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Functional networks are powerful tools to study statistical interdependency structures in spatially extended
or multivariable systems. They have been used to get insights into the dynamics of complex systems in various
areas of science. In particular, percolation properties of correlation networks have been employed to identify
early warning signals of critical transitions. In this work, we further investigate the corresponding potential of
percolation measures for the anticipation of different types of sudden shifts in the state of coupled irregularly
oscillating systems. As a paradigmatic model system, we study the dynamics of a ring of diffusively coupled
noisy FitzHugh-Nagumo oscillators and show that, when the oscillators are nearly completely synchronized, the
percolation-based precursors successfully provide very early warnings of the rapid switches between the two
states of the system. We clarify the mechanisms behind the percolation transition by separating global trends
given by the mean-field behavior from the synchronization of individual stochastic fluctuations. We then apply
the same methodology to real-world data of sea surface temperature anomalies during different phases of the El
Niño-Southern Oscillation. This leads to a better understanding of the factors that make percolation precursors
effective as early warning indicators of incipient El Niño and La Niña events.
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I. INTRODUCTION

The occurrence of sudden shifts between radically different
dynamical regimes is a striking phenomenon displayed by a
variety of complex systems, including climatic [1–4], ecolog-
ical [5,6], financial [7,8], and physiological [9] ones. These
so-called critical transitions or regime shifts can have large
impacts, as they bring about a drastic change in the function
and structure of the systems undergoing them. Their forecast
well in advance is of utmost importance for risk management
and the mitigation of their impacts.

A large body of research has been devoted to the identifi-
cation of generic early warning signals for upcoming critical
transitions [10–16] and their conceptualization is well de-
veloped for transitions induced by bifurcations, accordingly
named B-tipping in the nomenclature of Ashwin et al. [4].
In such a situation, a control parameter is changed gradually,
until eventually a critical threshold or tipping point is reached
at which the system suddenly reorganizes into a completely
new dynamical regime. Dynamical systems theory shows that
this occurs as the state of the system looses stability, which
forces it to move to a new attractor. In most cases [3], as
the system approaches the point of loss of stability, the dom-
inant eigenvalue of its Jacobian matrix tends to zero, which

*n.ehstand@ifisc.uib-csic.es

translates into decreasing relaxation rates towards equilibrium
when the system is perturbed [17–19]. This phenomenon is
known as critical slowing down [20].

A variety of early warning indicators for critical tran-
sitions have been proposed based on statistical signatures
of critical slowing down, including temporal [21–28] and
spatial indicators [29–31]. In addition, some studies have
integrated both spatial and temporal indicators [32]. Along-
side these developments, many studies have demonstrated
the potential of complex networks for the study of statisti-
cal structures in systems consisting of interconnected units
[33–37]. In particular, various works have used network-based
frameworks for the prediction of bifurcation-induced tipping
[38–40]. In Rodriguez-Mendez et al. [40] functional networks
representing strong correlations between different sites in spa-
tially extended systems were studied and different percolation
quantifiers in such networks were shown to provide useful
anticipation of an incipient bifurcation.

More specifically, in systems consisting of interconnected
(e.g., spatially distributed) units coupled by diffusive or
similar types of homogenizing interactions, as a bifurcation is
approached, the variability between different units becomes
increasingly correlated as a consequence of the slowdown
mentioned above (there is an increasing amount of time for the
coupling to act). Such an increased coherence can manifest in
the dynamics at different timescales, from a synchronization
of fast fluctuations up to the emergence of common long-term
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behaviors (e.g., stochastic trends). In a correlation-based
functional network this translates into an increase of the link
density. Hence, as conditions bring the system closer to the
bifurcation, the increasing connectivity eventually results in
the development of a large connected component comprising
a significant fraction of all nodes. This is called percolation.
Full connectivity of the network is attained at the bifurcation
but the percolation threshold is actually reached before the
bifurcation. In this way, percolation of the functional network
is an early warning signal of the approaching bifurcation,
and precursor signals of the percolation transition itself will
provide even earlier anticipation than standard anticipatory
signals of the bifurcation. The success of this approach
was well illustrated, for various B-tipping situations, in
Rodriguez-Mendez et al. [40].

Despite their generic nature and relevance across disci-
plines, not all interesting or important sudden transitions in
complex systems are of the B-tipping type [4,41]. For in-
stance, the regime shift may be induced by noisy fluctuations,
not necessarily close to any bifurcation point, making the
system jump to an alternative dynamic attractor. This is known
as N-tipping. In other cases, the attractor changes as the
governing parameter is varied. If the rate of change of the
parameter is too fast, then the system may leave the basin
of attraction, leading to so-called R-tipping. Further, Kuehn
[42] considered tipping-like situations induced by the bifurca-
tion of the fast dynamics in two timescale systems. Whether
generic early warning signs of sudden shifts can be found
beyond the case of B-tipping remains an open question and
represents a significant challenge.

In this paper, we explore the ability of percolation
measures based on functional network representations to an-
ticipate sudden shifts in spatially extended complex systems
beyond the classical B-tipping scenario, focusing specifi-
cally on systems presenting irregular oscillations. We first
consider fast-slow systems, choosing as a leading example
a system consisting of nonperiodic, stochastic FitzHugh-
Nagumo oscillators coupled by diffusion and arranged in a
one-dimensional ring lattice. All model parameters remain
fixed so that no bifurcation or B-tipping occurs. Nevertheless,
jumps between distinct global states occur at irregular times,
for which we want to find anticipatory signals. To this end,
we construct a time-dependent functional network describing
the evolution of correlations of the system’s fast variables
at different locations. We show that percolation transitions
occur in the network, which anticipate the irregular sudden
changes between different stages of the system’s oscillation.
We then characterize the contributions of different processes
potentially causing the percolation transitions. These include
common trends among individual oscillators as well as the
synchronization of the superimposed (stochastic) fluctuations.

The obtained results provide new insights into time-
dependent structural changes emerging in functional network
representations of multicomponent complex systems which
lead to a better understanding and interpretation of the
percolation-based precursors in their application to real-world
oscillatory phenomena. This is illustrated by reconciling the
previously reported anticipatory power of the percolation
framework in the climatic phenomena of El Niño and La
Niña. Notably, Rodriguez-Mendez et al. [40] applied the

percolation-based framework to time series of sea-surface
temperatures (SSTs) in the equatorial Pacific. They showed
the ability of the methodology to anticipate El Niño and
La Niña events, the two extreme stages of a single climate
oscillation: the El Niño-Southern Oscillation (ENSO). Other
works have also confirmed that different characteristics of
the percolation transition on climate networks provide early
warning indicators for the occurrence of El Niño or La Niña
[43–46]. In fact, several topological as well as geometric
properties of functional climate networks have been reported
to provide useful diagnostics for the overall state of the
spatially extended coupled atmosphere-ocean system during
different ENSO phases [47–49]. Nonetheless, the mathe-
matical mechanisms leading to the percolation transition in
these correlation networks are far from being fully under-
stood. In light of the understanding gained from studying the
processes causing the percolation transitions in the FitzHugh-
Nagumo system, we identify the mechanism behind the
performance of the percolation framework for the anticipation
of El Niño and La Niña reported in Rodriguez-Mendez et al.
[40]: a global tendency in the variation of SSTs across the
considered region.

The remainder of this paper is organized as follows. In
Sec. II we describe the network construction and the princi-
ples of percolation-based precursors for critical transitions.
Section III first introduces the system of coupled FitzHugh-
Nagumo oscillators and describes its numerical integration.
The application of the percolation-framework to this system
and the results obtained are then detailed. Finally, in Sec. IV,
we show how the lessons learned from the previous example
shed light on the dynamical processes inducing variations in
the connectivity structure of the (correlation-based) functional
network describing El Niño and other phases of the El Niño-
Southern Oscillation.

II. CORRELATION NETWORKS AND PERCOLATION

A. Functional networks

Spatially extended dynamical systems can be approxi-
mated by spatially localized units governed by their own
local dynamics while interacting with other units through
processes such as diffusion, convection, conduction, etc.
Functional networks are a discrete way of encoding statistical
associations among these individual local dynamics. They
have been successfully employed to get insights into the
dynamics of complex systems in fields as diverse as neuro-
physiology [50], urban systems [51], seismology [52], and
climatology [35,37,53].

In this paper, we analyze the emergence of strong
correlations between different locations of spatially extended
dynamical systems by means of a functional network
constructed as follows. Let the spatiotemporal field u(x, t )
describe (although perhaps only in an incomplete manner)
the evolution of the system’s state, where x is space and t is
time. We discretize both space and time to obtain the series
{uk (tl )}kl , where k ∈ {1, . . . , N} labels the different spatial
locations that will be used as the N nodes of the functional
network, and l ∈ {1, . . . , R} labels time instants. The links
are built through statistical analysis of inter-dependencies
between pairs of time series from different spatial locations.
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Most commonly, the similarity between the variability at
locations a and b is computed via the zero-lag Pearson
correlation

ρab =
∑

l pa(tl )pb(tl )√
(
∑

l pa(tl )2)(
∑

l pb(tl )2)
, (1)

where pk (tl ) = uk (tl ) − 1
R

∑
l uk (tl ) is the deviation of the

field from its temporal mean at each location. A link is set
between the nodes a and b if the Pearson correlation is higher
than a given threshold γ : ρab > γ . Only positive correlations
are considered here, but it is straightforward to extend the
formalism to the case |ρab| > γ , as was done in Ekhtiari et al.
[54] for instance.

The (undirected) network constructed in this manner de-
scribes the strongest positive linear correlations between parts
of the system over the time interval [t1, tR]. We call this the
“network at time tR,” stressing that it contains information
only on the past of time tR, as adequate for a formalism
that will be intended for forecasting and anticipation. By
repeating the procedure over consecutive intervals [t2, tR+1],
[t3, tR+2], etc., we construct networks at times tR+1, tR+2,
etc., a sequence that conforms a time-dependent functional
network [47], a particular type of a temporal network [55]
whose architecture reflects the evolution of the correlations
of the system evaluated over time windows consisting of R
time steps each. Hence, by analyzing how the network’s topo-
logical properties change over time, it is possible to detect
a reorganization of the correlation structure of the system
at a certain time, revealing changes in the spatiotemporal
dynamics.

We note that the above network construction method is just
the simplest among the many available methodologies that use
network-theory frameworks to reveal dynamical properties of
spatially extended dynamical systems (see, e.g., Ref. [35]).
Other measures of statistical dependence, such as lagged cor-
relations [43,46], or information-theoretic measures [56] can
be used, which may lead to functional networks encoding
different aspects of time series similarity [57]. But here we
restrict ourselves to the simplest methodology, which can
be applied with essentially no knowledge on the underlying
mechanisms or on the spatial and temporal scales generating
the spatiotemporal signals. We will show that this framework
is powerful enough to find anticipatory signals of sharp tran-
sitions, as well as to extract some information on their origin.

B. Percolation

Percolation theory traditionally describes the changes in
network connectivity as links are added or removed [34,58].
In many networks, provided that they are large enough, there
is a critical number of links at which the disconnected clusters
merge into a larger connected cluster that contains a sig-
nificant fraction of the nodes. Such phenomenon is referred
to as a percolation transition. Several metrics can be used
to characterize the cluster properties of a network [34]. In
particular, we consider here the relative size of the largest
connected component, S1, i.e., the fraction of nodes that forms
the largest cluster, and the probability that a randomly chosen
node belongs to a cluster of size s, cs, s �= 1. The later quantity

can be expressed as

cs = sns

N
, (2)

where ns is the number of clusters of size s and N is the num-
ber of nodes in the network. Monitoring such characteristics
in the time sequence of evolving functional networks allows
to identify and potentially anticipate percolation transitions in
time-dependent networks.

Percolation measures from correlation networks have been
shown to provide very early warning signals of upcoming
B-tipping in spatially extended systems [40]. Notably, critical
slowing down occurs close to various (although not all [3])
types of bifurcations. As already mentioned in the introduc-
tion, in systems consisting of interconnected spatial units with
homogenizing interactions (such as diffusive coupling), the
slowing down of the dynamics when approaching a bifurca-
tion gives ample time for the interactions to produce large
correlations, which in turn lead to a correlation network with
large link density. Eventually, the increasing connectivity will
result in a percolation transition in the functional network.
The percolation threshold is reached before (i.e., at lower
connectivity than) the bifurcation (at which full connectivity
is attained). Thus, the occurrence of a percolation transition
as a system parameter is changed is already an early warning
signal announcing the proximity of a bifurcation; and antici-
patory signals of the percolation itself will provide still earlier
warning signals of the approaching bifurcation or B-tipping.
Rodriguez-Mendez et al. [40] illustrate this approach for var-
ious B-tipping situations.

However, many important sudden shifts in nature cannot
be attributed to B-tipping processes. In the following, we
therefore investigate the potential of the percolation measures
for anticipating sudden shifts in spatially extended complex
systems beyond the case of B-tipping, focusing specifically
on systems presenting irregular oscillations. The aim will be
to anticipate associated abrupt changes in the system state that
occur during the oscillation cycles.

III. DIFFUSIVELY COUPLED NOISY
FITZHUGH-NAGUMO OSCILLATORS

A. Description of the model

The FitzHugh-Nagumo (FN) system is a minimalistic and
prototypical model of an excitable system which can display
an oscillatory regime. It is a simplification of the Hodgkin-
Huxley model for the transmission of electrical pulses along a
nerve axon [59] which was first derived by FitzHugh [60] and
Nagumo [61]. The archetypal form of the model is given by

u̇ = f (u) − v + I,

1
ε
v̇ = u − bv + c, (3)

where f (u) = αu(u − a)(1 − u) and α, a, b, c, I are constant
parameters. The excitable variable u, corresponding in the
original model to the membrane’s potential, is characterized
by a fast dynamics while the recovery variable v has a slow
dynamics. The timescale separation between both variables
is given by ε � 1. Depending on the choice of parameters,
system (3) has one or three stationary points, whose stability
determines the solution’s behavior. For the set of parameters
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chosen in this study (which includes I = c = 0), the system
exhibits an unstable focus located at (0,0) as well as a unique
attractive limit cycle, leading to periodic pulses. This type
of oscillations are of primary importance for the modeling
of neuro-biological systems [50,60,61], in electrical circuits
[62], in seismology [63], and in climate science [64].

In this study, we consider a system consisting of N nonpe-
riodic and stochastic FN-type oscillators coupled by diffusion
on a one-dimensional ring lattice. The time evolution of the
state (uk, vk ) at node k is described by

u̇k = f (uk ) − vk + I + (�u)k +
√

2D(u)η
(u)
k ,

1
ε
v̇k = uk − bvk + c + (�v)k +

√
2D(v)η

(v)
k , (4)

for k = 1, ..., N . We will refer to the label k as “space” in the
following. Node k is coupled to its nearest neighbor on each
side via the diffusive terms (�u)k = uk+1 + uk−1 − 2uk and
(�v)k = vk+1 + vk−1 − 2vk . To avoid unnecessarily complex
dynamics we have chosen the diffusion coefficients of the u
and v variables to be equal, and units of space are scaled
so that this common diffusion coefficient becomes unity. The
terms η

(u)
k (t ) and η

(v)
k (t ) are two independent Gaussian white

noise sources, with 〈η(a)
r (t )η(b)

s (t ′)〉 = δabδrsδ(t − t ′). The ad-
dition of noise to the deterministic system is motivated by the
fact that real systems unavoidably include stochastic fluctua-
tions and by the necessity of well-defined spatial correlation
functions for the construction of the correlation network de-
scribed in Sec. II. Despite the presence of these additive noise
terms, if their intensity remains small, the resulting FN dy-
namics is a rather regular periodic oscillation. To bring the
model closer to the type of irregular oscillations that we want
to address—for which prediction is a nontrivial task—we let
the parameter ε, which has the most direct influence on the
timescale separation between u and v, vary stepwise in time.
Precisely, ε takes a constant value during the time needed
for the system to complete a full oscillation cycle. In this
case, a full oscillation cycle is defined as a full cycle of the
mean dynamics over all N oscillators. Once a cycle has been
completed, a new value of ε is chosen (the same for all k)
with uniform probability over the interval (0.001, 0.033). The
range is chosen such as to produce oscillations with period
lengths suited to the purpose of our study. This choice of
ε = ε(t ) introduces a strong irregularity in the period of the
oscillations making the system more similar to natural oscil-
latory phenomena, and making the anticipation of the different
abrupt changes substantially more challenging.

B. Numerical integration

In the following, we choose α = 1, a = −1, b = −0.83,

c = 0, I = 0 and noise intensities D(u) = D(v) = 0.01. We
consider N = 500 oscillators.

To compute numerically the solution to System (4), we
start from a uniform initial state (uk (0) = −0.16, vk (0) =
0.01) ∀ k ∈ {1, . . . , N}. The solution is evolved with an
integration time step dt = 0.05. At each time step the deter-
ministic part of the equation is integrated first via a fourth
order Runge-Kutta scheme [65, Sec. 7.4]. Then, N indepen-
dent random Gaussian distributed numbers of zero mean and

FIG. 1. Left: evolution of the fields u (a) and v (c) as a function
of space and time. Right: all (N = 500) individual time series super-
imposed for u (b) and v (d).

variance 2D(u)dt and 2ε2D(v)dt are added to uk and vk , k ∈
{1, . . . , N}, respectively.

Figure 1 shows the evolution of the solution (u, v). Fig-
ures 1(a) and 1(c) show the evolution of the fields u and
v as a function of space and time. As an alternative view,
Figs. 1(b) and 1(d) show the individual time series of u and
v superimposed for all (N = 500) nodes. The evolution of the
variables u and v is quite coherent in space, i.e., all nodes k
are nearly perfectly synchronized, a consequence of the dif-
fusive coupling and of the choice of parameters. We observe
that the state variable u presents asymmetric and nonperiodic
oscillations with sudden switches between positive/negative
values. The state variable v shows linear increase and decrease
in time.

In the next section, we investigate the potential of the
percolation precursors to anticipate the irregular abrupt global
changes in the state of the fast variable u, without using
any information on the variable v. To do so, we construct a
sequence of networks from the discrete field uk (tl ) following
the methodology described in the previous section, using con-
secutive time windows of 140 steps, that is of seven time units
(140 × dt), and a correlation threshold γ = 0.6. Information
from the field vk (tl ) is ignored in the network construction. As
mentioned previously, the network (and network quantities) at
time t describes the information contained in the time window
prior to t .

Note that the predictability of the behavior of u is made
significantly more challenging by (1) the time dependence of
ε which leads to the irregularity of the oscillations, as well as
(2) the absence of information from the field v in the network
construction.

C. Percolation-based precursors in the FN system

The increase in spatial variance is commonly used as a
precursor of abrupt changes in dynamical systems [29,30].
Therefore, we first compute the variance of the state vari-

able u as σ̄u(tl ) =
√

1
N

∑N
k=1[uk (tl ) − ū(tl )]2, where ū(tl ) =

1
N

∑N
k=1 uk (tl ) is a spatial average (over all the nodes). Fig-

ure 2(a) shows again the evolution of the uk time series at all
nodes for reference. The gray shading in Figs. 2(b), 2(c), and
2(d) indicates the time intervals during which the values of u
are changing sign, the bounds of this interval being defined by
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FIG. 2. (a) Spatiotemporal evolution of the variable u, (b) spatial
variance of u, (c) relative size S1 of the largest connected component
in the network constructed from the variables uk with correlation
threshold γ = 0.6, (d) probability c2 that a randomly chosen node
belongs to a component of size 2 in the network. The light blue line
gives the raw values of c2 whereas the darker curve smooths the data
using a 40-point window average (i.e., 2 time units), centered at the
time of interest. The gray shading indicates the time interval during
which the uks switch sign. The two triangles indicate the locations of
two time intervals of 140 time steps each whose correlation proper-
ties are displayed in Fig. 4.

the first and the last oscillator to cross zero. In Fig. 2(b) we
can see that the variance peaks within this interval. However,
there is no detectable rise of spatial variance until the system
enters the “jump” time interval, i.e., until the first oscillators
switches sign. Hence, for this system, the peak in variance
indicates the occurrence of the abrupt change, but it is not
useful as an anticipatory or early warning tool.

Figures 2(c) and 2(d) show the evolution of the network
measures S1, the relative size of the largest connected com-
ponent, and c2, the probability that a randomly chosen node
belongs to a component of size 2 [40]. Note that in Fig. 2(d)
the light blue curve shows the actual values of c2 while the
dark blue curve gives a smoothing of the data which makes
the general increase and decrease in the values of c2 more
apparent. The smoothing is obtained using a 40-point window
average (the equivalent to two time units), centered at the
point of interest.

We observe that both S1 and c2 anticipate the abrupt in-
creases and decreases in the state variable associated with
the system’s oscillations. Precisely, S1 starts increasing (in-
dicating the start of the percolation phase) long before the
sharp changes in the values of uk . It reaches its maximum
during the transition of the state variable and then decreases
very rapidly, reaching 0 just after the transition. The behav-
ior of S1 reflects that the correlation between the dynamics

at individual nodes increases as a jump in the u values
is approached and accordingly the link density in the net-
work also increases so that eventually a cluster of significant
size forms. The numbers of nodes in clusters of small sizes
(2, 3, 4, etc.) first increase, before decreasing again as most
of the nodes begin to attach to the percolating cluster of
relative size S1. This leads to the presence of a peak in the
values of c2 just as S1 starts increasing [Fig. 2(d)], providing
a very early warning signal of the abrupt change in u. Note
that the asymmetry of S1 around the jump and the lack of
peaks in c2 after the shift are due to the irreversibility of
the system’s abrupt jumps: the correlation state in the net-
work changes completely after uk has switched sign for all
oscillators.

Despite the irregularity of oscillations and the fact that
information from the variable v was ignored in the network
construction, the network measures are well able to anticipate
the abrupt changes in the values of u. However, we saw that
the spatial variance did not provide significant anticipation.
This shows the advantage of using the percolation measures
as precursors of abrupt changes in the present system.

D. Processes leading to percolation

The occurrence of percolation in the system’s functional
network, manifested in the increase in S1 before the abrupt
global jump in the oscillator’s state occurs, reflects an increase
in correlations which can be triggered by two different pro-
cesses (or by a combination of the two):

(i) From the definition of the spatial Pearson coefficient in
Eq. (1) it is clear that a large and coherent change common
to all spatial units gives a much larger value of ρab than
small fluctuations around some stationary base state. Thus,
in systems for which an abrupt change in the global state of
the system is preceded by an upward/downward trend of all
spatial units, percolation in the correlation network will occur
giving an early warning of the incipient sudden jump. This is
a rather general mechanism, that should provide anticipatory
signals in a variety of real systems in which sharp global
changes interrupt relatively quiescent states.

(ii) In the particular case of the FN system, an additional
mechanism could be at work. As already mentioned, u and
v evolve on two different timescales. From the structure of
the local equation (3), the “slow” variable v can be seen
as a bifurcation parameter that drives the dynamics of the
“fast” variable u [66]: u drifts slowly until v crosses a critical
threshold, which produces an effect similar to a saddle-node
bifurcation of the u dynamics. As a consequence, a rapid
shift occurs to an alternative u state. In fact, one can clearly
anticipate the jumps in u, even if irregular, by looking at the
trend in v and estimating when it will reach a critical value
(see Fig. 1). This is why we have ignored the information
about v in the network construction, to be closer to real-world
situations in which relevant variables may not be directly
observable. The situation here is very similar to the B-tipping
described earlier. The critical slowing down associated to
the effective bifurcation in u can thus explain the increase
in correlations and the percolation anticipating every sudden
jump. This second mechanism is solid and theoretically well
understood, but is not as general as the first one, as it will only
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be present in fast-slow dynamical systems (which are indeed
commonly used to model critical transitions [42]).

We aim to elucidate which of the two mechanisms above
(or which combination of them) is responsible for the success
of the percolation framework in anticipating the FN system
transitions. To this end, we propose to repeat the perco-
lation analysis with modified spatiotemporal data in which
all the synchronous upward/downward trends have been re-
moved, and thus any remaining anticipatory power should
arise from mechanism (ii) alone. More specifically, we remove
the upward/downward trends from the time series at each
location k in our coupled FN model by using a Gaussian
kernel. That is, for each time step tl of the time series at k,
uk (tl ), we remove the weighted average:

1∑
l ′ ω

(l )
l ′

∑
l ′

ω
(l )
l ′ uk (tl ′ ), (5)

where ω
(l )
l ′ = exp[−(tl − tl ′ )2/(2b2)] and the bandwidth is

b=40 (corresponding to 2 time units). The time window is
centered around tl to remove trends in the best possible way.
This implies taking into account some future values to obtain
the detrended time series at tl . This is not a problem since
in this subsection we are only interested in elucidating the
mechanism for the success of the percolation early warnings,
and for this we are postprocessing the whole time series. The
finding of the anticipatory signals themselves was properly
done in Sec. III C by using only past values of the analyzed
time series, as appropriate for real-time monitoring applica-
tions.

The residual variability is shown in Fig. 3(a). The time-
series of S1 and c2 for the network constructed on the
detrended fluctuations are shown in Figs. 3(b) and 3(c). The
gray shadings bound the jump regions where transient effects
remain due to large variations in the data which impede com-
plete detrending. Because of the detrending, mechanism (i)
should be absent, and only mechanism (ii) should be at work,
at least outside the gray shaded regions. We observe that the
anticipation power is similar to the one obtained using the
original (i.e., nondetrended) data. This result suggests that
critical slowing down indeed takes place in this system before
every sudden shift, leading to increased spatial correlations.
Note, however, that the chosen correlation threshold is now
of γ = 0.536 versus γ = 0.6 in the above example. In fact,
the strength of the correlations between spatial points should
be generally lower when the network is constructed from
detrended data, that is when mechanism (i) is absent.

Figure 4 further illustrates the effect of mechanism (i) on
the correlation values by inspecting their distributions over
two different time intervals during the evolution of the sys-
tem, characterized, respectively, by high [Figs. 4(a)–4(d)] and
low [Figs. 4(e)–4(h)] common trends among the individual
dynamics. First, Figs. 4(a)–4(d) characterize the system’s cor-
relations over the time interval [325,332] (see first marker in
Figs. 2 and 3), that is just before a jump in the values of u.
The correlation matrices for the original and detrended data
are plotted in Figs. 4(a) and 4(c), respectively. The higher
correlation values and more complex structure of the nonde-
trended case [Fig. 4(a)] are evident. To get a more objective
comparison of the correlation values, we show the proba-

FIG. 3. (a) Residual fluctuations obtained after detrending the
variables uk , (b) relative size S1 of the largest connected component
in the network constructed from the detrended time series for uk with
correlation threshold γ = 0.536, (c) probability c2 that a randomly
chosen node belongs to a component of size 2. The light blue line
gives the raw values of c2 whereas the darker curve smooths the data
using a 40-point window average (i.e., two time units), centered at the
time of interest. The gray shading indicates the time interval during
which the uks switch sign. The two triangles indicate the locations of
two time intervals of 140 time steps each whose correlation proper-
ties are displayed in Fig. 4.

bility density of values in Fig. 4(b) for both cases as well
as their cumulative distributions in Fig. 4(d). These confirm
the previous observation: the correlations computed from the
original data are overall much higher than the ones computed
from the detrended data. Thus, in addition to the fluctuation
synchronization observed in the detrended data [mechanism
(ii)], there is also a large global trend common to the dynamics
of all spatial units in the nondetrended case [mechanism (i)]
when the system is close to a transition.

This interpretation is further confirmed by Figs. 4(e)–4(h),
which display the same quantities as Figs. 4(a)–4(d) but over
the the time interval [363–370]. This is just after the jump
and relatively far from the next one (see second marker in
Figs. 2 and 3). In this interval, the upward/downward trend
of all spatial units is not as marked and little differences are
observed in the structures and distributions of correlations
between the original and detrended case.

Note that the difference in correlation strengths be-
tween the original data and detrended data illustrated in
Figs. 4(a)–4(d) clearly affects the link density in the network.
In fact, for any choice of the correlation threshold γ , a larger
fraction of correlation values ρab will satisfy the criterium
ρab > γ when these correlations are computed from the orig-
inal data than from the detrended data. This leads to higher
network connectivity in the former case and the choice of
different thresholds γ in Figs. 2 and 3.

The results presented in this section demonstrate that the
rise of the percolation measures in the network computed from
the original data (reflecting a rise of correlation in the FN
system) is supported by both processes (i) and (ii), although
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FIG. 4. (a–d) Correlations computed from the original and de-
trended data over the time interval [325,332] indicated by the first
black triangle in Figs. 2 and 3. Panels (a) and (c): the correlation
matrices computed from the original and detrended data respectively.
Panels (b) and (d): comparison of the correlation distributions (prob-
ability density and cumulative probability) for the two cases. Panels
e-h: correlations over the time interval [363–370] indicated by the
second black triangle in Figs. 2 and 3. Panels (e) and (g): correlation
matrices computed from the original and detrended data. Panels (f)
and (h): comparison of the correlation distribution and the cumulative
distributions.

the presence of mechanism (ii) is powerful enough on its own
to provide clear anticipatory signals [Fig. (3)].

Distinguishing the contribution from each process allows
us to better understand the behavior of the percolation precur-
sors and the situations in which they are useful beyond the
case of the FN system. Specifically, the percolation measures
have the potential to detect a global trend in the dynamics of
any extended system very early on. Thus, given the knowl-
edge that an increasing/decreasing global trend precedes an
abrupt change in the state of the system, the sensitivity of
the percolation measures can be leveraged to design very

early warnings of upcoming shifts. Moreover, in systems in
which some slowing down of the dynamics occurs before the
jumps, the anticipatory signals become still more powerful. A
postprocessing of the spatiotemporal series helps to reveal the
main mechanism of the percolation transition, thus informing
about system dynamics. This later point is illustrated further
in the next section using a real-world climate example.

IV. PERCOLATION IN SEA SURFACE TEMPERATURE
NETWORKS DURING EL NIÑO AND LA NIÑA EVENTS

El Niño and La Niña are the hot and cold phases of ENSO,
the dominant interannual oscillation in the tropical Pacific,
which affects the whole Earth climatic system [67]. The aver-
age ENSO period is about 4 years, but with strong variability
which makes its prediction challenging [68,69].

Several studies, using different data sets, variables,
network construction methods, and percolation indicators
[40,43–46] demonstrate that a percolation transition often
occurs in climatic variables of the tropical Pacific before El
Niño and La Niña events. However, there is no obvious pa-
rameter change during the ENSO cycle that could explain the
performance of these indicators as arising from the crossing
of a bifurcation or B-tipping. In fact, while a Hopf bifurca-
tion is present in some models of ENSO [67], such that its
dynamics can be conceptualized either as subcritical oscilla-
tions excited by noise, or supercritical noisy oscillations, the
sharp changes that define the El Niño and La Niña events
themselves cannot readily be identified as the crossing of any
bifurcation.

In the previous section, we showed that, when the system
of coupled FN oscillators approaches an abrupt change, the
spatial correlations increase and that two combined factors
could lead to this increase, namely the effect of a common
trend in the monitored variables, or the impact of slowing
down of the dynamics when approaching the event. In light of
these observations, we now investigate the following question:
“Is the ‘ENSO-percolation’ related to a global trend in the
tropical climatic variables or due to critical slowing down on
particular phases of the dynamics?”

To answer this question, we build on the network studies
of [40] and compare the evolution of the percolation measures
for a network computed from sea surface temperatures (SSTs)
over the tropical Pacific and from the detrended SSTs over
the same region. Precisely, the SST data is obtained from
the European Center for Medium-Range Weather Forecast
(ECMWF), ERA-Interim reanalysis product [70], a global
data set, covering a period of 40 years: from January 1979
to August 2019. We choose 3618 network nodes lying on a
0.375◦ × 0.375◦ grid in the region 5S-5N/120W-170W—that
is the region of the Pacific used in the computation of the com-
monly employed NINO3.4 index. The domain is illustrated in
Fig. 5. At each node, daily SST anomalies are computed by
subtracting the mean seasonal cycle. The links of the network
are set based on the correlation of the anomaly time series over
a sliding window of 200 days resulting in a time-dependent
network.

We focus on three periods: July 1987–July 1988, Octo-
ber 1996–April 1998, and September 2009–January 2011.
The mean SST anomalies over the considered region are
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FIG. 5. The red box indicates the region (5S-5N/120W-170W)
over which the mean sea surface temperature is monitored in the
NINO3.4. index. The nodes of the functional network are chosen on
a regular 0.375◦ × 0.375◦ grid in this region (see text).

indicated by the gray curves in Fig. 6. The abrupt drops and
increases in temperature correspond to La Niña and El Niño
events, respectively. These events are commonly defined by
five consecutive 3-month running mean values of sea surface
temperature (SST) anomalies in the Niño 3.4 region below
(above) the threshold of −0.5◦C (+0.5◦C). The starting date,
i.e., the first day of the first month, of each event is indicated
by a vertical dashed line in the figure.

The relative size of the largest connected component of
the network computed from the SST anomalies is shown in
Figs. 6(a)–6(c) (red curves) for correlation threshold γ =
0.999 for the 1988, 1997, and 1998 events and γ = 0.998 for
the 2010 event. The high correlation thresholds are necessary

here to prevent the network from being fully connected and
hence to observe changes in the network measures S1 and
c2. We clearly see the increase in S1 right before every event
as reported in Ref. [40]. In addition, Figs. 6(d)–6(f) (blue
curves) show the probability for a randomly chosen node to
belong to a component of size 2, c2. This quantity provides
additional anticipation indicated by the gray shading in the
figure. Precisely, the anticipation provided by c2 is of 146 days
for the event in 1988, 79 days for the event in 1997, 214 days
for the event 1998, and 119 days for the event in 2010.

Next, we want to identify which is the mechanism—
global trend or fluctuation synchronization by critical slowing
down—which leads to the observed percolation transition. To
this end, as in the case of the FN oscillators, we postprocess
the spatiotemporal series to detrend them at each grid point
using a Gaussian kernel with a bandwidth of 60 days. The
detrending is illustrated in Figs. 7(a)–7(c) by showing, in gray,
the spatial mean of the fluctuations for each considered period.
Figures 7(a)–7(c) also show the time series of S1 (in red) for
the network computed from the detrended data for the same
correlation thresholds as above. We observe the lack of peak in
S1 [except perhaps in Fig. 7(b)]. To make sure that the absence
of signal in S1 is not due to the choice of γ , we show the values
of S1 for a range of thresholds in Figs. 7(d)–7(f). In all cases
the lack of clear structures in the measure confirms the lack
of variation in the correlation of the fluctuations preceding
ENSO episodes. We note however that a drop in correlations
occurs after the La Niña event in the 2009–2011 period, which

FIG. 6. (a–c) Average SST anomaly over the region 5S-5N/120W-170W, for three different periods (gray). The dashed vertical lines mark
the beginning of El Niño/La Niña events. Relative size of the largest connected component S1 (red) in the correlation network of SST built
with correlation threshold γ = 0.999 for the first two periods and γ = 0.998 for the last period. (d–f) Probability c2 that a randomly chosen
node belongs to a component of size 2 in the correlation network of SST (blue). Reproducing of results from Rodriguez-Mendez et al. [40].
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FIG. 7. (a–c) Average detrended SST anomaly over the region 5S-5N/120W-170W (gray). The dashed vertical lines mark the beginning
of El Niño/La Niña events. Relative size of the largest connected component S1 (red) in the correlation network of detrended SSTs built
with correlation threshold γ = 0.999 for the first two periods and γ = 0.998 for the last period. (d–f) Values of S1 for a range of correlation
thresholds γ ∈ [0.96, 1.00].

does not have an anticipatory value. A more detailed analysis
would be required to identify its causes.

We can thus conclude that the increase in the size of the
largest connected component preceding El Niño and La Niña
events is due to a large-scale trend in the SSTs before every
event, and not to a slowing down of the dynamics at some
locations in space. This is relevant to discard possible mech-
anisms, as some models of ENSO obey a slow-fast structure
very similar to the FN model [64]. The percolation precursors
prove to be powerful tools to monitor the ENSO irregular
oscillation, being sensitive enough to detect the emergent
trend very early on and hence allowing for very early warning
signals of approaching El Niño and La Niña events.

V. CONCLUSION

In summary, we have analyzed time-dependent functional
networks encoding the evolution of correlations in spa-
tially extended systems. The development of structures in
such networks allows to detect subtle changes in the sys-
tems dynamics which might easily be overlooked by other
analysis techniques. Precisely, we saw that the percolation
precursors anticipate the abrupt changes between different
stages of the oscillation in a system of coupled stochas-
tic FitzHugh-Nagumo oscillators. The percolation reflects
an increase in the correlations of the system which is due
to the combination of two processes: (i) a global trend
or coherent tendency among all spatial units preceding the

abrupt change and (ii) an increase in the correlation of the
noisy fluctuations “on top of” that trend (critical slowing
down).

These considerations lead to a better understanding and
interpretation of the percolation precursors in their application
to the El Niño-Southern Oscillation. Our results demonstrate
that the increase in correlation of sea surface temperatures
over the NINO3.4 region preceding the studied El Niño and
La Niña events is triggered by a large-scale trend in the SSTs,
that is a growth or decay of the SSTs at all, or at least
sufficiently many, spatial points, before every event and not
by a slow down of the temperatures dynamics. This provides
insights on the mechanism causing the performance of the
percolation precursors in this particular case. We focused on
a local scale, considering the El Niño basin only, and used in-
stantaneous Pearson correlations in the network construction.
Hence, our conclusions cannot be directly transferred to other
percolation studies of El Niño which were performed on larger
scales and used lagged-correlations such as in Refs. [43,46].
In those cases, the percolation is marked by the appearance of
large-scale clusters and teleconnections, for which the causing
factor remains to be found.

Tracking the structural changes in network descriptions
of complex systems have the potential to reveal various
dynamical aspects of these systems. Beyond the case of
El Niño, these approaches have been utilized by Gupta et al.
to track and identify short lived tropical cyclones [71]. Sun
et al. [72] implemented a percolation model to investigate
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the structure and complexity of the atmosphere. Fan et al.
[73] have used a complex network framework to investigate
changes in the atmospheric circulation associated with global
warming and evaluate the impacts of future climate change.
These examples suggest the potential of complex networks
and their percolation properties to study present and future
climate. Along this line, our work brings further insights into
the situations in which the percolation-based precursors may
be useful.

To facilitate future usage of the percolation framework
described in this work, we provide in Ref. [74] a Python
notebook performing the integration of the FitzHugh-Nagumo
system with parameters specified in Sec. III and computing
the correlation network as well as its percolation measures
(Sec. II).
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