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ABSTRACT
Aerosol effects on cloud properties are notoriously difficult to disentangle from 
variations driven by meteorological factors. Here, a machine learning model is trained 
on reanalysis data and satellite retrievals to predict cloud microphysical properties, as 
a way to illustrate the relative importance of meteorology and aerosol, respectively, 
on cloud properties. It is found that cloud droplet effective radius can be predicted 
with some skill from only meteorological information, including estimated air mass 
origin and cloud top height. For ten geographical regions the mean coefficient of 
determination is 0.41 and normalised root-mean square error 24%. The machine 
learning model thereby performs better than a reference linear regression model, 
and a model predicting the climatological mean. A gradient boosting regression 
performs on par with a neural network regression model. Adding aerosol information 
as input to the model improves its skill somewhat, but the difference is small and the 
direction of the influence of changing aerosol burden on cloud droplet effective radius 
is not consistent across regions, and thereby also not always consistent with what is 
expected from cloud brightening.
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1 INTRODUCTION

Aerosol-cloud interactions and their effects on Earth’s 
radiation balance remain one of the main uncertainties 
in future climate projection (Bellouin et al. 2020, Forster 
et al. 2021, Bender 2020). This is not only because future 
changes in aerosol loading are not known but also 
because the sensitivity in clouds to aerosol changes is 
uncertain. Investigation of aerosol-cloud interactions 
on large scale relies on more or less complex versions 
of correlation analysis, making it difficult to isolate and 
assess causality of aerosol effects, and to distinguish any 
potential signals from variation due to meteorological 
factors, that often co-vary with aerosols, and aerosol 
influence on cloud (Mauger and Norris 2007, Engström 
and Ekman 2010, Koren et al. 2010, Zhang et al. 2022). 
Attempts to account for varying meteorology are 
continuously made, e.g. by segregating analysis based 
on meteorological regime or time interval (Gryspeerdt 
and Stier 2012, Chen et al. 2014, Oreopoulos et al. 2017, 
Malavelle et al. 2017, Oreopoulos et al. 2019, Douglas 
and L’Ecuyer 2019, Chen et al. 2022) or like Gryspeerdt et 
al. (2014) rather investigating how the occurrence of and 
transition between different regimes varies with aerosol. 
Still, the challenge to separate meteorological variation 
from aerosol influence remains unsolved.

Methods from data science provide new ways 
of studying aerosol-cloud interaction, and here we 
apply machine learning techniques on large sets of 
reanalysis and remote sensing data to investigate the 
relative importance of meteorological and aerosol-
related parameters in determining cloud microphysical 
properties over different geographical regions. 
Specifically, a gradient boosting regression (GrBR) model 
is trained to predict the cloud droplet effective radius (reff) 
supplied from the MODIS satellite-based record for each 
region. The GrBR is also compared with a neural network 
approach. As input parameters to the machine learning 
models, we use meteorological parameters such as 
temperature, humidity, geopotential height and wind on 
1000 hPa, 850 hPa and 700 hPa from the ERA5 Reanalysis 
dataset together with deduced air mass origin (AMO) 
from the HYSPLIT trajectory model, and cloud top height 
(ztop) as well as aerosol optical depth (AOD) from MODIS, 
sulfur dioxide (SO2) concentration data from satellite-
borne OMI, and near-surface sulfate mass concentration 
(SO4) from the MERRA-2 reanalysis.

The questions addressed in this study are the following:

•	 Can a simple machine learning model predict a cloud 
microphysical parameter (reff) based on large scale 
meteorological variables alone, with any skill?

•	 Will this model perform better when also given 
information about aerosol burden?

•	 What is the relative importance of each parameter in 
predicting the model output?

We focus on the instantaneous effect of aerosols on cloud 
droplet formation and size, and thereby cloud reflectivity. 
All else equal – in particular, with constant liquid water 
path in the cloud – a higher aerosol loading is expected 
to give rise to clouds with more numerous and smaller 
droplets, with higher reflectivity (cloud brightening, 
Twomey 1974). A number of observational studies 
illustrate cloud brightening from aerosols, particularly 
discernible in so-called opportunistic experiments, such 
as volcanic eruptions or ship tracks, where well-defined 
aerosol perturbations occur in otherwise undisturbed 
environments, e.g. McCoy and Hartmann (2015), Toll 
et al. (2019), Diamond et al. (2020), Christensen et al. 
(2022), although the generalisability of such experiments 
to climatological forcing estimates has been questioned 
(Toll et al. 2017, Glassmeier et al. 2021). The adjustment 
of clouds to smaller droplets, through the competing 
effects of precipitation suppression and enhanced 
entrainment, adds additional uncertainty, by altering the 
amount of water in the clouds, and thereby potentially 
violating the assumption of constant liquid water path. 
Although there is evidence that thickening and thinning 
closely compensate under some conditions (Toll et al. 
2017), the current study cannot assume a constant 
cloud thickness, and unaccounted for variations in liquid 
water path may interfere with the sought aerosol-signal.

As a measure of aerosol abundance we here use AOD, 
the total amount of aerosol extinction in the vertical 
column, that is expected to contribute negatively in the 
constructed models, so that large AOD values lead to 
predictions of smaller values of reff. While AOD is for several 
reasons not an ideal proxy for concentration of cloud 
condensation nuclei (CCN) (Liu and Li 2014, Shinozuka et 
al. 2015, Stier 2016, Quaas et al. 2020), it here serves the 
purpose of indicating the level of particulate matter (due 
to pollution, or from natural sources) present in the given 
regions and times. By comparing the prediction skill of 
models with and without aerosol information included, 
we can test both whether the aerosol information 
improves the model, and if so what the sign of the 
impact is. As a complement to AOD, that is an integral 
optical measure of aerosol loading, we also include SO2 
concentration as additional input. SO2, that can oxidize 
to sulfate and co-varies with sulfate aerosol in time and 
space, can provide an independent indication of CCN-
relevant aerosol signature (Aas et al. 2019, McCoy et al. 
2018). In addition, we include reanalysis estimates of 
SO4, which has previously been shown to co-vary with 
cloud droplet number concentration on larger spatial 
and temporal scale (McCoy et al 2017, 2018).

With similar focus on processes determining cloud 
property variations, machine learning methods have 
been applied for instance by Fuchs et al. (2018) who 
use gradient boosting regression trees to quantify the 
importance of different cloud controlling factors in 
determining cloud fraction and droplet size over the 
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Southeast Atlantic. Andersen et al. (2017) use an artificial 
neural network to predict cloud occurrence from satellite 
data and reanalysis fields, on near-global monthly mean 
scale, and in Andersen et al. (2023) ridge regression was 
applied to monthly, regional mean data over the same 
60°S to 60°N domain, to quantify sensitivity of cloud 
radiative effects to a number of cloud controlling factors, 
including aerosol proxies. Focusing on the Southeast 
Pacific, Jesson et al. (2021) suggest that links between 
AOD, cloud properties and environmental factors can be 
explored using non-linear causal models.

Here, we don’t address causality but simply investigate 
the plausibility of predicting cloud properties from 
data describing the environmental conditions, and the 
importance of various types of input parameters in that 
prediction. As opposed to Fuchs et al. (2018) who focus 
on the sub-regional variability in a specific subtropical 
area, we perform our analysis on a set of regions that 
represent varying meteorological conditions and aerosol 
signatures (cf. Bender et al. 2019), and as opposed to 
(Andersen et al. 2017, 2023) we study daily resolved 
data, and make sure that satellite and reanalysis data 
are synchronised within hours in time.

We use a gradient boosting regression model 
(GrBR, described in Section 2.1) with input data from 
reanalysis and satellite records (described in Section 
2.5), and compare it to a reference linear regression 
model (discussed in Section 2.3) and a neural network 
regression (NeNeR, described in Section 2.2). Section 2.6 
discusses the optimisation of model hyper-parameters 
for the GrBR model as well as the NeNeR. In Section 3.1 
we evaluate the GrBR model performance and in Section 
3.2 we investigate the influence of including aerosol 
information as model input.

2 METHODS AND DATA

2.1 GRADIENT BOOSTING REGRESSION
A GrBR model is trained to predict cloud droplet effective 
radius. Gradient boosting, as described e.g. by Friedman 
(2001), Hastie et al (2017), Géron (2019) works by 
combining a number of decision trees into one model. 
Following the initial model, each additional tree is 
trained to minimise the residual in the previous model, 
adding layers iteratively. Each new layer is fit to the 
negative gradient of the specified loss function, in this 
case the mean square error between model output and 
observations. The gradient boosting thereby combines 
weaker predictors into a single, more powerful model. 
Essentially, the model begins by simply considering 
the model output to be the average of the training set. 
The model then builds a slightly larger decision tree, 
combining it with the previous tree, using a scaling factor. 
Additional trees are added until the specified maximum 

number of layers is reached, or until the model score no 
longer improves significantly (Géron 2019).

The GrBR model is chosen here because of its decision 
tree structure providing predictive power and simple 
implementation, without requiring assumptions on input 
data distribution (cf. Zipfel et al. 2022). The decision 
tree structure also provides a way to determine how 
much each parameter contributes to the model’s final 
output. Because of the structure of the model, with 
decision trees that are based on parameter values, the 
contribution of each parameter to the model output can 
be extracted. Here, we illustrate this using permutation 
feature importance, which is a measure of the decrease 
in model score resulting from a random shuffling of a 
given parameter, and thereby can indicate the level of 
importance of each individual parameter for the outcome 
of the model.

To avoid overfitting, a clear distinction needs to be 
made between the data that the model is trained on, 
and the data used for testing. If this is not done, the 
model would simply repeat the labels of the samples 
that it has already seen during the learning process. 
Here, a randomly selected set of 20% of the data is set 
aside for testing, and given to the model only at the 
final evaluation stage. We note that random splitting of 
temporally structured data may underestimate error in 
extrapolative model building (Roberts et al. 2017), but 
for our interpolative purposes, there is less motivation 
for non-random splitting of the data, and we follow the 
examples of e.g. Fuchs et al. (2018), Chen et al. (2022) 
who randomly select training, test and validation data.

The GrBR models are set up in Python using Scikit 
(Pedregosa et al. 2011).

2.2 NEURAL NETWORK REGRESSION
The GrBR model performance is also compared to that 
of a NeNeR. As described in eg. Rumelhart et al. (1986); 
Géron (2019), a neural network consists of several layers; 
an input layer, a certain number of hidden layers and 
an output layer. Each layer consists of several nodes (or 
perceptrons) and the input as well as the hidden layers 
have an additional bias node.

The nodes of the input layer (usually one per feature) 
multiply the input value with a weight value and forward 
this result to the first hidden layer. Those values are 
then used as the input values for the perceptrons in the 
following hidden layer. Using the weighted sum of the 
input values, a so called ‘activation function’ is applied 
to produce a new output value which is then forwarded 
to the perceptrons in the next hidden layer. This is 
continued until the last layer, the output layer, is reached. 
While fitting the model with the training data set, the 
weights and bias are calculated (fitted) by minimizing 
a certain loss function, here the squared error. When 
a neural network is used for a single output regression 
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the output layer consists only of one perceptron which 
evaluates the final predicted value. The architecture of 
a neural network can be expressed by a linear equation 
system, but by using an appropriate non-linear activation 
function the method can represent theoretically any 
continuous function and is therefore suitable to represent 
non-linear problems. For the neural network model, 
a standardization of the input data is required (Géron 
2019), and here the data are normalised to a mean of 
zero and standard deviation of one.

The NeNeR models are set up in Python using Scikit 
(Pedregosa et al. 2011).

2.3 LINEAR REGRESSION
A linear regression model is used as a reference, to which 
the machine learning model performance can be tested. 
The linear regression is based on standardized data, 
sampled into a training set (n = 100,000) and a test set.

A separate and more extensive linear regression 
analysis is performed on the data to explore how 
much the linear model can be reduced without loss of 
performance (similar to a feature selection). To account 
for co-linearity between the variables in the regression 
model, a step-wise backward elimination, starting 
from the full model, is performed, where predictors are 
removed iteratively until all predictors are statistically 
significant (p = 0.05). Next, any remaining predictors are 
removed if they exhibit co-linearity with other predictors, 
accepting only variables for which the variance inflation 
factor is less than 5. This reduced model is tested 
alongside the full model.

2.4 STUDY REGIONS
Ten geographic regions are selected to be used in the 
models. These are divided into three different categories 
based on cloud or aerosol properties specific to the 
region; volcanic influence, anthropogenic influence and 

stratocumulus regions. The first includes two areas 
with active volcanoes, the second covers three areas 
under immediate influence of anthropogenic emissions 
and the third comprises five subtropical stratocumulus 
regions, modified from Klein and Hartmann (1993). 
Table 1 lists the different regions and categories as well 
as the latitudes and longitudes defining each region’s 
bounding box, also indicated in Figure 1. The choice of 
regions was guided by previous research (e.g. Bender et 
al. 2019). The regions are chosen so that their sizes are 
large enough to have sufficient data for the model to 
train on, but still small enough to be subject to similar 
meteorological conditions.

2.5 DATA
Input data for the models come from ERA5 meteorology, 
MERRA-2 aerosol fields, MODIS and OMI satellite 
retrievals, and the HYSPLIT trajectory model, as described 
in the following. Output data (reff and albedo) come from 
MODIS/CERES.

For each of the model types (GrBR, NeNeR and linear 
regression), the analysis is carried out repeatedly for each 
region, with different combinations of input variables, to 
illustrate the relative importance of meteorological and 
aerosol information.

2.5.1 ERA5 meteorology
The meteorological parameters are obtained from the 
European Centre for Medium-Range Weather Forecasts 
(ECMWF) ERA5 reanalysis dataset (Hersbach et al. 2020) 
and include 700, 850 and 1000 hPa level temperature 
(T700, T850, T1000), relative humidity (RH700, RH850, 
RH1000), geopotential height (gph700, gph850, 
gph1000), zonal wind speed (u700, u850, u1000), 
meridional wind speed (v700, v850, v1000), vertical 
wind speed (w700, w850, w1000) and divergence 
(div700, div850, div1000). Noting that the 1000 hPa level 

REGION ABBREVIATION CATEGORY LONGITUDE-
LATITUDE BOX

1 Iceland ISL Volcanic [–30, –10, 50, 70]

2 Hawaii HWI Volcanic [–170, –150, 10, 30]

3 E. Europe EEU Anthropogenic [15, 40, 35, 55]

4 E. US EUS Anthropogenic [–80, –65, 30, 45]

5 E. China CHN Anthropogenic [100, 123, 27, 42]

6 Australian AUS Stratocumulus [95, 115, –35, –20]

7 Canarian CAN Stratocumulus [–35, –25, 15, 30]

8 Namibian NAM Stratocumulus [0, 15, –20, –10]

9 Peruvian PER Stratocumulus [–90, –70, –25, –15]

10 Californian CAL Stratocumulus [–130, –110, 20, 35]

Table 1 Summary of the categories and geographical boundaries of the ten different study regions. The three-letter codes listed will 
henceforth be the notation used.
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is in several instances sub surface, in particular in the 
CHN region, we also include surface level information, 
namely 2-meter temperature (t2m), 2-meter dew point 
temperature (d2m), 10 meter horizontal wind speeds 
(u10, v10), estimated boundary layer height (blh), and 
surface pressure (ps). The meteorological parameters 
are selected at time steps corresponding to satellite 
overpass.

The pressure levels are chosen to describe the current 
synoptic, and local, weather situation while being low 
enough in the atmosphere for potential clouds to be 
liquid rather than ice phase. Our goal is to investigate 
how the cloud properties are determined by meteorology 
in a general sense, in contrast to aerosol. The input 
variables therefore don’t target specific processes or 
cloud controlling factors (as in e.g. Stevens and Brenguier 
(2009), Klein et al. (2017), Ceppi and Nowack (2021), 
Scott et al. (2020), Myers et al. (2021), Wall et al. (2022), 
McCoy et al. (2023), Blanco et al. (2023)), but are rather 
standard variables chosen to produce a general picture 
of the meteorological situation.

2.5.2 Satellite derived aerosol, cloud and radiation 
information
AOD and reff are retrieved from the MYD08 level 3 dataset 
from the Moderate resolution Imaging Spectroradiometer 
(MODIS) Collection 6 product (Levy et al. 2013, Platnick 
et al 2017). The AOD product combining the Dark Target 
and Deep Blue algorithm is used. MODIS observes a 
swath approximately 2330 km wide, but all data are 
aggregated to a horizontal resolution of 1° × 1°. The data 
used comes from MODIS carried on the Aqua satellite, 
which crosses the equator at the same local time every 
orbit, nominally at 1.30 pm, and makes between 14 and 
15 orbits per day. However, the time it passes over a 

certain region of study varies each day by up to 2 hours. 
Thus, there is a slight discrepancy of the valid time of the 
meteorological reanalysis data and the satellite flyover 
time.

Important to note is that the MODIS instrument 
cannot retrieve aerosol data in a cloud-covered pixel. 
A consequence is that when studying the daily data of 
AOD, it often contains gaps where the satellite is unable 
to determine the aerosol content in the gridbox. This 
in turn means that the data used to feed the machine 
learning model is limited by the MODIS AOD coverage. 
This is illustrated in Figure 2.

SO2 information is derived from the level 3 1-day 
Total Column Density of SO2 in the Planetary Boundary 
Layer (PBL) dataset measured by the Ozone Monitoring 
Instrument (OMI; Krotkov et al. 2016). OMI is a nadir-
viewing instrument on board the NASA Aura satellite 
flying in the same sun-synchronous polar orbit as Aqua, 
with the equator-crossing time of 1.45 pm. The data 
are resolved with a resolution of 0.25° × 0.25°, but here 
interpolated onto a coarser 1° × 1° degree grid to match 
the MODIS dataset.

Because of limited spatial coverage of the OMI data, 
a 7-day rolling mean was calculated for SO2. Seven days 
was chosen as a compromise between short enough 
averaging time to maintain a signal of day-to-day 
variation, while not loosing too much data due to poor 
coverage.

In addition, however, the OMI SO2 data set contains 
a substantial amount of negative values, that are also 
filtered out, as they are considered unphysical. Spurious 
negative values in the OMI retrievals may appear in 
particular at the edges of clouds, due to corrections in 
measured radiance, and in high latitude regions due 
to high ozone concentration and/or large solar zenith 

Figure 1 Regions included in the study. Mean AOD [unitless] between 2004–2020 is plotted in background for reference.
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angle (NASA n.d.). Further, the intrinsic noise in OMI 
produces noise in the SO2 measurements that exceeds 
most anthropogenic signals, with a standard deviation 
of 1.2–1.5 DU in tropical regions (OMI 2012). Therefore, 
the SO2 parameter can be expected to have a detectable 
impact on output mainly in regions with high levels of 
anthropogenic pollution, or in the rare events of strong 
volcanic outgassing or eruptions. This further limits the 
data used to feed the machine learning model, as seen 
in Figure 2.

For ztop (used as additional input to the model) and 
albedo (used as alternative output) parameters, we use 
estimates of those quantities from the Clouds and the 
Earth’s Radiant Energy System (CERES) Single Scanner 
Footprint (SSF) Edition 4.1, level 3 product (Wielicki et al. 
1996, Loeb et al. 2016). The data are collected by the 
Aqua satellite and were accessed through the NASA 
Langley Research Center Atmospheric Science Data 
Center. A low (sfc–700hPa) cloud top height parameter 
is chosen so as to stay within the pressure range of 
the previously selected meteorological parameters, 
which filters the data primarily on liquid (warm) clouds. 
Top of atmosphere all-sky albedo is the ratio between 
shortwave (0.2–5μm) reflected and incoming solar flux 
at the top of the atmosphere for all-sky conditions.

2.5.3 MERRA-2 sulfate estimates
Additional aerosol information is taken from the MERRA-2 
reanalysis (Randles et al. 2017), that includes vertically 
resolved estimates of mass concentration of five aerosol 
types, including sulfate. This follows McCoy et al (2018), 
who illustrated the predictive power of reanalysis SO4 on 
cloud droplet number concentration, on regional scale. 
We use the surface concentration rather than the 910 
hPa concentration, to avoid the mentioned issues of 
sub-surface data points. We also caveat that although 
assimilation of AOD from both space-borne and ground-
based remote sensing instruments (MODIS, MISR, AVHRR, 
Aeronet) contribute to constraining the total AOD in 
the reanalysis model, the partitioning between aerosol 

species and sizes, as well as vertical distribution, are 
determined by the model alone (Randles et al. 2016, 
2017).

2.5.4 HYSPLIT trajectories
In order to incorporate air mass source latitude (latsrc), 
longitude (lonsrc) and altitude (zsrc) as predictors in the 
model, following Fuchs et al. (2018) the Hybrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) 
model (Stein et al. 2015) is used to calculate air parcel 
trajectories. As background meteorology for the model, 
we use global 6-hourly ECMWF ERA5 reanalysis data 
available from the Copernicus Climate Change Service 
(C3S) Climate Data Store. The atmospheric variables 
include the geopotential, relative humidity, temperature, 
zonal wind, meridional wind and vertical velocity on 
24 pressure levels while single-level variables include 
the 10 m zonal and meridional wind components, 2 
m temperature and surface pressure. 5-day backward 
trajectories are launched at noon from each data 
grid point, from the daytime cloud top height (low 
clouds, daily means) obtained from CERES (see above). 
Trajectories that hit the ground during the simulation are 
considered less reliable since information about vertical 
motion is lost in such cases, and are therefore removed 
from the datasets.

2.5.5 Data coverage
All data cover a time period from October 2004 through 
to December 2019.

As illustrated in Figure 2, the data are pre-processed 
so that that only data points that contain values for all 
parameters are used as machine learning model input. 
This means that data points are removed from the 
data sets when information of at least one parameter 
is missing. The reanalysis will have data in every gridbox 
and thus never sets the limitation of the data for a 
given day. For the calculated AMO parameters (latsrc, 
lonsrc, zsrc), the removal of trajectories that make surface 
contact has a small effect on the data coverage. All the 

Figure 2 Data coverage for the different datasets included in the study. Top row shows each corresponding dataset for an example 
day in the CHN region. On each day, the model is only given data where all datapoints are available in all data sets (bottom row).



7Bender et al. Tellus B: Chemical and Physical Meteorology DOI: 10.16993/tellusb.1868

other parameters also have some limitations in their 
coverage, and in Figure 2, AOD from MODIS has the 
poorest coverage. The bottom row in Figure 2 shows the 
final data that is given to the machine learning model for 
this particular day, where all four observational data sets 
have defined values.

2.6 MODEL SELECTION AND PARAMETER 
TUNING
We use primarily a GrBR method, and compare its 
performance with a linear regression model and a 
NeNeR. Other machine learning models would have 
been possible to use, and under default hyperparameter 
settings, GrBR is found to have performance similar 
or slightly poorer than support vector machine (SVR), 
random forest (RandFoR), and a neural network (NeNeR) 
and better than adaptive boosting (AdaBR) in all regions. 
The GrBR method is chosen for its combination of 
performance and interpretibility for the given problem, 
and the NeNeR is chosen for its comparatively high score; 
see Supplementary Information.

2.6.1 Hyperparameter settings for GrBR and 
NeNeR models
To select the model hyperparameters for the GrBR model, 
a standard grid search is performed, over the parameter 
grid shown in Table 2. However, to reduce calculation 
time the grid search is performed on only a subset (25%) 
of the training data. For this a 5-fold cross-validation is 
used, which works by splitting the training set into five 
smaller sets (folds), whereafter the model is trained on 
the four remaining folds and evaluation is performed 
on the fifth. This is then repeated, making sure to have 
a different part of the data used for the evaluation 
fold, five times. When doing this, we evaluate different 
possible combinations of hyperparameter values and 
the best combination can be retained, based on the R2 
score obtained between the predicted output and the 
observed value.

Table 2 summarizes the set of hyperparameters tested. 
In order to have the same setting of hyperparameters 
in all regions, the values that were selected in most of 

the regions were chosen for the retraining (highlighted 
in bold).

Similarly, for the NeNeR model several hyperparameters 
can be tuned to improve the model performance. Those 
parameters are for example the number of layers, the 
number of neurons in each layer as well as the type of 
activation function used in the neurons to calculate the 
output.

Here, the logistic activation function was first 
identified as being the best activation function for 
all data sets. Furthermore it was found, based on a 
hyperparameter search on a selection of five regions, 
that rather small layer sizes, up to three layers and 
less than 250 perceptrons optimizes the performance. 
Based on this pre-investigation the grid search was then 
performed on the parameter grid as shown in Table 3 
for all regions. The sklearn built-in function (with 5-fold-
cross validation) was used on the training data. In cases 
where the hyperparameter search gave slightly different 
results in different regions, the values that were optimal 
in most regions were chosen (bold in Table 3), to get the 
same hyperparameter setting in all regions.

3 RESULTS

3.1 PREDICTING CLOUD DROPLET EFFECTIVE 
RADIUS FROM METEOROLOGICAL AND AIR 
MASS INFORMATION
After settling for a set of hyperparameters, a model for 
each region is fitted to its corresponding training data with 
least squares error being used as the loss-function. We 
first discuss the prediction of reff with only meteorological 
input, and find that the model shows some sensitivity to 
the input parameters used.

For the reference case, using ERA data input only, 
the coefficient of determination between modelled and 
observed reff ranges from 0.16 to 0.58, with an average of 
0.37 (see column ‘ERA only’ in Table 4), that also presents 
the normalised root-mean square error (NRMSE) in each 
case.

We investigate the possibility of dimension reduction 
by removing up to five variables (d1000, d700, r1000, 
w1000, z850) from the data set, as examples of 

MODEL PARAMETER VALUES

Learning rate [0.0125, 0.025, 0.05, 0.1 ]

Number of boosting stages [500, 750, 1000, 1250, 1500 ]

Max depth of individual 
estimators 

[6, 9, 12, 15, 18]

Minimum samples to split 
internal node 

[0.00001, 0.0001, 0.001, 0.01]

Minimum samples per leaf [0.00001, 0.0001, 0.001, 0.01]

Table 2 Selected (in bold) and tested hyperparameters for the 
gradient boosting regression method.

MODEL PARAMETER VALUES

hidden layer sizes [10, 10], [25, 25], [50, 50], [100, 100], 
[250, 250], [500, 500],
[10, 10, 10], [25, 25, 25], [50, 50, 50], 
[100, 100, 100],
[10, 10, 10, 10], [25, 25, 25, 25], [50, 
50, 50, 50], [100, 100, 100, 100]

alpha 1.0e-8, 1.0e-7, 1.0e-6. 1.0e-5, 1.0e-4, 
1.0e-3

Table 3 Selected (in bold) and tested hyperparameters for the 
neural network method.
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parameters that may co-vary with other input variables 
and have low relative feature importance (cf Fig 4). A 
dimension reduction can save calculation time, and 
feature selection could also improve model performance 
by training the model with enough relevant features 
but remove the irrelevant, or misleading ones. We find, 
however, in line with Kaplan et al. (2020), that the larger 
model performs better and the feature selection reduces 
skill (R2), and therefore all ERA input parameters are kept.

By adding information on the source location of the 
five days backward trajectories (AMO represented by 
variables latsrc, lonsrc and zsrc) as well as the cloud top 
altitude (ztop), the model performance could instead be 
increased in all regions. With AMO and ztop included as 
input data, the mean R2 for the 10 regions is 0.41 (range 
0.19 to 0.64), corresponding to a skill improvement of 
10% averaged over the 10 regions. This is shown as the 
column ‘ERA + air mass’ in Table 4.

Hence, the GrBR model can predict reff with some skill, 
without any information on aerosol. Comparing regions, 
the prediction is most skillful in the stratocumulus 
regions (R2 0.42 to 0.64 for AUS, CAN, NAM, PER and CAL) 
and least in the polluted continental regions (R2 0.19 and 
0.22 for EEU and CHN respectively).

For all regions, the GrBR performs better than the 
reference linear regression model, that in turn makes 
better predictions than a mean reference model that 
simply predicts the sample mean (cf. Figure 3). The 
reduced linear regression model performs slightly poorer 
than the full linear regression model (results not shown), 
and for the linear model as well as the machine learning 
model, all input variables are retained in the final models, 
shown in Figure 3.

3.2 ADDING AEROSOL INFORMATION
With aerosol information (AOD, SO2 and SO4) added to 
the meteorological input and air mass information, the 
R2 for the ten regions ranges from 0.21 to 0.66, with an 
average of 0.43 further enhancing the skill of the model 
slightly. This is shown in column ‘ERA + air mass + aerosol’ 
in Table 4. The improvement in score with addition of 
aerosol information is smaller than the improvement due 
to inclusion of AMO and ztop, see Section 3.1. Averaged 
over the ten regions, the improvement in skill from 
adding aerosol information is 7%.

For comparison, adding aerosol information to the 
reference model, without AMO and ztop, results in R2 values 
from 0.18 to 0.62, with an average of 0.40, also shown 
in Table 4, column ‘ERA+aerosol’. This corresponds to an 
improvement in average skill of 9% over the 10 regions.

Figure 3 summarises and compares the coefficient of 
determination (R2, upper panels) and the normalised root 
mean squared error (NRMSE, lower panels) of the NeNeR 
and the GrBR models against the linear regression and 
a mean reference model. This illustrates that the two 
machine learning methods are comparable, and that they 
both perform better than the linear regression model. 
Further, models generally perform slightly better when 
aerosol information is included among the predictors, 
but the improvement is often small and there is no 
clear pattern between regions or categories in degree 
of improvement. The greatest difference in comparing 
the model scores with and without aerosol information 
included can be seen in the regions HWI, CHN and CAN. 
The difference in relative error is also small.

The performance of the GrBR is very similar to that 
of the NeNeR. In the cases with a difference in the 
score, the GrBR models score better than the NeNeR 
models. This suggests that the GrBR is more sensitive to 
hyperparameter tuning than the NeNeR since the NeNeR 

ERA ONLY ERA + AEROSOL ERA + AIR MASS ERA + AIR MASS 
+ AEROSOL

REGION R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE

ISL 0.505 0.207 0.519 0.204 0.527 0.202 0.541 0.200

HWI 0.295 0.194 0.336 0.188 0.308 0.192 0.349 0.187

EEU 0.159 0.295 0.176 0.292 0.193 0.288 0.209 0.286

EUS 0.327 0.270 0.344 0.267 0.356 0.264 0.370 0.261

CHN 0.191 0.308 0.233 0.301 0.220 0.303 0.253 0.296 

AUS 0.497 0.215 0.523 0.210 0.534 0.207 0.556 0.202 

CAN 0.381 0.215 0.428 0.206 0.419 0.208 0.463 0.200

NAM 0.378 0.259 0.396 0.255 0.420 0.250 0.436 0.246

PER 0.583 0.252 0.617 0.241 0.636 0.235 0.659 0.228 

CAL 0.422 0.289 0.442 0.284 0.475 0.276 0.492 0.271

Table 4 Scores for gradient boosting regression model (R2, and NRMSE) for models with only meteorological input from ERA, with 
added air mass information (encompassing AMO and ztop), and with added aerosol information (encompassing AOD, SO2 and SO4).
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scored better when default parameter settings were used 
(cf. Supplementary Information, Figure A.1). Tuning the 
hyperparameters of the GrBR improved the performance 
more than could be achieved for NeNeR. However it 
should be mentioned that the NeNeR model generalizes 
the data better, meaning that the difference in training 
score/error and test score/error is less for NeNeR, while 
the GrBG tends more to overfitting the data. Calculating 
the model results is also quicker with NeNeR, with a 2–10 
faster calculation process in the different regions, than 
with the GrBR method.

3.3 PREDICTING ALBEDO
While the microphysical cloud response to changes in 
aerosol burden are on droplet size and number, the effect 
on radiation and radiative forcing acts via the reflectivity 
of the cloud, and its influence on total albedo. As a further 
test of to what degree radiative forcing due to aerosol-
cloud and aerosol-radiation interaction can be predicted 
based on large amounts of meteorological data, the 
GrBR and the NeNeR models were also trained on the 
output variable albedo. For comparability, the same 
hyperparameter settings were used as for the predictand 
reff. The results are shown in the right panels of Figure 3. 
Compared to the prediction of reff, the prediction of albedo 
yields higher scores for most regions, particularly the 
anthropogenically influenced regions EEU, EUS and 
CHN. For some regions (particularly PER) the scores for 
predicting albedo are lower than those for reff.

The difference in performance between GrBR and 
NeNeR is greater for the albedo prediction, with the 
GrBR for all regions producing higher R2 and lower 
NRMSE, and for all cases the machine learning models 

here too perform better than a simple linear regression, 
that in turn performs better than the reference mean 
prediction.

As in the case of reff, the R2 skill of the model predicting 
albedo improves most with inclusion of air mass 
information (average of 28% for the ten regions) and 
further improves somewhat with inclusion of aerosol 
information (by an average of 6%).

3.4 INDIVIDUAL PARAMETER DEPENDENCIES
3.4.1 Relative importance of aerosol, air mass and 
meteorological parameters
AOD and ztop in some specific regions show high 
relative importance for the GrBR models, but overall 
meteorological input variables dominate the relative 
feature importance, and air mass and aerosol related 
variables are lower ranked. Rank here refers to the place 
of this variable in a sorted list of permutation feature 
dependence for all input variables, see Figure 4. In 
particular low-level temperature (T1000) ranks high 
(among the top five) in all regions, but also higher altitude 
temperature, as well as geopotential height and to some 
extent low-level relative humidity show high ranks.

The rank of AOD is highest (1) in the CHN region, 
followed by the CAN region (3). In the other regions AOD 
is ranked fourth to 11th. The SO2 and SO4 ranks are in all 
cases among the lowest half out of the 34 parameters. 
Feature importance for all variables and all regions is 
shown in Figure 4, and rank for AOD specifically, is listed 
in Table 5.

For the model predicting top-of-atmosphere albedo, 
ztop becomes more important, and is among the top-four 
ranked input variables for all regions, and top ranked for 

Figure 3 Model evaluation comparing R2 and normalised RMSE scores for NeNeR (red) and GrBR (blue) with a simple linear regression 
(black circles) and a mean reference model (black cross) for the two response variables reff (left) and all-sky albedo (right). Filled 
markers represent models with aerosols included and empty markers are models excluding aerosols. Regions are grouped according 
to their respective category.
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six of the ten models, with greater ztop associated with 
higher albedo (not shown).

3.4.2 Partial dependence on aerosol and air mass 
origin parameters
Based on the GrBR analysis, partial dependence plots 
can provide further insight into the effect of individual 
variables, or the combination of two variables, on the 
prediction of the response variable. We present here 
partial dependence of reff on two aerosol-related input 
variables (AOD and SO2, Figure 6), as well as on two AMO-
related input variables (latsrc and lonsrc, Figure 5).

Figure 5 shows that for the stratocumulus regions 
(AUS, CAN, NAM, PER, CAL), reff generally decreases 
with increasing (i.e. more easterly) source longitude, 
whereas the dependence on source latitude is weaker, 
consistent with more continental air masses coinciding 
with smaller droplets. The data density information 
indicates that compared to the other Sc-regions, the 
PER region more rarely experiences off-shore flow, and 
that the westerly winds are comparatively strong in the 
AUS region, with more data points with source region far 
to the west, for the same 5-day length of trajectories. 
For the CAN region, the most frequently occurring back-
trajectory origin is slightly east of the target region, but 
for the other Sc-regions westerly or local AMO is most 
common.

For the two volcanic regions, the ISL region experiences 
mainly strong westerly flow (Figure 5) and reff is largest 

for air coming from the North West, and smallest for 
flow from the South East; the HWI region shows an AMO 
distribution shifted towards the east of the target region, 
and the droplet size gradient is mainly in the north-south 
direction, with reff increasing with increasing latsrc.

For the CHN region, the gradient is also most prominent 
in the north-south direction, with reff increasing with 
increasing latitude of AMO. For EEU the dependence on 
AMO is weak, but reff tends to decrease with increasing 
latsrc. For the third anthropogenically influenced region 
(EUS) the pattern is rather one of decreasing reff with 
decreasing lonsrc, again in general agreement with 
continental and polluted flow coinciding with smaller 
droplets.

Note that because the models were trained on 
longitude ranges from 0° to 360° there is a discontinuity 
at 0° longitude in these partial dependence plots shown 
for the range –180° to 180°. The models will learn similar 
impact strength from the highest and the lowest end of 
the input range, which especially when occurring at low 
data density, leads to uncertainty in the determination of 
partial dependence.

For dependence on aerosol (Figure 6), all regions 
show a weak dependence on SO2, as expected from 
the low feature importance. The dependence on AOD 
is greater, but not consistent across all regions. In the 
stratocumulus regions, the general decrease in reff with 
increasing AOD, which might be expected from Twomey 
theory, is evident. In some of these regions (CAN, NAM) 

Figure 4 Permutation feature importance for prediction of reff in 10 regions. Meteorological input from ERA5 is marked black, whereas 
air mass variables (latsrc, lonsrc, zsrc, and ztop) are indicated in magenta, and aerosol variables (AOD, SO2 and SO4) are marked with red. 
Note the different ranges for the different regions.



11Bender et al. Tellus B: Chemical and Physical Meteorology DOI: 10.16993/tellusb.1868

there is a tendency towards the opposite direction at 
high AOD values (above 0.15–0.2), but the data density 
is comparatively low in those ranges, meaning both that 
those cases are rare, and that the model has less data to 
train on. Similarly for the volcanic regions, ISL and HWI, 
reff decreases with increasing AOD for the ranges of most 
prevalent AOD values, and there is indication, particularly 
for ISL, of a reversal at high AOD values (0.15–0.2), 
but here too there is not enough data for a reliable 
interpretation of the data in this range at the tail of the 
AOD distribution. For the polluted industrial regions, 
EUS shows the expected pattern of decreasing reff with 
increasing AOD up to a limit around 0.15 where the 
gradient reverses, but for CHN, and EEU the dependence 
is rather clearly of the opposite sign.

The sign of dependence of reff on AOD is also 
summarised in Table 5, for all regions.

Figure 5 reff dependence on air mass source region (longitude and latitude anomalies) for all ten regions, outlined by white boxes. 
Grey shading indicates relative distribution of longitude and latitude origin values. The discontinuity at 0° longitude is due to the 
model being trained on longitudes from 0° to 360° rather than –180° to 180°.

Figure 6 reff (colour and contours) dependence on aerosols (AOD and SO2 anomalies) for all ten regions. Grey shading indicates 
relative distribution of AOD and SO2 values.

REGION MEAN 
AOD

SIGN
effr

AOD
∂
∂

RANK 
AOD

RANK 
SO2 

RANK 
SO4

ISL 0.140 –/+ 11 30 26

HWI 0.133 – 5 19 24

EEU 0.215 + 6 34 31

EUS 0.179 –/+ 4 33 27

CHN 0.636 + 1 22 26

AUS 0.094 – 8 33 23

CAN 0.213 –/+ 3 32 25

NAM 0.236 –/+ 8 33 23

PER 0.106 – 7 32 29

CAL 0.111 –/+ 7 33 31

Table 5 Mean values of AOD for the ten study regions, and 
direction of AOD impact on predicted reff (Negative (–) 
indicating cases where reff is smaller for higher aerosol burden, 
as expected from Twomey theory, and vice versa.). Feature 
importance rank of AOD,SO2 and SO4 respectively, out of 34.
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4 DISCUSSION

We have presented a machine learning approach to 
studying impact of aerosol amount on cloud properties. 
GrBR models are trained on both meteorological and 
aerosol data to predict cloud droplet effective radius over 
10 regions.

We show that it is possible to predict this cloud 
microphysical parameter based on large scale 
meteorological variables only, with some skill (R2 mean 
0.41, range 0.19 to 0.64 across regions). The explained 
variance by the model is on average less than 50%, and 
there are many reasons to expect discrepancies between 
the model-predicted and observational values, including 
the imperfect synchronisation of reanalysis and satellite 
retrieval in time and space, as well as errors in the model 
and the retrievals, and without accounting for variations 
in updraft, supersaturation, size distribution and 
composition of aerosol, nothing but a crude estimate of 
cloud characteristics can be expected.

Although the relative error of the GrBR model is fairly 
large (20–30%) it still performs better than a reference 
model which always predicts the climatological mean 
value of the dataset, as well as a traditional linear 
regression model. Applying a NeNeR model gives very 
limited improvement in performance. Andersen et al. 
(2017) who used a similar method (artificial neural 
network) to predict cloud droplet radius and other cloud 
properties from reanalysis and satellite data, achieve a 
somewhat better median performance, but with very 
large spread across the globe, and with the difference 
that their model operates on monthly mean scale, rather 
than on daily resolved data.

The models that are also given information of the 
AOD have a somewhat better overall score than the 
models that are only given meteorological information. 
This suggests that AOD has an impact in determining 
reff, but the model improvement is small (R2 range 0.21 
to 0.66 across regions, with an average of 0.43, only 7% 
higher than the case with meteorology and air mass 
information).

Among the selected region classes, the model skill is 
overall best in the stratocumulus regions, and poorest 
in the anthropogenically influenced regions. The degree 
of improvement of the model with aerosol information 
inclusion does not vary consistently between region 
types.

The skill of prediction of albedo is somewhat higher 
than that of reff, bringing the R2 for all regions above 
0.4. The improvement in model skill with inclusion of 
aerosol information is small for albedo prediction as 
well, although in this case it is less of a limitation that 
AOD can only be retrieved for cloud-free pixels. In the 
case of reff prediction, it should be noted that the aerosol 
information can not be measured simultaneous to 

the cloud properties, but will rather represent nearby 
surrounding conditions.

The relative importance of each parameter is also 
studied. Since the machine learning model used is 
built on decision trees, the feature importance for each 
parameter for the different regions is easily determined. 
It is shown that the importance of AOD varies between 
the regions, but it ranks among the five most important 
parameters only in four out of the 10 regions. Hence, 
although there is a physical relation between aerosol and 
reff, the quantification of AOD is of limited importance to 
the prediction of reff.

These results are in qualitative agreement with 
previous studies on coarser temporal and spatial 
resolution, using other machine learning models; 
Andersen et al. (2017) who found aerosol to be a 
weaker predictor for droplet size and cloud amount 
than several meteorological measures including lower 
tropospheric stability, and Fuchs et al. (2018) who found 
meteorological parameters such as lower tropospheric 
stability, boundary-layer and surface wind parameters to 
be most important for reff and cloud fraction in most sub-
regions of a stratocumulus-dominated area, even during 
biomass burning season.

Parameters that are consistently ranked high by the 
models are primarily temperature and geopotential 
height and to some extent relative humidity. These 
and the other input parameters can all be related 
to actual processes controlling cloud formation and 
properties, such as vertical motion or advection of air 
across gradients of temperature or humidity, turbulence 
from instability or shear, and strength of mixing and 
entrainment at top of boundary layer, or weather systems 
and accompanying cloud and precipitation patterns. 
Although pointing at the temperature at 1000 hPa as the 
single best predictor, in consistency with previous studies 
finding sea surface temperature to be the main cloud 
controlling factor (Myers et al. 2021, Ceppi and Nowack 
2021, e.g.) our results do not motivate reduction to one 
or a few parameters, rather they indicate that the full 
atmospheric state is helpful for determining the cloud 
properties.

SO2 and SO4 are ranked among the least important 
parameters for all of the regions. For SO2, this may 
be partly due to the OMI data being noisy, and in pre-
processing cut off at 0, and averaged over time to 
account for poor coverage. It may also be due to the 
fact that the SO2 is a short lived aerosol precursor that 
is not necessarily limiting for sulfate production, and is 
therefore not a reliable parameter for the model to base 
its predictions on. We note that Andersen et al. (2023) 
also found cloud radiative effects to be less sensitive to 
reanalysis sulfate than satellite derived AOD or aerosol 
index. The low feature importance of SO2 as well as SO4 
are more unexpected given their demonstrated predictive 
power over variability in droplet number concentration 
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and size, in McCoy et al (2018) and Wall et al. (2022) 
respectively. They, however, show co-variation with 
regional mean scale trends on monthly to decadal time 
scale, which doesn’t necessarily imply strong control on 
the short-term variability, and apparently is not picked 
up by the current model. Furthermore, although reff and 
droplet number concentration are negatively correlated 
at fixed cloud water amount, compensating variations in 
liquid water path may interfere with that relation, and a 
good predictor of droplet number is not by necessity a 
good predictor of reff.

Notably, the two regions where AOD ranks the highest 
in feature importance (CHN and CAN) are also the regions 
that coincide with higher levels of dust aerosol than the 
others (Tian et al. 2023, Song et al. 2021, e.g.), and for 
both these regions, the partial dependence on AMO 
suggests backward trajectories from nearby dust sources 
(South-West for CHN and East for CAN) are associated 
with smaller reff. Similar to the CAN region, all Sc-regions 
show patterns where more continental air flow is 
associated with smaller reff.

In some cases, although the influence of AOD on the 
model prediction of reff is small, its direction is consistent 
with what is expected from theory, inasmuch as larger 
AOD values cause the model to predict smaller values of 
reff. There are other cases where the dependence tends to 
be reversed at higher values of AOD (ISL, EUS, CAN, NAM, 
CAL). Even though a reversal in gradient is not expected 
from theory, it is known that the Twomey effect, or the 
cloud albedo susceptibility to changes in droplet number 
concentration, is greater in pristine environments and 
levels off in more polluted conditions Carslaw et al. (2013). 
Liu et al. (2017) have showed similar nonlinear behaviour 
of reff dependence on AOD, albeit with a reversal at even 
higher AOD values, ascribing the effect to competition for 
water vapour in highly polluted environments, favouring 
growth of larger droplets and evaporation of smaller 
ones, as also discussed by Feingold et al. (2001).

Importantly, though, for these regions, the high AOD 
ranges at which the indicated reversal of the gradient 
occurs are quite infrequently occurring, and the dominant 
signal also for these regions is that of reduced droplet 
size with increasing AOD.

However, for two regions; most notably CHN where 
AOD actually has a high feature importance, but also EEU, 
the AOD variation has the opposite effect for the entire 
sampled AOD range. Although contrary to the expected 
Twomey-relation, these results are in agreement with 
earlier findings: In Andersen et al. (2017) and Andersen 
et al. (2023) the sensitivity of cloud properties to aerosol 
is found to be negative on near-global scale, but the 
geographical distributions nevertheless display variation 
that confirm the fully or partially reversed relations we find 
for the EEU, EUS,CHN, CAN, and NAM regions. Andersen 
et al. (2023) also show that the sensitivity patterns and 
magnitudes are very similar for AOD and aerosol index. 

Myhre et al. (2007) attributed positive dependence of 
satellite derived reff on AOD in regions corresponding 
to EEU to coinciding decreases in cloud top pressure. 
Southeastern Asia, where the CHN region is located is 
further a region where several studies, for instance Yuan 
et al. (2008), Tang et al. (2014), Wang et al. (2014), Ma 
et al. (2018), have found positive correlations between 
AOD or aerosol index and droplet size, particularly over 
land. While Grandey and Stier (2010) showed that data 
aggregation to large land regions can result in spurious 
positive correlations between AOD and droplet size, Jia et 
al. (2019) discuss the plausibility of positive correlations 
between AOD and reff, over land areas, suggesting both 
artificial effects (retrieval biases of both cloud and 
aerosol), and physical reasons (primarily enhanced 
entrainment mixing) for its occurrence.

One contributing reason for the increase in droplet 
size with increasing AOD may be relative humidity effects 
on the AOD retrieval and estimated relation with cloud 
properties, with hygroscopic growth of aerosols, rather 
than aerosol concentration per se, causing high AOD 
(Myhre et al. 2007, Chand et al. 2012, Altaratz et al. 2013, 
e.g.).

Since stronger dust signature of the air seems to 
correlate with smaller droplet size in the CHN region, 
while the AOD-dependence in general has the opposite 
sign, it is also possible that AOD in this region is influenced 
by other less CCN-prone aerosols, such as freshly emitted 
black carbon (Bond et al. 2013).

Also e.g. Bender et al. (2016), Douglas and L’Ecuyer 
(2019), Stevens and Feingold (2009) discuss situations in 
which cloud brightening with increasing aerosol loading 
is not necessarily manifest as expected from cloud 
brightening, e.g. due to aerosol vertical distribution, 
cloud thickness and ambient stability.

Finally, we note again, that the fact that cloud liquid 
water path is not controlled for may interfere with the 
results. The droplet size is determined not only by the 
number of droplets, but also by the amount of water in 
the cloud, and it is possible that even if the high aerosol 
content leads to more droplets, the decrease in droplet 
size is offset by increased water content, that is not 
controlled for in this study.

5 CONCLUSIONS

We have shown that a simple machine learning model 
(gradient boosting regression, GrBR) can be constructed, 
that with meteorological and air mass origin input data 
can with some skill predict cloud microphysical properties, 
represented by droplet effective radius (reff). The model 
performs better than a simple linear regression model. 
Information on aerosol optical depth (AOD) makes the 
model perform somewhat better, but AOD is in most 
cases of low relative importance for the model, and the 
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direction of aerosol influence on reff is not consistent. 
While the model for most regions links greater AOD to 
smaller reff, at least for the most prevalent AOD ranges, 
two of the anthropogenically influenced regions show a 
reversed signal. The model skill is highest in subtropical 
stratocumulus regions, with mean R2 of 0.5 over 
Australian, Canarian, Namibian, Peruvian and Californian 
regions, and lowest in industrial polluted regions, with 
mean R2 of 0.3 for regions over Eastern China, Eastern 
US and Eastern Europe. Information on boundary layer 
sulfur dioxide concentration and near-surface sulfate 
mass, from satellite and reanalysis respectively, has little 
effect on score and prediction. Other machine learning 
models (specifically a neural network regression, NeNeR) 
don’t necessarily perform better than the GrBR. Training 
the model to predict all-sky albedo gives performance 
that is somewhat more consistent, and R2 above 0.4 
for the GrBR for all regions. The presented method of 
including and excluding aerosol information in a data 
driven model, offers a new approach to the challenge of 
distinguishing aerosol effects on cloud properties, and 
the results emphasize the role of local meteorology.
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