 forecasts yields p= 4.665 × 10−4.
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DATA AVAILABILITY
All data used in this study are publicly available. The monthly sea surface temperatures
were obtained from the National Oceanic and Atmospheric Administration (NOAA)
Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5)77 downloaded
from https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. The daily surface air
temperature (SAT) data (1948-present) for the calculation of the mean link strength S(t)
of the network were obtained from the National Centers for Environmental Prediction/
National Center for Atmospheric Research (NCEP/NCAR) Reanalysis I project78

downloaded from https://www.psl.noaa.gov/data/gridded/data.ncep.reanalysis.html.
For the sea surface height (SSH), we used the monthly NCEP Global Ocean Data
Assimilation System (GODAS)79 data set downloaded from http://
apdrc.soest.hawaii.edu/erddap/index.html. We downloaded the reforecasts of the
North American Multi-Model Ensemble (NMME)80 from https://ftp.cpc.ncep.noaa.gov/
NMME/ENSO/.
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The codes used to produce these results are available from the corresponding author
upon reasonable request.
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