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of electric vehicles in energy system models: A virtual
storage-based aggregation approach

Jarusch Muessel,1,2,7,* Oliver Ruhnau,3,4 and Reinhard Madlener5,6
SUMMARY

The growing number of electric vehicles (EVs) will challenge the power system, but EVs may also support
system balancing via smart charging. Modeling EVs’ system-level impact while respecting computational
constraints requires the aggregation of individual profiles. We show that studies typically rely on too few
profiles to accurately model EVs’ system-level impact and that a naı̈ve aggregation of individual profiles
leads to an overestimation of the fleet’s flexibility potential. To overcome this problem, we introduce a
scalable and accurate aggregation approach based on the idea of modeling deviations from an uncon-
trolled charging strategy as virtual energy storage. We apply this to a German case study and estimate
an average flexibility potential of 6.2 kWh/EV, only 10% of the result of a naı̈ve aggregation.We conclude
that our approach allows for a more realistic representation of EVs in energy system models and suggest
applying it to other flexible assets.

INTRODUCTION

The electrification of passenger cars is crucial for fighting against climate change. The transport sector accounted for 37% of global CO2 emis-

sions of end-use sectors in 2021, 40% of which can be attributed to passenger cars.1 Direct electrification is the most energy-efficient option

for most mobility applications and, with renewable energy sources driving the decarbonization of the power sector, a key solution for trans-

port decarbonization.2 As a result, electric vehicles (EVs) play a major role in decarbonization scenarios. In Germany, for example, the number

of EVs is projected to increase to 15 million by 2030, from about 1.5 million today (approx. 0.8 million battery electric vehicles and 0.7 million

plug-in hybrids).3 Note that future scenarios include mainly battery EVs, and we therefore focus on those, rather than on plug-in hybrids

throughout this article.

The charging of EVs may introduce substantial volatility to the power system. As the primary use of EVs is mobility, charging behavior

mainly follows mobility requirements. In the extreme case of uncontrolled charging, this would imply charging with the maximally accessible

power rating as soon as energy is available until the battery is full. For the example of Germany, the expected increase in EVs in 2030 would

correspond to an increase in electricity consumption from5 today to 53 TWh in 2030, i.e., about 10%of today’s aggregate electricity demand.4

The effects on the peak electricity load are even larger. Earlier studies found that the uncontrolled charging of 8 million EVs could cause sig-

nificant peak load increases,5 e.g., of 34 GW,5–7 compared with the current overall German peak load of 70–80 GW.8 The impact of 15 million

EVs in 2030 on the system balance can be expected to be evenmore severe. In addition, the volatility of increasing renewable electricity gen-

eration fosters the potential temporal mismatches between supply and demand even more, calling for flexibility solutions.9

At the same time, EVs could also have a balancing effect on the power system during their idle times of above 90%.10,11 As EVs can shift

loads via smart charging and even feed electricity back into the grid via bidirectional charging (also referred to as vehicle-to-grid), they can

provide short- to mid-term flexibility to the power system.12,13 So far, no general definition of flexibility has emerged, and its meaning de-

pends on the context.14–16 In this article, flexibility is understood in the context of electrical systems as the potential to shift energy consump-

tion as well as storing and later discharging energywhen required. According to the literature, exploiting EVs’ flexibility potentials could entail

a peak load reduction of more than 17%.17,18 In particular, EVs could contribute to the feasibility of highly renewable electricity scenarios by

offering their flexibility to the system and substituting for increasing energy storage requirements.19–22

The accurate representation of the volatility and flexibility of EVs in energy system analyses is both critical and challenging. Due to compu-

tational constraints, a fleet of millions of EVs cannot be modeled individually but must be approximated by a representative subsample.
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Previous studies did so based on 50 to 200 profiles,23,24 but it remains unclear how many profiles are needed for an adequate representation

on a system level. In addition, even if the number of profiles is reduced to a representative subsample, the inclusion in complex energy system

models may require their aggregation into one profile for the entire EV fleet.25–28 Previous studies discuss that existing aggregation ap-

proaches used for energy system modeling overestimate the aggregated flexibility potential.29 Although other studies have proposed

more accurate aggregation algorithms for the optimization of EV charging, these are based on exogenous steering signals, such as prices

or volume schedules.28,30,31 Consequently, they cannot be integrated into energy system models where the dispatch of EVs is jointly opti-

mized with the dispatch of other technologies and prices are determined endogenously.

This article makes three contributions to overcome the mentioned modeling challenges. First, we explain and quantify the discussed

representativity and aggregation problem. Second, we derive the minimum number of individual EV profiles required to fulfill a given accu-

racy target. Third, and most importantly, we propose a solution to the aggregation problem that allows to generate an accurate fleet-level

flexibility profile that can be implemented into large-scale energy system models with endogenous prices and dispatch.

Our approach bases on the concept of a virtual energy storage. In energy systemmodeling, the concept of virtual power plants as a gen-

eration technology is widely used,32,33 but the virtual energy storage as we define and apply it in this article remains a novel concept. Themain

idea behind the virtual energy storage approach is that the EV’s flexibility potential is modeled as the deviation from an uncontrolled charging

strategy while respecting its primary purpose: mobility. This method allows to accurately aggregatemany single profiles into one fleet profile.

We apply this approach to a case study with 15million EVs, which is the projection for Germany in 2030, represented by a simulated dataset of

12,000 individual consumption and power availability profiles.

The remainder of this article is structured as follows. First, we explain how we determine a representative sample size for modeling an EV

fleet. Second, we elaborate on why current aggregation approaches overestimate flexibility potentials. Subsequently, we introduce our main

methodical contribution, the virtual energy storage approach, and apply it to our German case study. In two final sections, we discuss our

results and draw conclusions. Detailed explanations are provided in the attached STARmethods section and the supplementary information.
RESULTS

Why many profiles are needed for a representative EV fleet

We first aim to determine howmany profiles are needed to representatively model a large EV fleet.We do so based on synthetic load profiles

because empirical profiles are scarce and associated with significant limitations and uncertainties.34 The load profiles of individual EVs were

synthesizedwith the stochastic tool emobpy,23 which is based on empiricalmobility statistics up until 2019. In this article’s case study, wemake

assumptions on EV diffusion based on projections for 2030, as described in Note S1 and further discussed by Muessel et al.34 One critical

assumption, which is discussed further below, is a plug-in rate of 100%, which means that EVs are always connected to charging stations

when they are available. Furthermore, we start by assuming an uncontrolled charging strategy, which is then varied later on in the article.

We determine the representativity based on After Diversity MaximumDemand (ADMD), which is an established metric that calculates the

per-consumer peak load of a given consumer group (see Note S2 and work by Sun et al.35). In general, representativity implies that the

sampled fleet converges in its behavior to the underlying probability distribution.11 Using the ADMD as an indicator, we focus on the fleet’s

peak charging demand, which is critical for system-level questions such as capacity planning. Modeling a large fleet based on too few indi-

vidual profiles may lead to an overestimation of the peak load.36 This is because diverse consumption patterns imply that with increasing

numbers of customers, the maximum time-coincident demand per consumer falls.37 Here, we calculate the ADMD for fleets of 10,–12,000

EVs over a period of three months.

As expected, Figure 1 indicates a substantial decrease in fleet peak loadwhen accounting formore profiles. Thismeans that representing a

large EV fleet with too few profiles may overestimate the peak. For example, using 100 instead of 10,000 profiles would result in a peak load

that is approx. 85% higher. For a fleet of 15million EVs inGermany in 2030, this overestimation would correspond tomore than 13GWormore

than 10% of the currently installed dispatchable generation capacity.38 The shape of the mean ADMD is similar to a hockey stick, indicating

that marginal accuracy gains decrease with the number of profiles. For example, beyond roughly 5,000 profiles, accounting for an additional

1,000 profiles impacts the fleet peak load by less than 1%, whichmay be conceived as sufficiently accurate. Although this numbermay be used

as a representativity benchmark, other accuracy thresholds are investigated in Note S2. Hereafter, we will use 12,000 profiles to adequately

represent German EVs in 2030.

Figure 2 further illustrates what using 100 or 1,000 instead of 10,000 profiles implies for daily fleet grid demand patterns. The pattern for

10,000 profiles is relatively smooth and may be considered representative of a national EV fleet. By contrast, the consumption pattern for 100

profiles seems unrealistically volatile. For the given time period, the profile corresponding to 1,000 EV profiles is similar to the one corre-

sponding to 10,000 EV profiles. Note that we apply an uncontrolled charging strategy and assume a plug-in rate of 100% in ourmain scenario.

The latter means that, when there is a charging station available, the EV is always connected to it. By contrast, current plug-in rates for public

charging are lower, especially during daytime, and this leads to less chargingduring the day and higher evening peaks in empirically observed

charging profiles.29,39 We simulate the effect of reduced plug-in rates for public charging in Note S3, finding a peak load increase of 11%. Yet

the power sector implications of this charging behavior are less clear and should be investigated in detail with dedicated energy models.

Regarding the question of whether this potential increase in homogeneity accompanied by an increase in peak load reduces the number

of profiles necessary for building a representative fleet, we do not find any significant indications.

Our results imply that studies based on too few profiles may substantially overestimate the peak caused by (uncontrolled) EVs. For

example, earlier studies that used only between 50 and 200 profiles23,24 found a peak load of up to 1.4 kW/EV, about 40% higher than our
2 iScience 26, 107816, October 20, 2023



Figure 1. After Diversity Maximum Demand (ADMD) as a function of sample size

The profiles’ temporal scope is 3 months. The dark blue line and the light area indicate the mean and the standard error, respectively. The variation results from

calculating the ADMDs 50 times with a random order of profiles for every sample size.
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estimated peak load of only approx. 1 kW/EV.23 Note that our estimated peak is still about twice that of an empirical study performed in the

UK in 2017 and 201840; this may be due to our higher assumptions on annual mileage and on the share of public charging, which features

higher power ratings (see Muessel et al.34 for a more detailed discussion). On the other hand, our assumed plug-in rate of 100% may lead

to a relatively low evening peak (see Note S3).
Why naı̈ve aggregation overestimates the flexibility potential

The previous subsection demonstrated that the number of sampled EV profiles heavily affects the fleet profile’s shape, calling for many in-

dividual EV profiles to be considered in energy systemmodels. What adds to the complexity is that each EV could flexibly adjust its charging

strategy to help balance the electricity system. However, integrating thousands of individual profiles and their individual flexibility potentials

in already complex energy systemmodels is infeasible due to computational constraints. This subsection elaborates onmodeling EV-specific

flexibility potentials through power and energy constraints and the implications of naı̈vely aggregating these constraints into one set of con-

straints for the entire fleet. We do so based on a visualization of flexibility potentials over time and provide equations in the Methods section.

Here we define the flexibility of a single EV with three time series, as depicted in the first two columns of Figure 3 for two exemplary EVs.

First, the consumption time series defines how much the battery level decreases while driving (first row in Figure 3). This series also implicitly

determines to what minimum level the EV must be charged before starting a trip. Second, the power availability time series defines the

maximum power for charging the battery (second row). In our example, the available charging power is always positive, i.e., no bidirectional

charging is allowed. Third, the battery availability time series captures the usable size of the battery, which limits the maximum battery level

(third row). Combined, these three time series determine the solution space for the battery level, i.e., the range of battery levels that is feasible

when respecting the power and energy constraints imposed by consumption, power availability, and battery availability. This is depicted in

the fourth row of Figure 3, under the assumption that the battery of the EV in the first column is empty whereas that of the EV in the second

column is full, both at the beginning and at the end of the depicted period. The size of the solution space can be interpreted as the virtual

storage size, i.e., the flexibility potential.

The third column in Figure 3 shows the naı̈ve aggregation of the power and energy constraints for the two exemplary EV profiles in the first

two columns. When speaking of the naı̈ve aggregation, we refer to a line-wise addition of the required consumption, the power availability,

and the battery availability (rows 1–3). The fourth row in the third column shows the solution space resulting from these aggregated con-

straints. The size of this solution space exceeds the sum of the individually derived solution spaces in the first two columns. Although this

larger solution space respects the naı̈vely aggregated constraints, some points in the aggregate solution space are infeasible on the level

of individual EVs. For example, following the upper boundary of the aggregated solution space would imply charging the vehicle that is con-

nected during this period at full capacity over two time steps. However, the connected vehiclewill already be fully charged after one time step,

and continuing to charge during the second time step would effectively mean charging the other vehicle while driving, which is impossible. In

other words, a naı̈ve aggregation of individual EVs leads to the loss of some information contained in the individual constraints and an over-

estimation of the fleet’s flexibility potential.
How the virtual energy storage approach solves the aggregation problem

To avoid the overestimation of the flexibility potential, we propose a novel aggregation approach that is based on modeling flexibility as a

virtual energy storage. The approach is based on the idea that the flexible charging of an electric vehicle can be decomposed into an inflexible

reference charging strategy and the flexible deviation from that reference. Charging more compared with the reference can be associated

with charging the virtual energy storage, whereas charging comparatively less results in discharging the virtual energy storage.41,42 Here, we
iScience 26, 107816, October 20, 2023 3



Figure 2. Normalized charging profiles based on 100, 1,000, or 10,000 individual profiles

The profiles assume an uncontrolled charging strategy. The peak load corresponding with using 100 is significantly higher than that of the other two profiles.
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consider an uncontrolled charging strategy as the inflexible reference, but other reference strategies are possible. Referring back to Figure 3,

an uncontrolled charging strategy means following the upper boundary lines of the individual solution spaces (fourth row).

The results of applying the virtual energy storage approach to the exemplary electric vehicles from Figure 3 are illustrated in the first two

columns of Figure 4. Instead of the consumption from the battery for driving, the virtual energy storage approach considers the inflexible

reference consumption from the electricity grid as an exogenous consumption time series, which follows an uncontrolled charging strategy

in our case (first row). On that basis, the available power for charging and discharging the virtual energy storage can be derived as the

maximum deviation from this (uncontrolled) reference charging strategy (second row). Note that, in our example, the negative charging po-

wer availability of the virtual energy storage does not imply the possibility of feeding electricity back into the grid (bidirectional charging).

Instead, more generally, it reflects the ability to charge less than in the reference. Finally, the available energy capacity of the virtual energy

storage is the maximum deviation of the EV’s battery level from the battery level in the uncontrolled reference (third row). It is important that

one accounts for all possible energy and power constraints imposed on the EV when deriving this maximum deviation. As a result, the avail-

able virtual energy storage capacity coincides with the solution space for the virtual energy storage level. Hence, there is no need for a fourth

row in Figure 4. Note that, in our example, the available virtual energy storage capacity is always negative; this is because we use uncontrolled

charging as a reference consumption, and a deviation from this reference would always lower the battery level. (For a detailed description of

the virtual energy storage approach, see STAR methods.)

The third column in Figure 4 shows the aggregation of the two EV-derived virtual energy storages in the first two columns. Analogously to

the naı̈ve aggregation, we perform a line-wise aggregation of the virtual constraints. However, in contrast to the naı̈ve aggregation, the re-

sulting solution space is accurate in energy terms. It does not lead to an overestimation of the solution space because the available energy

capacity of the virtual storage is the solution space. This aggregation can be easily scaled up to thousands of EV profiles, as we show in the

following section, and implemented into energy system models for a more accurate representation of EV flexibility.
An application of the virtual energy storage approach to Germany 2030

To demonstrate the benefits of our approach, we apply it to the case of Germany in 2030. To this end, we use the 12,000 individual profiles

from above and apply the described virtual energy storage approach to each profile. To derive each individual flexibility potential, we make

assumptions on people’s behavior and their willingness to provide flexibility services: we assume that people are willing to provide flexibility

at nonpublic charging stations via unidirectional smart charging, under the condition that the battery level reaches the level corresponding to

uncontrolled charging before the next trip starts. In other words, we neither consider flexibility at public charging stations, bidirectional

charging, nor the potential to charge less before a drive that does not require a fully charged battery. We also take the mobility behavior

as fully exogenous, i.e., we do not consider the potential to postpone (or prepone) a ride to provide flexibility to the power system. Note

that these assumptions are made for a largely conservative estimate of flexibility potentials. In Note S4 and S5 we provide sensitivity analyses

in which we consider the additional flexibility potential from public charging and an even more conservative flexibility scenario where battery

levels are low. After determining the individual virtual energy storages, we aggregate them on the fleet level and scale the aggregated con-

straints to the expected fleet size of 15million EVs. Note that we aggregate EV flexibility across Germany and discuss the possibility to extend

our approach to handle spatial information in Note S7. Furthermore, we provide more details on the assumptions and the input data for the

case study in Note S1.

Figure 5 displays the resulting flexibility potentials of the EV fleet in terms of the absolute sizes of the naı̈vely and virtually aggregated

solution spaces (see STAR methods for details on the calculations). The lower plot shows that the size of the virtual energy storage size

does not exceed 125 GWh, which is only 13% of the maximum size of the solution space resulting from naı̈ve aggregation. The latter (927

GWh) almost coincides with the aggregated battery capacity of 930 GWh (15 million EVs * 62 kWh of battery capacity). On average, the naı̈ve

solution space is about 10 times larger than the virtual energy storage solution. Note that the first- and last-time steps are fundamentally

different from the others because of the explicit battery level constraints (recall the green circles in Figure 3); these determine that there is

no potential to deviate from an uncontrolled charging strategy, regardless of the aggregation method.
4 iScience 26, 107816, October 20, 2023



Figure 3. Naı̈ve aggregation of EV flexibility potentials

The flexibility potential of an EV is defined by the electricity consumption for driving (first row), the power availability for charging (second row), and the battery

availability (third row). The solution space (fourth row) represents the range of feasible battery levels given the constraints from above and assuming fixed initial

and final battery levels (green circles in the fourth row). The first two columns depict individual EVs and the third column their naı̈ve aggregation.
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Although the naı̈ve aggregation leads to an almost constant flexibility potential of 900 GWh, the availability of virtual energy storage ca-

pacity fluctuates starkly between 69 and 125 GWh according to the diurnal driving consumption patterns (lower plot in Figure 5). Between 12

p.m. and approx. 3 a.m., the flexibility potential associated with the virtual energy storage approach is the highest, which seems plausible

because most EVs are not used during that time. On the other hand, when most EVs are used during the daytime, the flexibility potential

is the smallest. Furthermore, the flexibility potential during weekends is significantly higher as fewer people commute to their workplaces.

By contrast, the solution space corresponding to naı̈ve aggregation shows an almost completely flat line, apart from the initial and final

time steps. This corresponds with the virtual energy storage accounting for individual flexibility constraints, e.g., that the EV must reach

the battery level corresponding to uncontrolled charging before starting a trip. Hence, the individual trips impact the size of the solution

space.

DISCUSSION

Interpretation of the results

Regarding the accurate representation of EVs’ volatility in energy system models, we find that multiple thousands of individual profiles are

needed to generate accurate results, whereas earlier studies23,24 often used below 200 profiles. Using 100 profiles in comparison to using

10,000 profiles leads to a peak load increase of about 85% (approx. 1.9 kW/EV vs. 1 kW/EV). This deviation is quite significant when assuming

EV fleet sizes of multiple million EVs. For example, the projected 15million EVs in Germany in 2030 imply a deviation of 13 GW, which is about

17% of the currently installed dispatchable national generation capacity. Note that we assume a plug-in rate of 100% and an uncontrolled

charging strategy. In fact, plug-in rates may be lower during the day, which would shift some consumption to the evening hours and increase

the overall peak at that time. Furthermore, lower plug-in rates during the day lead to more homogeneous charging profiles, which can be

more accurately represented by fewer profiles (see Note S3). Another critical assumption of our study concerns mobility behavior, which

we base on current mobility statistics. However, the development of drive trains may influence mobility behavior by 2030.43 Public transport,

shared mobility services, autonomous driving, and events such as pandemics might significantly change or disrupt mobility patterns. If this

would make driving patterns more heterogeneous, one would need to account for more profiles than in our case.

Regarding the accurate representation of flexibility, we find that a naı̈ve aggregation of individual flexibility potentials leads to a significant

overestimation of the fleet’s flexibility. We introduce a novel virtual energy storage approach for a mathematically accurate aggregation of

individual flexibilities and find a fleet flexibility potential that is 10 times smaller than with naı̈ve aggregation. With that in mind, values about

the flexibility potential in the literature should be taken with a grain of salt as they could, without additional assumptions, be tremendously

overestimated. However, current energy system studies on EV flexibility potential already assume the potential to be significantly below the

aggregated battery sizes and hence below the result of naı̈ve aggregation. How much lower was chosen by industry experts and heuris-

tics.4,44–46 For example, a recent study of the German energy system assumes a constantly available flexibility of 5.7 kWh/EV.47 Although
iScience 26, 107816, October 20, 2023 5



Figure 4. Virtual aggregation of EV flexibility potentials

The virtual energy storage approach is defined by an inflexible reference consumption and the potential to deviate from this reference. In our case, we define

uncontrolled charging as the reference (first row). The virtual power availability characterizes the potential for deviating from this reference in power terms

(second row). The virtual energy availability characterizes the potential for deviating from the reference in energy terms and coincides with the solution space

for the virtual energy storage level (third row), assuming fixed initial and final storage levels (green circles in the third row). The first two columns depict the

virtual energy storages corresponding to individual EVs, and the third column is the aggregation of the virtual energy storages.
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this is similar to our estimated average of 6.2 kWh/EV, we see significant diurnal changes in the EVs’ average flexibility potential (between 4.5

and 8.3 kWh/EV). Note that Luderer et al.47 partly allows for bidirectional charging of a fraction of the EVs, but it remains unclear howmuch this

impacts the results.

Our case study for Germany in 2030 with 15 million EVs yields a 93 GWh average potential to shift electricity over time through smart EV

charging. To put this into perspective, it can be compared with current national installed capacities for large-scale batteries (750 MWh) or

pumped hydro storage power plants (39 GWh).48,49 Against this background, the 93 GWh represents a flexibility potential that can be signif-

icant for the overall system stability in decarbonized energy systems. To give a rough indication of the associated potential for system cost

savings, we assume that the EV’s flexibility substitutes proportionately for stationary batteries at specific costs of 135V–450V/kWh,50 and this

leads to estimated cost savings of about 27 billionV. However, an accurate estimation of the reduction in systems costs can only be derivedby

integrating the EVs’ flexibility potential into an energy system model.

Wemade three critical behavioral assumptions regarding flexibility potentials. First, we assume that people are willing to provide flexibility

conditional on the EV reaching the same level as with uncontrolled charging before starting a trip. In fact, previous studies have reported that

the majority of people are willing to provide flexibility under this condition.51–53 Furthermore, as there is some degree of range anxiety, which

is associatedwith the battery, we provide a sensitivity analysis in Note S5 on the battery levels that should be avoided to undergo.We find that

avoiding to undergo a certain battery has a limited effect on the average solution space size (below 2%). Second, we assume unidirectional

charging and, thus, do not account for vehicle-to-grid potentials. Third, we assume a plug-in rate of 100%. However, in reality, people might

be less likely to plug in their EV in as soon as possible; this is especially true for public charging stations, where peoplemostly chargewhen and

for the duration they have to due to their mobility requirements.54,55 Considering the significant role of public charging (high power ratings),

and the characteristic situation that people are less likely to plug in their EV unless they require the charging process, we assume no flexibility

potential from public charging stations. Hence, wemight overestimate the flexibility potential for nonpublic charging stations with the plug-in

rate of 100%, while we ensure a conservative estimate for public charging stations with the assumption of no associated flexibility potential. In

Note S4 we show that the flexibility potential could increase by 16% when allowing for full flexibility at public charging stations.

Limitations of the study

There are three noteworthy limitations to our aggregation approach: it requires the mobility behavior to be exogenous, it neglects intertem-

poral dependencies in power availability, and it takes an exogenously defined battery level at the start and end of the modeled period as an

input. See Note S6 for a detailed discussion of these limitations.

Conclusions

Modeling EVs’ net impact on the energy system in the next decade is fundamental for policymaking and infrastructure planning. Current

methods use small samples of charging profiles or following naı̈ive aggregation methods. This results in a significant overestimation of

the volatility of EVs and their flexibility potential. This article demonstrates how to determine a representative sample size for modeling

mobility behavior on a system level, using peak load as a comparison metric. Furthermore, it develops and applies a novel aggregation
6 iScience 26, 107816, October 20, 2023



Figure 5. Comparison of the solution spaces with naı̈ve and virtual aggregation

The upper plot indicates the significant size of the overestimation when comparing the flexibility potential associated with the naı̈ve aggregation and that

associated with the virtual energy storage approach. The explicit constraints for initial and final battery levels strongly determine the battery level and virtual

energy storage constraints around the first. The lower plot shows in more detail the diurnal characteristics of the virtual energy storage level only—and last-

time step—n = 12,000 quarterly profiles.

ll
OPEN ACCESS

iScience
Article
method with the potential to advance the accuracy of current aggregation methods. As a unique feature, our approach can easily be imple-

mented into energy system models for an endogenous determination of prices and dispatch.

This novel aggregation method, which we refer to as a virtual energy storage approach, is the main methodical contribution of this article.

The general idea is that the EVs’ flexibility potential is modeled as the deviation from an inflexible reference charging strategy while

respecting its primary purpose: mobility. The flexibility potentials are characterized in terms of power and energy constraints and can be

aggregated without accuracy losses, in contrast to the naı̈ve aggregation of individual constraints without applying the virtual energy storage

approach. Note that with this approach the runtime increases only linearly with the number of time steps and remains constant when

increasing the number of EVs modeled. Hence, the virtual energy storage approach yields the potential for a run-time efficient and accurate

optimization based on the aggregated constraints.

We applied our method to a case study with 15 million EVs in Germany in 2030. The results show that, in comparison to an uncontrolled

charging strategy, adapted charging can provide a sizable average flexibility potential of 93 GWh (6.2 kWh/EV). Furthermore, the naı̈ve ag-

gregation significantly overestimates the system requirements 10-fold in terms of peak load from electric mobility.

Further research may build on this work. Regarding model development, accounting for bidirectional charging is an important next step.

Ourmethodprovides a foundation for assessing theflexibilitypotential of EVsona system level. ToassessEVs’ flexibilitypotential in thecontext

of the energy system, the aggregated virtual energy storage profile could be integrated into a power market model. Besides the EV-specific

application, this method holds the potential to be applied to a range of other flexible demand-side applications, such as electric heat pumps.
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Software and algorithms

Python version 3.7.10 Python Software Foundation https://www.python.org

Python package emobpy version 0.6.2 Gaete et al.23 https://doi.org/10.1038/s41597-021-00932-9

Virtual Storage Algorithm https://github.com/jmuessel/

VirtualStorageEV
RESOURCE AVAILABILITY

Lead contact

Further information for resources andmaterials should be directed to andwill be fulfilled by the lead contact, JaruschMuessel (mailto:Jarusch.

muessel@pik-potsdam.de).

Materials availability

This study did not generate new unique materials

Data and code availability

d Data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited on Github and is publicly available as of the date of publication. URLs and DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

This section presents the quantitative modeling of EVs and their flexibility potential. Firstly, we introduce the necessary input data and equa-

tions for modeling individual EVs. This part does not claim to contribute any novel modeling approaches and could be extended in various

ways as our method is agnostic to the addition of constraints. Afterward, the aggregation of flexibility potentials based on a naive approach

and based on the virtual energy storage transformation is presented in turn. Sensitivity analyses for different parameters are provided inNotes

S4 and S5.

Modeling individual EVs

To model the solution space of an EV’s battery level, we rely on three exogenous time series: the electricity consumption for driving,

consumptioni;t , the power availability for charging, chargemax
i;t (both in terms of power, e.g., kW), and the battery availability (in terms of en-

ergy, e.g., kWh).

Combined, Equations 1, 2, 3, and 4 determine the solution space for the decision variables LEVELi;t (in terms of energy, e.g., kWh), which

captures the energy level in the battery, and CHARGEi;t (in terms of power, e.g., kW). The solution space includes all feasible battery level

profiles that respect the power and energy constraints imposed by consumption, power availability, and battery availability (in terms of en-

ergy, e.g., kWh). This range of battery levels determines the potential to shift energy. The size is given in terms of energy.

The battery level represents the charged energy available to a vehicle at time t in terms of energy in kWh. According to Equation 1 it

is recursively defined and impacted by the decision to charge and the exogenous consumption for driving. The consumption time series

is expressed as constant power in kW while the battery level is given as energy in kWh for every time step. Assuming a constant con-

sumption per time step and a time step of 1 h, the energy consumption of a trip is simply the sum of power consumption over the time

steps when the EV drives. The energy consumption for driving implicitly determines to what minimum level the EV must be charged

before starting a trip. This is ensured by the recursive battery level definition in Equation 1. Note that the battery level is determined

exogenously in the initial and final time step. We assume in both time steps full battery capacity. The battery availability time series

captures the usable size of the battery. It can be freely chosen but must not exceed the battery capacity and remain non-negative,

cf. Equation 2.

The power station availability determines at which power rating the EV can be charged. In our case study, we account for positive charging

power availability, without the possibility for bidirectional charging. Therefore, chargemin
i;t is zero in Equation 3
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c½i; t ˛ I; T �
LEVELi;t = LEVELi;t� 1 +
�
CHARGEi;t � consumptioni;t

� � Dt (Equation 1)
levelmin
i;t % LEVELi;t % levelmax

i;t (Equation 2)
chargemin
i;t % CHARGEi;t % chargemax

i;t (Equation 3)

In our main scenario, we do not allow for flexibility from public charging This is implemented in Equation 4, which implies that the EV

must follow an uncontrolled charging strategy when connected to a public charging station, i.e., for the subset from T, Tpublic. In Note S4,

we describe the role of public charging in more detail and do a sensitivity analysis in which we allow for flexibility at public charging

stations.

c
�
i; tpub ˛ I;Tpublic

�

LEVELi;tpub = leveluncontrolledi;tpub

(Equation 4)

Furthermore, Equation 5 ensures that, before starting the next trip, the EV reaches the level that corresponds with uncontrolled charging in

the respective time step. Therefore, additional subsets are used that include the departure times for each vehicle: Ti;departures. This is a crucial

model extension as peoples’ willingness to provide flexibility heavily depends on the battery level the EV reaches before starting the next

trip.56 For a discussion on behavioral modeling aspects see Notes S4 and S5.

c
�
i; ti;dep ˛ I; Ti;departures

�

LEVELi;tdep � 1 = leveluncontrolledi;ti;dep � 1 (Equation 5)

Naive aggregation

Equations 6, 7, and 8 show the fleet constraints when following the naive aggregation approach. This implies that for each constraint we

combine all sub-constraints for each EV into a fleet constraint.

ct ˛T
LEVELfleett = LEVELfleett� 1 +

 
CHARGEfleet

t �
XI

i = 1

consumptioni;t

!
� Dt (Equation 6)
XI

i = 1

levelmin
i;t % LEVELfleett %

XI

i = 1

levelmax
i;t (Equation 7)
XI

i = 1

chargemin
i;t % CHARGEfleet

t %
XI

i = 1

chargemax
i;t (Equation 8)

From this aggregation, we lose information, e.g., the constraint to reach a battery level that equals the energy amount the EV would have

reached in the uncontrolled charging case, one time step before starting a trip, Equation 4. The same holds for the information about public

charging.We could aggregate Equations 4 and 5 for all EVs i in I, in the sameway, we aggregate Equations 1, 2, and 3. Thereby, we would lose

information about the state in which an EV is with its respective properties: driving, parking (with grid connection and with how many steps

until the next trip), and charging. This information loss leads to an overestimation of the flexibility potential.

Virtual energy storage aggregation

The virtual energy storage capacity profile builds on a battery level’s solution space, respectively on Equations 1, 2, 3, 4, and 5. Themain idea is

now to decompose the flexible charging of an EV into an inflexible reference charging strategy and the flexible deviation from that reference.

Charging more compared to the reference can be associated with charging the virtual energy storage, and charging comparatively less re-

sults in discharging it.41,42 Table Effect of different charging strategies in the virtual energy storage level. Summarizes the effects of different

deviations on the virtual energy storage level. We consider an uncontrolled charging strategy (charging as early and much as possible) as the

inflexible reference, but other reference strategies are possible as well. Referring to the definition of the objective function in Equation 9, an
iScience 26, 107816, October 20, 2023 11
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uncontrolled charging strategy would imply maximizing it. To determine the virtual energy storage capacity, the difference between the

furthest deviation from charging as early as possible is calculated for every time step: charging as late as possible. Minimizing the sum of

batteries, Equation 9, subject to Equations 1, 2, 3, 4, and 5 leads to this profile, while maximizing leads to the battery level profile correspond-

ing with uncontrolled charging.

ci˛ I
Objective function =
XT
t = 0

LEVELt;i (Equation 9)
Table Effect of different charging strategies in the virtual energy storage level.

Charging strategy Virtual energy storage level

Uncontrolled: Neutral

Smart:

Postponing uncontrolled charging

Initially, charging less than uncontrolled

charging: discharging the virtual energy

storage

Later, charging more than uncontrolled

charging: charging the virtual energy storage

Bidirectional: smart charging with the

possibility to discharge the EV to the grid

Initially, charging less than uncontrolled

charging or even discharging the battery:

discharging the virtual energy storage

Later, charging more than uncontrolled

charging: charging the virtual energy storage

In general: charging less than in the uncontrolled case leads to discharging the virtual energy storage.
Note that for t = 0 and t = T the virtual energy storage capacity is defined explicitly. Thus, evenwhen applying adapted charging strategies,

it is impossible to divert from this level. This significantly impacts the potential virtual energy storage levels for time steps close to the begin-

ning and end of the considered time horizon.

Aftermaximizing andminimizing the objective function in Equation 9 according to Equations 1, 2, 3, 4, and 5, we subtract the late-charging

profile (maximization) from the early charging profile (minimization) for an EV profile i, Equation 10 to determine the lower bound of the virtual

energy storage profile. The upper bound of the virtual energy storage profile corresponds with the minimal deviation from the reference pro-

file, which is 0 for every time step, Equation 11. Notably, these virtual energy constraints already incorporate the relevant information of each

individual EV’s energy requirements to allow for the exogenous mobility demand.

c½i; t ˛ I; T �
levelvs;max
i;t = 0 (Equation 10)
levelvs;min
i;t = levellatei;t � leveluncontrolledi;t (Equation 11)

Analogously to the naive aggregation, Equations 6, 7, and 8, we perform aggregation for every set of constraints: power availability, avail-

able capacity of the virtual energy storage, Equations 12, 13, and 14. The power constraint is determined by the physical charging potentials

and the potential to deviate from an uncontrolled charging strategy, Equation 14. Note that Equation 12 does not include the exogenous time

series for uncontrolled charging, whichmust be considered separately. Furthermore, note that the virtual storage level and charging can now

generally take postive and negative values.

ct ˛ I
LEVELvs;fleett = LEVELvs;fleett +Dt � CHARGEvs;fleet
t (Equation 12)
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XI

i = 1

levelvs;min
i;t % LEVELvs;fleett %

XI

i = 1

levelvs;max
i;t (Equation 13)
XI

i = 1

chargemin
i;t + chargeuncontrolled

i;t %CHARGEvs;fleet
t %

XI

i = 1

chargemax
i;t � chargeuncontrolled

i;t (Equation 14)
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