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ABSTRACT

This study presents a general framework, namely, Sparse Spatiotemporal System Discovery (S3d), for discovering dynamical models given
by Partial Differential Equations (PDEs) from spatiotemporal data. S3d is built on the recent development of sparse Bayesian learn-
ing, which enforces sparsity in the estimated PDEs. This approach enables a balance between model complexity and fitting error with
theoretical guarantees. The proposed framework integrates Bayesian inference and a sparse priori distribution with the sparse regres-
sion method. It also introduces a principled iterative re-weighted algorithm to select dominant features in PDEs and solve for the
sparse coefficients. We have demonstrated the discovery of the complex Ginzburg–Landau equation from a traveling-wave convection
experiment, as well as several other PDEs, including the important cases of Navier–Stokes and sine-Gordon equations, from simulated
data.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0160900

Data-driven methods provide a viable alternative to more tradi-
tional approaches, such as first-principles derivation, for accel-
erating the discovery of physical laws. This work aims to
develop a sparse Bayesian learning-based framework for mod-
eling spatiotemporal dynamical systems described by Partial
Differential Equations (PDEs). The proposed framework, based

on sparse Bayesian learning (SBL), can reconstruct a variety
of prototypical PDEs, including the Navier–Stokes equation,
the FitzHugh–Nagumo equation for nerve conduction, and the
Schrödinger equation in quantum mechanics, using a small num-
ber of samples compared to state-of-the-art (SOTA) methods.
In particular, we demonstrate that the data-driven discovery
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method can automatically extract the first-principles-based cou-
pled complex Ginzburg–Landau equations from data collected in
a convection experiment.

I. INTRODUCTION

Recently, there has been a surge of interest in the data-driven
discovery of physical laws, which applies computational methods
to discover representations from data. There have been reports
of many successes using data-driven methods, such as learning a
nonlinear mapping from time series,1 predicting catastrophes in
nonlinear systems,2 creating autonomous smart systems capable
of self-adaption and self-regulation for short- and long-term pro-
duction management,3 equation-free modeling multi-scale/complex
systems,4 inferring models of nonlinear coupled dynamical systems,5

reconstructing networks with stochastic dynamical processes,6 and
extracting Koopman modes from data.7–10

In the system identification community, a standard way is to
transform the model discovery problem into a regression problem
and design a good optimization algorithm to solve the problem.11,12

There are several numerical algorithms to find solutions to prob-
lems. The first kind of such a method builds on the ordinary least-
squares regression. Examples include orthogonal reduction,13,14

the backward elimination scheme,15,16 least-squares estimator,17

and the alternating conditional expectation algorithm.18–20 These
approaches do have a good fitting accuracy as described by Ref. 21
which, however, requires a relatively large number of data to train.
The second type of method is the sparse regression approach, where
a sparse prior assumption of underlying governing equations is
incorporated to tackle the outstanding issue, overfitting. By con-
verting the discovery problem of differential equations to a sparse
regression problem, Ref. 22, and later, Brunton et al.23 developed
a sparse identification of nonlinear dynamics framework to extract
ODEs from noisy measurement data. Rudy et al.24 and Schaeffer25

consequently extended the method in Ref. 23 to recover PDEs from
spatiotemporal data.

On the development of sparse optimization problem, sparse
Bayesian learning (SBL) method, originally proposed in Ref. 26
and further developed in Refs. 27–29, adopts a Bayesian probabilis-
tic framework to find sparse solutions. By treating the parameter as
a random variable with sparse-inducing prior distributions deter-
mined by a set of hyperparameters and then calculating the posterior
distribution of the to-be-estimated parameter given the data, it has
been shown to be more general and powerful in finding a max-
imally sparse solution. For instance, the maximum a posteriori
(MAP) estimation with a fixed weight prior is its special case;28 the
Lasso problem can be interpreted as the explicit MAP with Laplace
prior.30,31 Specifically, Wipf et al.32 established the equivalence of the
SBL cost function and the objectives in canonical MAP-based sparse
methods (e.g., the Lasso) via a dual-space analysis.

In this work, we propose a SBL framework for data-driven PDE
discovery problems. This framework integrates Bayesian inference
and sparse priori distribution with the sparse regression method.
In our sparse Bayesian method derivation, an iterative re-weighted
`1-minimization algorithm is derived to approximate the origi-
nal `0-minimization. Compared with PDE-FIND with the Ridge

Regression, which uses a thresholding `2-minimization algorithm,
`1-minimization algorithm is known to pick the sparser solution
and, therefore, can better approximate the solution to the orig-
inal problem. Additionally, we also analyze spatiotemporal data
observed from an experiment on convection in an ethanol water
mixture in a long, narrow, annular container which is heated from
below and demonstrate that the proposed data-driven discovery
method is able to automatically extract the governing PDEs from
spatiotemporal binary-fluid convection data. This is distinct from
the previous works,24,33 in which the data used for discovering the
PDEs are generated from the numerical solution to the known PDEs.
Our key empirical findings are the following:

(i) We demonstrate that an interpretable first-principle model
can be discovered from inherently noisy experimental data.
The proposed SBL method discovers a coupled complex
Ginzburg–Landau equation (CGLE) using spatiotemporal
binary-fluid convection data. Furthermore, it has been proven
that the discovered values of various coefficients in the CGLE,
such as the group velocity, the dispersion coefficients, the satu-
ration parameter and the coupling coefficient, can be accurately
determined in terms of the theoretical values and experimental
ones provided in Refs. 19,34, and 35. Moreover, the numer-
ical solution to the discovered CGLE matches the observed
experimental phenomenon.

(ii) We demonstrate that the proposed SBL framework is capa-
ble of reconstructing a variety of prototypical PDEs, includ-
ing the Navier–Stokes equation in fluid mechanics,36 the
FitzHugh–Nagumo for nerve conduction,37 the Schrödinger
equation in quantum mechanics,38 the sine-Gordon equation,
and the Korteweg–de Vries equation. By comparing with the
state-of-the-art PDE-FIND method in Ref. 24 and the Douglas-
Rachford method in Ref. 25, the proposed algorithm is robust to
measurement noise and is able to discover the underlying PDEs
using a much smaller number of samples.

The rest of this paper is organized as follows: In Sec. II, a
Bayesian framework for discovering PDEs from spatiotemporal data
is presented. In Secs. III and IV, the proposed framework has been
applied to the discovery of PDE models using both experimental and
synthetic data. Conclusions and perspectives are drawn in Sec. V.

Notations: Throughout this paper, we denote vectors by low-
ercase letters, e.g., x, and matrices by uppercase letters, e.g., X. For
a vector x and a matrix X, we denote its transpose by xT and XT,
respectively. Furthermore, xi refers to its ith element of x. ‖x‖2

=
√

xTx and ‖x‖1 =
∑

` |x`| denote its Euclidean norm and `1

norm, respectively. For a differentiable function f : R
n → R, we call

∇f and ∂kf/∂xk
i (abbreviated as fxi

) the derivative of f and the kth par-
tial derivative of f with respect to xi, respectively. For a convex func-
tion f : R

n → R, we say vector v ∈ R
n is a sub-gradient of f at x ∈ R

n

if for all y ∈ R
n, f(y) ≥ f(x)+ vT(y − x). The set of all subgradients

at x is called the subdifferential at x and is denoted ∂f(x).

II. S3d: A BAYESIAN FRAMEWORK TO DISCOVER

PDES FROM SPATIOTEMPORAL DATA

This section proposes a framework of the S3d method for data-
driven discovery of PDEs. The proposed S3d framework is illustrated
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FIG. 1. Schematics of the S
3
dmethod used to infer the CGLE from data. (a) Data collection. Data are collected from experiments of a real system (or from a numerical solution

to a PDE). The collected data are formed into a matrix. (b) Model specification. A large library of candidate terms including the potential features for the to-be-identified PDE
is constructed. The candidate terms include the state u, its spatial derivatives up to two orders, and nonlinear coupling terms between them. The time derivative ut is regarded
as the model output. The collected data are used to approximate the time derivative ut of the state u and all the candidate terms. A set of linear equations (i.e., y = 8θ ) is
then defined to represent the underlying PDE. (c) Sparse Bayesian learning. Sparse regression problem is solved using an iterative reweighted `1-minimization algorithm.

in Fig. 1, which includes the following three steps: data collection,
model specification, and SBL solver. We will consider the dynam-
ics of a spatiotemporal system, which is governed by a PDE of the
general form

ut(x, t) = F

(
x, t, u(x, t),

∂u(x, t)

∂x1

, . . . ,
∂u(x, t)

∂xd

,

× ∂2u(x, t)

∂x2
1

, . . . ,
∂2u(x, t)

∂x1∂xd

, . . . ,2

)
, (2.1)

where the dynamical variable, u, is N-component with temporal and
multi-dimensional spatial variables, t and x = (x1, . . . , xd)

T ∈ R
d,

respectively, defining the state. 2 is a parameter vector and F is an
unknown, N-dimensional function, which depends on the dynam-
ical variable u and its derivatives. In the following, we shall restrict
the discussion to the case d = 1 and N = 1 for notational simplicity,
yet the proposed framework can be applied to general cases when
d > 1 or N > 1.

A. Model specification

To identify the form of F and the corresponding parameter 2
in Eq. (2.1), we construct a large library of candidate terms that may
appear in the function F,

ut = F

(
∂ku

∂xk
,
∂k−1u

∂xk−1
, . . . ,

∂u

∂x
, x;2

)

=
m∑

j=1

Fj

(
∂ku

∂xk
,
∂k−1u

∂xk−1
, . . . ,

∂u

∂x
, x

)
θj, (2.2)

where Fj(·) is a candidate feature term, such as the polynomial,
u2, uu2, partial derivatives, ux, uxx, uxxx, or their combinations,
u2ux, u3uxx, and θ = (θ1, θ2, . . . , θm)

T is the corresponding parame-
ter vector. A key observation we had is that θ should be sparse.22 For
instance, consider that the preselected candidate terms include the
state u and the derivative of u up to the third order. Then, Eq. (2.2)
can be rewritten into the following regression form:

ut =
[
1 u ux uxx uxxx u2 . . . u2uxxx

]
θ . (2.3)

Given the dataset sampled on a spacetime mesh of nx spatial points
by nt time steps, the identification problem for F is to solve the
following linear equations for the parameter θ :




ut(x1, t1)

ut(x2, t1)

...
ut(xnx , tnt)




︸ ︷︷ ︸
y

=




1 u ux . . . u2uxxx

1 u ux . . . u2uxxx

...
...

... . . .
...

1 u ux . . . u2uxxx




︸ ︷︷ ︸
Dictionary matrix8




θ1

θ2

...
θm




︸ ︷︷ ︸
θ

(2.4)

where each column of8 is a compilation of all the values of a specific
candidate function on the right side of Eq. (2.3) over all grid points,
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and the output vector y contains the values of ut on the left side of
Eq. (2.3) over all grid points. One sequent task is to compute the time
and spatial derivatives of u in Eq. (2.4). Various numerical meth-
ods including the numerical differentiation39–41 and the symbolic
or automatic differentiation42 can be used for the estimation of the
derivatives in the dictionary matrix 8. In our framework, the poly-
nomial approximation method is selected to estimate the derivatives
from the noise-contained measurements. Indeed, the polynomial
approximation method has been proved to be capable of effec-
tively estimating the derivatives from the noise-contained data in
Ref. 24. For completeness, we explain the polynomial approximation
method in detail in the Appendix.

Given these approximation error, we consider the following
matrix form with the noise vector ν:

y = 8θ + ν, (2.5)

where the model error either arises from experimental measure-
ments or results from numerical approximation of the derivatives
included in the model output y and the dictionary matrix 8. Thus,
the type of the model error is unknown for the PDE discovery prob-
lem in practice. For simplicity, we assume that ν is i.i.d. Gaussian
distributed noise with zero mean and variance σ 2, N

(
0, σ 2In

)
, with

In being an n × n identity matrix.
A general solution to Eq. (2.5) can be obtained by using

the least-squares method. For example, θ̂ is the minimizer of the
following optimization problem:

θ̂ = arg min
θ

‖y −8θ‖2
2. (2.6)

The solution, θ̂ , is uniquely identified only if the number of grid
points, n = nxnt, is larger than the number of columns in 8 and
the matrix, 8, has full column rank. However, for the PDE dis-
covery problem, these two conditions, in general, are not always
satisfied. Besides, if the dictionary is over-determined, the resulting
optimization easily leads to overfitting.

B. Sparse Bayesian learning for S3d

To tackle these issues, we take a Bayesian perspective to
Eq. (2.5) by considering the likelihood of the output y is

p(y|θ) = (2πσ 2)
− n

2 exp

(
− 1

2σ 2
‖y −8θ‖2

)
. (2.7)

To enforce the sparsity, we assume the following prior distribution:

p(θ ; γ ) =
m∏

i=1

(2πγi)
− 1

2 exp

(
− θ 2

i

2γi

)
, (2.8)

where γ := [γ1, γ2, . . . , γm]T is a vector of m hyperparameters.
Although the hyperparametric vector γ is unknown, it determines
the variance of each entry of θ and ultimately produces sparsity
properties. In particular, if γi = 0, one can get P(θi = 0) = 1 imme-
diately. Moreover, the hyperparametric vector can be estimated by
type-5 maximum likelihood. To this end, we first compute the

marginalized probability distribution

p(y; γ ) =
∫

p(y|θ)p(θ ; γ )dθ = (2π)−
n
2 |6y|−

1
2 exp

(
−1

2
yT6−1

y y

)
,

(2.9)

where 6y := σ 2In +808T and 0 := diag(γ ). Then, we estimate
γ by maximizing the marginalized probability distribution func-
tion. This is equivalent to minimizing − log p(y; γ ), giving the cost
function

Lγ (γ ) = log |6y| + yT6−1
y y, (2.10)

that is,

Lγ (γ ) = log
∣∣σ 2In +808T

∣∣ + yT
(
σ 2In +808T

)−1
y. (2.11)

On the other hand, for fixed hyperparameters, one can com-
pute the posterior distribution of θ from the Bayes formula. Then,
one has

p(θ |y; γ ) = N (µθ ,6θ ), (2.12)

with µθ = σ−26θ8
Ty and6θ =

(
σ−28T8+ 0−1

)−1
. After obtain-

ing the estimate γ̂ of the hyperparameter vector, the optimal estima-
tion of coefficient vector θ is

θ̂ = µ̂θ =
(
8T8+ σ 20̂−1

)−1
8Ty = 0̂8T

(
σ 2In +80̂8T

)−1
y,

(2.13)

where 0̂ = diag(γ̂ ). Consider that

yT
(
σ 2In +808T

)−1
y

= 1

σ 2
yTy − 1

σ 4
yT86θ8

Ty = 1

σ 2
‖y −8µθ‖2 + µT

θ0
−1µθ

= min
θ

{
1

σ 2
‖y −8θ‖2 + θT0−1θ

}
.

Thereby, we define the cost function with respect to θ and γ as
follows:

L(θ , γ ) = 1

σ 2
‖y −8θ‖2 + θT0−1θ + log

∣∣σ 2In +808T
∣∣

1= f(θ , γ )+ g(θ , γ ), (2.14)

where

f(θ , γ ) = 1

σ 2
‖y −8θ‖2 + θT0−1θ ,

g(θ , γ ) = log
∣∣σ 2In +808T

∣∣ .

It can be proven that f(θ , γ ) is convex with respect to (θ , γ ) and
g(θ , γ ) is concave with respect to (θ , γ ).

The problem to determine the sparse coefficient θ is now
equivalent to finding

(θ̂ , γ̂ ) ∈ arg min
(θ ,γ )∈�

L(θ , γ ). (2.15)

This is a DC (difference in convex functions) programming prob-
lem that can be generally solved by the CCP (concave–convex
procedure) methods.
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C. Convergence guarantee of the sparse Bayesian

learning algorithm

The CCP-based SBL algorithm is first derived in Ref. 43, where
an principled iterative reweighted `1 approach is designed to opti-
mize the constructed auxiliary cost functions as shown in Eq. (2.14).
Here, we take a slightly different formulation to present the used
CCP-based SBL algorithm. Start with the CCP procedure, it is an
iterative algorithm that solves the following sequence of convex
programs,

(
θ (k+1), γ (k+1)

)
∈ arg min

(θ ,γ )∈�
L̂

(
θ , γ ; θ (k), γ (k)

)
, (2.16)

or equivalently,

(
θ (k+1), γ (k+1)

)
∈ arg min

(θ ,γ )∈�

{
1

σ 2
‖y −8θ‖2 +

∑

i

(
θ 2

i

γi

+ c(k)i γi

)}
,

where

L̂
(
θ , γ ; θ (k), γ (k)

)
:= f(θ , γ )+ g

(
θ (k), γ (k)

)

+
〈
gγ

(
θ (k), γ (k)

)
, γ − γ (k)

〉
,

c(k) := ∇γ log
∣∣σ 2In +80(k)8T

∣∣ ,

0(k) := diag
(
γ
(k)
1 , γ (k)2 , . . . , γ (k)m

)
.

Note that the supplementary definition for L can be extended to the
function L̂. It follows that

θ (k+1) ∈ arg min
θ

{
‖y −8θ‖2 + 2σ 2

∑

i

√
c(k)i |θi|

}
, (2.17a)

γ
(k+1)
i = |θ (k+1)

i |√
c(k)i

, i = 1, 2, . . . , m. (2.17b)

Given an initial point
(
θ (0), γ (0)

)
∈ int(�), we can obtain an iter-

ative sequence
{(
θ (k), γ (k)

)}∞
k=0

. Moreover, c(k) can be analytically
calculated by

c(k) = ∇γ log
∣∣σ 2In +80(k)8T

∣∣ = diag
[
8T

(
σ 2In +80(k)8T

)−1
8

]
.

(2.18)

By the property of concave function, one has

L(θ , γ ) ≤ L̂
(
θ , γ ; θ (k), γ (k)

)
.

Combining with (2.16) yields

L
(
θ (k+1), γ (k+1)

)
≤ L̂

(
θ (k+1), γ (k+1); θ (k), γ (k)

)

≤ L̂
(
θ (k), γ (k); θ (k), γ (k)

)
= L

(
θ (k), γ (k)

)
. (2.19)

Then, some simple computations give

L
(
θ (k), γ (k)

)
≥ log |σ 2In| = 2n log σ > −∞.

which shows that
{
L

(
θ (k), γ (k)

)}∞
k=0

is a bounded monotonic non-
increasing sequence. In fact, it is strictly monotonic before the

ALGORITHM 1. SBL algorithm based on CCP.

Input:8 ∈ R
n×m: design matrix; y ∈ R

n: observation vector; τ :
tolerance;
Output: θ (k+1)

1: initial0(0) = Im, k = 0;
2: repeat

3: c(k) = diag
[
8T

(
σ 2In +80(k)8T

)−1
8

]
;

4: θ (k+1) ∈ arg minθ

{
‖y −8θ‖2 + 2σ 2

∑
i

√
c(k)i |θi|

}
;

5: γ
(k+1)
j =

∣∣∣θ(k+1)
j

∣∣∣
√

c
(k)
j

, 0(k+1) = diag
(
γ (k+1)

)
;

6: k = k + 1
7: until

(
L

(
θ (k), γ (k)

)
− L

(
θ (k+1), γ (k+1)

)
≤ τ

)

iteration (2.17) reaches a local minimum. Therefore, the iterative
process should be terminated when

L
(
θ (k), γ (k)

)
− L

(
θ (k+1), γ (k+1)

)
≤ τ , (2.20)

where τ is a tolerance. The above iterative process is summarized in
Algorithm 1.

III. DISCOVERY OF COMPLEX GINZBURG–LANDAU

EQUATIONS FROM BINARY-FLUID CONVECTION

EXPERIMENT

In this section, we apply the proposed S3d method to discover
the complex Ginzburg–Landau equation (CGLE) from a binary-
fluid convection experiment. Traveling-wave (TW) convection in
binary fluids is a known, mainstream ansatz technique for study-
ing the physical mechanism of non-equilibrium pattern-forming
systems.44 Substantial experiments on TW convection unfold many
different dynamical states of TW. A major challenge in the scien-
tific study of TW is quantitatively understanding and predicting the
underlying dynamics. First-principle models based on the CGLE
and its variants45,46 have long been used to quantitatively explain
experimental observations.

A. Experimental data description

The experimental data are collected from an experiment on
convection in an ethanol/water mixture in a long, narrow, annu-
lar container which is heated from below.19,34 The objective of the
experiment is to probe into the counterpropagating wave packet
formation regime. As reported in Refs. 34, 47, and 48, a regular,
small-amplitude traveling-wave (TW) state is observed in this exper-
iment, which consists of pairs of quasilinear wave packets which
propagate around an annular cell in opposite directions, referred
to as “left” and “right.” In Fig. 2, we show the dynamics of the
TW state for the bifurcation parameter ε (scaled by the character-
istic time τ0 defined below): ετ0 = 1.77 × 10−3, where the left-TW
rapidly moves to the left with small amplitudes [denoted by AL(x, t)]
and collides periodically with the right-TW [denoted by AR(x, t)].

The data are the complex amplitudes, AL(x, t) and AR(x, t) of
the TW state observed above onset (ε = 0), which are independently
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FIG. 2. The dynamics of the observed TW state for ετ0 = 1.77 × 10−3. The top line shows the physical change of the amplitudes of the left-going (blue full line and
dashed line) and right-going (red full curve and dashed line) wave components at a particular time and at the next time’s data. (a) The behavior of left-going amplitudes;
(b) the behavior of right-going amplitudes; (c) the behavior of the sum of left- and right-going amplitudes.

measured by applying full complex demodulation techniques49 to
the signals from the annular photodiode array, which records
the flow-pattern image. The sampling period of these data is
4t = 1.5625, and the space sample interval is 4x = 0.458 167. There
are seven sets of data collected from the same experimental setup
with seven different bifurcation parameters ε shown in Table I. For
each dataset, a total of 180 × 760 data points is used for model dis-
covery. Due to the use of the complex amplitudes, which is different
from Ref. 19, where the real amplitudes and phases, aL,R(x, t) and
φL,R(x, t) defined by AL,R(x, t) = aL,R(x, t)eiφL,R(x,t), are used, Eq. (2.4)

takes a complex form, that is, ỹ = 8̃θ̃ , where ỹ, θ̃ are complex vec-

tors and 8̃ is a complex matrix. For this, we consider the following
one-to-one mapping from the complex vector ỹ to a real vector y and
construct the following real matrix8:

y =
[

Re ỹ
Im ỹ

]
, 8 =

[
Re(8̃) −Im(8̃)

Im(8̃) Re(8̃)

]
.

TABLE I. Overview of the TW data in the designed experiment. The special letter “cal” and “car,” respectively, represent the left-going waves and right-going ones. The files

record the experimental data. Seven bifurcation parameters, ε, scaled by the characteristic time, τ 0 (i.e., γ = ετ−1
0 ), represent the same experiments but conducted with different

bifurcation parameters. All samples used for analysis are truncated from the 21st sampling point to the 780th sampling point19 such that a total of 180× 760 data points is used

for the analysis. Then, we form the snapshot matrices, U ∈ C
180×760.

Bifurcation Sampling Space Number of points
Experiment label parameter Sample number interval interval after truncation

cal06172/car06172 γ = 9.32 × 10−3 988 × 180 1.5625 0.458 167 228
cal06182/car06182 γ = 4.22 × 10−3 800 × 180 1.5625 0.458 167 40
cal06192/car06192 γ = 1.77 × 10−3 1000 × 180 1.5625 0.458 167 240
cal06212/car06212 γ = 6.38 × 10−3 1000 × 180 1.5625 0.458 167 240
cal06222/car06222 γ = 12.07 × 10−3 1031 × 180 1.5625 0.458 167 271
cal06242/car06242 γ = 14.03 × 10−3 1000 × 180 1.5625 0.458 167 240
cal06252/car06252 γ = 16.28 × 10−3 1000 × 180 1.5625 0.458 167 240
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With the above mapping and matrix construction, estimating the

parameter θ̃ can be equivalently converted to determine the θ via

ỹ = 8̃θ̃ ⇔ y = 8θ .

This one-shot optimization for complex variables can reduce the
influence of the inherent noise on the discovery result. This is par-
ticularly important for model discovery due to the TW amplitudes
are small (10−3 magnitude as shown in Fig. 2). This directly affects
the computing error of the real amplitudes and phases by aL,R(x, t)

=
√
(ReAL,R)

2 + (ImAL,R)
2 as well as φL,R = arctan

ImAL,R

ReAL,R
and aggra-

vates the estimation error of their derivatives as demonstrated in
Ref. 19.

B. Discovery of CGLE

We proceed the discovery process by two steps: first, the pro-
posed S3d method intensively determines the dominant physical
terms from a large library of candidate terms. We construct the
function dictionary using brief domain knowledge in fluid dynam-
ics theory. Possible terms may include the terms appearing in the
Navier–Stokes equations (such as A · ∇A, 4A) or the ones appear-
ing in the first principles-based derived complex Ginzburg–Landau
equations (such as the higher-order nonlinear terms A2∂xA, |A|2A).
In general, the amplitude itself and its derivative up to some custom
order k should be added in order to properly model the physical sys-
tem. Furthermore, to correctly model states of counterpropagating
TW, the coupling terms like |AL|2AR and |AR|2AL must be added
to account for the interactions between the left- and right-going
TW. In this example, we take the third-order Volterra expansions
of AL,R and |AL,R| and use the fourth-order compact Pade scheme50

for the derivative estimation. It is shown that the Pade scheme is
much more robust than the explicit fourth-order difference scheme
for the noise. We investigate the performance of the S3d method on
the last three sets of data with a larger signal-to-noise ratio

(
that

is, ετ−1
0 ≥ 12.07 × 10−3

)
in Table I. The second step is to identify

coefficients for each identified dominant term, where all the data
displayed in Table I are used for the coefficient estimations. The used
candidate terms include A, |A|, A2, |A|2, A3, A2|A|, A|A|2, |A|3, Axx,
AAx, AAxx, A

2Ax, A
2Axx, A

3Ax, A
3Axx, and |AR|2A for the right-going

TW.
The first finding is that the proposed S3d method stably extracts

five dominant feature terms to compose the following governing
coupled equations:

∂tAR = (0.0079 + 0.0640i)AR − 0.5982∂xAR

+ (0.9210 − 0.1243i)∂2
x AR

+ (17.7800 − 206.3442i)|AR|2AR

+ (−25.2965 − 150.6041i)|AL|2AR,
(3.1)

∂tAL = (0.0065 + 0.0443i)AL + 0.5895∂xAL

+ (0.3392 − 0.2185i)∂2
x AL

+ (−17.1600 − 89.0851i)|AL|2AL

+ (−6.4579 − 139.7492i)|AR|2AL,

where the estimated coefficients correspond to the experimental
data labeled “cal/car06172.” In Fig. 3, we show the relationship
between the evolution of the fitting error and the change of the num-
ber of feature terms. It can be seen that for all used dataset, there
exists a critical value before which the fitting-error slowly increases
and after which the error begins to grow rapidly. The critical value
to some extent illustrates that the retained five feature terms are best
for describing the data.

In Fig. 4, we outline all the used candidate terms and enumer-
ate the key feature terms for the bifurcation parameter, γ = 14.03
× 10−3, which include the amplitude itself A, ∂xA, ∂xxA, |A|2A and
the coupling term |AL|2A with the “R” subscript neglected. The same
results also hold for two other datasets with bifurcation parameter
γ = 12.07 × 10−3 and bifurcation parameter γ = 16.28 × 10−3. In
fact, the discovered governing equations agree well with the simplest
model of coupled complex Ginzburg–Landau equations (CGLEs)
derived from first principles,

τ0(∂t + s∂x)A = ε(1 + ic0)A + ω2
0(1 + ic1)∂

2
x A

+ g(1 + ic2)|A|2A + h(1 + ic3)|AL|2A,

where A is the complex amplitude of a right-going wave with group
velocity s, parameter ω0 is a characteristic length scale, and τ0 is a
characteristic time, which is determined experimentally by measur-
ing the growth rate, γ = ετ−1

0 , at several values of ε and fitting the
slope, c0 − c3 are dispersion coefficients, g is a nonlinear saturation
parameter, and h is a nonlinear coupling coefficient, which reflects
the stabilizing interaction between oppositely propagating traveling-
wave components (see Ref. 19 and the reference therein). According
to substantial theoretical51–53 and experimental47,48 works, the CGLE
model has been proven to be potential to qualitatively explain weakly
nonlinear dynamics near onset and closely parallel the experimental
observations. Here, we apply the sparse Bayesian learning method
to make a quantitive comparison of the experimental data with the
simplest CGLE model.

Based on the analysis above, we further apply the proposed
S3d method to fine-tune the coefficients of CGLE. For TW con-
vection, most parameters in CGLE (the coupling coefficient is an
exception) have been measured in Ref. 35. Here, to show our identi-
fied results in an accessible form, we introduce the concept of the
leave-one-out in machine learning to discuss the best method to
choose the regularization parameters λ and obtain the best-fit coef-
ficients. We accept the parameters that lead to the smallest fitting

error on the test sets: err = ‖Y−8ω‖2

‖Y‖2 . In Table II, we summarized the

identified coefficients, from which it can be seen that the estimated
coefficients mostly resemble the theoretical values and experimen-
tal ones (Refs. 19, 34, and 35 and reference therein), except for
some obscure parameters in theory and experiment. Particularly,
we observe that for smaller bifurcation parameters, the estimated
coupling coefficients possess the same characteristic, that is, hτ−1

0

for the right-going TW component AR is smaller than ones for the
AL, and the value of hc3τ

−1
0 approximate −150. But for the three

datasets with the highest signal-to-noise ratio, we clearly find that
the estimated coefficients are unstable, which may arise from the
bad estimates of the derivatives. Additionally, it is interesting to note
that all the seven analyzed datasets have one thing in common, that
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FIG. 3. The accelerations of fitting error due to a change in the number of feature terms. We empirically adjust the regulation parameter, λ, while observing the change in the

fitting error. Three sets of data were chosen to test S
3
d: car/cal06242, car/cal06222, and car/cal06252 from top to bottom. For each dataset, the fitting error slowly increased

and tended to a relatively stable value [five features in Eq. (3.1) emerge], then that error began to rapidly grow.

is, the negativity of the coupling coefficients, which indicates a sta-
bilizing nonlinear competition between the two TW and a slowing
down of the TW group velocity, which is also similar to Ref. 19 and
agrees with the experimental observation.34

C. Model validation

One important benefit of data-driven PDE discovery is to use
the discovered model for simulation, analysis, and prediction. Here,

we make an attempt to solve the identified CGLE and reconstruct
the TW convection behaviors with the appropriate initial bound-
ary data. Note that the considered experiments are conducted in an
annular container, which implies that the physical system comprises
periodic boundary conditions,19 that is,

AL(x, t) = AL(x + p, t), AR(x, t) = AR(x + p, t),

where p is one periodic. We employ the Fourier spectral method
presented in Ref. 41 to simulate the identified CGLE model, for
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FIG. 4. All the used candidate terms for the experimental data labeled car/cal06242, the proposed method identifies the feature terms with different λ.

TABLE II. Summary of the identified parameters of seven sets of real data: The data are labeled according to “right”(car) and “left”(cal). Each row represents the identified

coefficients by S3d.

Coefficients in the discovered complex Ginzburg–Landau equation

Experiment label s ετ−1
0 ξ 2

0 τ
−1
0 gτ−1

0 hτ−1
0 ετ−1

0 c0 ξ 2
0 c1τ

−1
0 gc2τ

−1
0 hc3τ

−1
0

cal06172cb 0.5895 0.0065 0.3392 −17.1619 −6.4595 0.0443 −0.2185 −89.0851 −139.7500
car06172cb 0.5982 0.0079 0.9210 17.7800 −25.2965 0.0640 −0.1243 −206.3442 −150.6041
cal06182cb 0.6268 0.0057 0.0000 −78.0836 −0.8076 −0.0094 −0.3774 0.0000 −154.4844
car06182cb 0.6308 0.0081 0.0935 −90.2362 −35.0632 −0.0059 −0.4397 −55.8157 −157.3323
cal06192cb 0.5930 0.0054 0.0148 −139.4494 −2.5230 −0.0066 −0.6457 −37.6346 −152.7833
car06192cb 0.5916 0.0087 0.0158 −198.6799 −34.9115 −0.0066 −0.9189 −68.1182 −141.3105
cal06212cb 0.6063 0.0057 0.0639 −45.0095 −7.9602 0.0033 −0.2732 −35.3580 −154.5495
car06212cb 0.6131 0.0042 0.0202 −26.1553 −33.0555 0.0019 −0.1489 −17.7879 −168.7832
cal06222cb 0.5741 0.0173 1.7492 40.1657 −15.1882 0.0281 −0.0424 −379.5853 −136.5903
car06222cb 0.5771 0.0127 1.3000 29.9928 −16.6945 0.0114 −0.0894 −272.3181 −161.5083
cal06242cb 0.5509 0.0138 1.0701 16.2302 −17.3846 0.0555 −0.1505 −234.8376 −144.0718
car06242cb 0.5597 0.0150 1.1368 13.1359 −4.5687 0.0567 −0.2108 −237.9784 −149.1559
cal06252cb 0.5634 0.0199 1.1690 2.1061 −5.2084 0.0867 −0.2690 −267.3739 −169.0035
car06252cb 0.5481 0.0131 1.1075 22.3429 −3.9619 0.0794 −0.1245 −234.6182 −179.6777
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instance, for the bifurcation parameter γ = 6.38 × 10−3,

∂tAR = −0.6131∂xAR + (0.0042 + 0.0019i)AR

+ (0.0158 − 0.9189i)∂2
x AR

− (26.1553 + 17.7879i)|AR|2AR

− (7.9602 + 154.5495i)|AL|2AR,

∂tAL = 0.6063∂xAL + (0.0057 + 0.0033i)AL

+ (0.0639 − i0.2723)∂2
x AL

− (45.0095 + 35.3580i)|AL|2AL

− (33.0555 + 168.7832i)|AR|2AL,

where 0 < x < l, t > 0, with the system length l = 82.0119 and the
computing time T = 625 (i.e., t0 = 0, tf = 625). The simulation pro-
ceeds by discretizing the left-going complex wave amplitude, AL, and
the right-going complex wave amplitude, AR, in space on a uniform
180 mesh with spectral approximations of the spatial derivatives,
and integrating in time using an explicit Runge–Kutta formula with
401 time points. We use any column of the snapshot matrix, U, as
an initial value. Figure 5 shows the simulation results for different
initial values: the 622th column of U for data labeled “cal/car06172,”
the 600th column for data labeled “cal/car06192,” the 600th column
for data labeled “cal/car06212,” and the 1st column for data labeled
“cal/car06182.” Therein, the first three rows have a resolution of
180 × 400 samples and the fourth row has a resolution of 180 × 200.
Both resolutions correspond to reconstruction times T = 625 and
T = 312.5, respectively. It can be seen that the TW behavior by sim-
ulation agrees well with the experimental observation. In simulation,
we also find that the reconstruction results change with different
initial values. One notable attempt is to take the 658th column for
data labeled “cal/car06192” as the initial value. It can be observed
that with the simulation running to T = 1187 both the left- and
right-going TW possess regular bursts, and the amplitudes of wave
approach the real values, as shown in Fig. 6. Thus, the reconstruc-
tion from our identified CGLE model bears a striking resemblance
to the experimentally observed nonlinear states of TW convection
on binary-fluid convection.

IV. DISCOVERY OF PROTOTYPICAL PDES

In this section, we validate the practicality of the proposed S3d
method by using various synthetic data from numerical solutions to
canonical PDEs as well as the dataset originally collected in Ref. 24.
Similar to Ref. 24, we add the Gaussian noise into the synthetic data
for seeing the robustness of the SBL method. The error from the
noisy data is quantified by means of the root mean square error
(RMSE),

Err(y) =

√√√√ 1

nxnt

nx∑

j=1

nt∑

i=1

(
u(xj, ti)− y(xj, ti)

)2
.

The mean-square error (MSE) and Standard Deviation (STD) are
computed and used for assessing the discovery results. Addition-
ally, we also use non-Gaussian noise to verify the robustness of the
present method, which include the Gaussian mixture noise and the

noise that stems from an Ornstein–Uhlenbeck process proposed in
Refs. 54 and 55. Finally, we would like to mention that the assump-
tion on the noise type for our theoretical analysis is unnecessary for
the following experiments. The error analysis for data-driven PDE
method is important, but which goes beyond our current research.

Table III demonstrates that S3d method has successfully discov-
ered the sine-Gordon equation, the Korteweg–de Vries equation, the
FitzHugh–Nagumo equation, the Schrödinger’s equation, and the
Navier–Stokes equation. Due to page limit, we only demonstrate the
discovery results for the Navier–Stokes equation.

A. Navier–Stokes equation

Consider the incompressible Navier–Stokes (NS) equations for
the unsteady two-dimensional flows on torus with vorticity/stream
function formulation,36

ωt + uωx + vωy = (ωxx + ωyy)/Re,

ψxx + ψyy = −ω,
(4.1)

where u = ψy represents the horizontal velocity component,
v = −ψx represents the vertical velocity component, ω = uy − vx

represents the vorticity, and Re is the Reynolds number (based on
the radius of the cylinder and the free-stream velocity, V∞). The
vorticity formulation is attractive for the accurate solution of high
Reynolds number planar or axisymmetric NS equations.56 In this
example with the NS equations, the flow field is described by four
field quantities, each of which needs to be measured for data.

We use a combination of the Fourier spectral method and the
Crank–Nicolson method56 to solve Eq. (4.1) with initial condition in
x × y ∈ [0, 2π] × [0, 2π],

ω(x, y) = exp

(
−1

5

[
x2 +

(
y + π

4

)2
])

+ exp

(
−1

5

[
x2 +

(
y − π

4

)2
])

− 1

2
exp

(
−2

5

[(
x − π

4

)2

+
(
y − π

4

)2
])

.

We perform the spatial discretization on a uniform grid with
4x = 0.0628 and 4y = 0.0628. By substituting the Fourier approx-
imation of the solution, u, v,ω, into Eq. (4.1), we further inte-
grate the resultant ODEs using a time step of 4t = 0.1 using the
Crank–Nicolson scheme. In Fig. 7, we plot the 2D NS pseudo-
spectral solver on the torus with Reynolds number, Re = 100. The
discrete version of the numerical solution forms the snapshot matri-
ces, U, V, W ∈ R

100×100×1001.
The dictionary matrix, 8, consists of m = 60 basis functions.

The underlying dynamics is described with the three state variables,
u, v, w. Thus, our dictionary of basis functions include the linear
combinations of the variables, u, v,ω, ux, vx, uxx, vxx. With snapshots,
U, V, W, we use the explicit difference scheme to approximate the
first- or second-order derivatives in the noise-free case. We see from
the discovery results that our method has strong performance with
the noise-free dataset, a small MSE, and a small STD. We enumerate
the re-sampling region in Table III.

Chaos 33, 113122 (2023); doi: 10.1063/5.0160900 33, 113122-10

Published under an exclusive license by AIP Publishing

 11 January 2024 14:12:30

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 5. Comparison of spatiotemporal evolution of the superposition of the left- and right-TW amplitude between the simulation and the experiment. The different initial
values, the 622th column of the snapshot matrix U for data labeled “cal/car06172,” the 600th column for data labeled “cal/car06192,” the 600th column for data labeled
“cal/car06212,” and the 1st column for data labeled “cal/car06182,” are selected for simulation (the first column). The first 400 (or 200) snapshots of the real data and the
simulation data are shown with a resolution of 180 × 400 (column 2 and column 3).
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FIG. 6. Comparison of spatiotemporal evolution of the superposition of the left- and right- TW amplitude between the simulation and the experiment. Using the extended
time T = 1187 and initial value (i.e., 658th column of snapshot matrix), a regular bust of TW is seen .

In the noisy case, we use the fourth-order compact Pade scheme
with the S3d method. We add 1% Gaussian noise to the original
snapshot and the resulting RMSE is Err = 0.4823 for u, Err = 0.4338
for v, and Err = 1.7111 for w. We apply the POD method used in

Refs. 57 and 58 to de-noise our data. We reshape the snapshot U into
a 10 000 × 1001 matrix, Ū; we do the same shaping for W and V. By
projecting the data onto 33 POD modes obtained using a thresh-
old of 99.99 fixed, we generate a new snapshot, Ũ ∈ R

10000×1001,

TABLE III. Summary of the discovery results for the sine-Gordon equation, the Korteweg–de Vries equation, the FitzHugh–Nagumo equation, the Schrödinger’s equation, and

the NS equation.

PDE Noise case Points Identified PDE Mean(err)±STD(err)

Sine-Gordon equation No noise 10 utt = 0.9999uxx − 0.9986sin (u) 0.0732% ± 0.0893%
With noise 50 utt = 0.9934uxx − 0.9986sin (u) 0.3999% ± 0.3738%

Korteweg–de Vries equation No noise 10 000 ut = −0.000 484uxxx − 0.999 246uux 0.0857% ± 0.0146%
With noise 18 750 ut = −0.000 474uxxx − 0.974 795uux 2.3186% ± 0.2856%

FitzHugh–Nagumo equation No noise
10000 (u)
10 000 (w)

ut = −0.1989u + 1.1991u2

−1.0010u3 + 1.0023uxx − 1.0005ω
ωt = −0.000 990ω + 0.001 998u

0.2952% ± 0.3502%

With noise
18 000 (u)
27 000 (w)

ut = −0.1983u + 1.1812u2

−0.9611u3 + 1.0025uxx − 0.9950ω
ωt = −0.001 000ω + 0.001 998u

1.0232% ± 1.3728%

Schrödinger’s equation No noise 10 000
ut = i0.3uxx + i3.3333u|u|2

−i3.3333u
0.0011% ± 0.0007%

With noise 10 000
ut = i0.3013uxx + i3.2946u|u|2

−i3.3186u
0.6788% ± 0.4183%

Navier–Stokes equation No noise 10 000
ωt(x, t) = 0.0101ωxx + 0.0100ωyy

−1.0014uωx − 0.9914vωy
0.3830% ± 0.3781%

With noise 20 000
ωt(x, t) = 0.0101ωxx + 0.0097ωyy

−0.9988uωx − 0.9996vωy
1.0306% ± 1.5734%
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FIG. 7. Flow field for 2D NS equation (4.1) on the torus depicted in time t = 6, t = 16, t = 32, and t = 80.

from the matrix, Ū: Ũ = 9A with 9 consisting of 33 POD modes
and the corresponding POD coefficients, A. Then, we reverse the
process such that snapshots, Ū, V̄, W̄ ∈ R

100×100×1001. The computed
RMSE is 0.0056 for u, 0.0051 for v, and 0.0412 for w. We pay spe-
cial attention to the Pade scheme. With the de-noised dataset, we
approximate the first-order derivatives in each grid point and then
we compute the second-order derivatives using the Pade scheme.
After we compute the dictionary matrix, we correctly discover the
NS equation as shown in Table III.

B. Comparison with SOTA methods on the

prototypical examples from PDE-FIND24

We further verify the proposed S3d method on the dataset orig-
inally collected in Ref. 24. Therein, these datasets are generated by
simulating the KdV equation with single- and double-soliton solu-
tions, the Burger’s equation, the Quantum Harmonic Oscillator, and
the nonlinear Schrödinger equation. Here, we neglect the simulation

details and refer readers to Ref. 24. Table IV shows the identified
results of applying the S3d method to the dataset. It can be seen
that the proposed S3d method is predominant for small sample and
obtains a better discovery of these PDEs in terms of a smaller para-
metric error. It is worthy noting that the dictionary matrices used
for all PDEs in Table IV are different from Table III. For instance,
the dictionary for the sine-Gordon equation is that

1, u, u2, u3, u4, ux, uxx, uxxx, uux, uuxx, uuxxx,

u2ux, u
2uxx, u

2uxxx, u
3ux, u

3uxx, u
3uxxx, u

4ux, u
4uxx,

u4uxxx, sin(u), cos(u), sin(u) cos(u), sin2(u), cos2(u),

which are constructed by any combination of the state, u(x, t),
the corresponding derivatives up to the third-order and the peri-
odic trigonometric functions. The dictionary constructed for the

TABLE IV. Comparison of identified results using PDE-FIND method and S3d method with the original dataset in Ref. 24.

Example S3d method PDE-FIND method

Identified results No. of samples MSE(err)-STD(err) No. of samples MSE(err)-STD(err)

Korteweg–de Vries (single-soliton)
ut = −4.9999ux(c = 5)
ut = −0.9997ux(c = 1)

750
0.0028% ± 0.0%
0.0303% ± 0.0%

12 800
0.3745% ± 0.0%
0.0820% ± 0.0%

ut = −6.0011uux − 1.0005uxxx 1500 0.0346% ± 0.0239% 25 600 2.5931% ± 1.3601%

Korteweg–de Vries (double-soliton)
ut = −5.9909uux − 0.9995uxxx 9000 0.0995% ± 0.0742% 102 912 0.9572% ± 0.2322%
ut = −5.9250uux − 0.9867uxxx 16 600 1.2894% ± 0.0548% 85 432 7.4727% ± 4.9306%

Burgers’ equation
ut = −0.9999uux + 0.1000uxx 2000 0.0051% ± 0.0054% 25 856 0.1595% ± 0.0608%
ut = −1.0011uux + 0.1001uxx 5000 0.0878% ± 0.0323% 19 116 1.9655% ± 1.0000%

Quantum harmonic oscillator

ut = 0.5000iuxx − 1.0000i
x2

2
u 2000 0.0090% ± 0.0082% 205 312 0.2486% ± 0.0128%

ut = 0.4996iuxx − 1.0005i
x2

2
u 2000 0.0693% ± 0.0269% 187 452 9.6889% ± 6.9705%

Nonlinear Schrödinger equation
ut = 0.4998iuxx + 1.0000i|u|2u 4500 0.0185% ± 0.0204% 256 512 0.0473% ± 0.0147%
ut = 0.5034iuxx + 0.9987i|u|2u 7200 0.4096% ± 0.3934% 236 652 3.0546% ± 1.2193%
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FitzHugh–Nagumo equation is that

1, u, u2, u3, u3u, ux, uxx, uxxx, uux, uuxx, uuxxx,

u2ux, u
2uxx, u

2uxxx, u
3ux, u

3uxx, u
3uxxx,

u4ux, u
4uxx, u

4uxxx, w, w2, wx, wwx, w
2wx,

which are constructed by any combination of the states, u(x, t) and
w(x, t), and the corresponding derivatives up to the third order. The
main difference between them is the number of states, the order of
derivatives, and the degree of polynomials. In our proposed method,
we always suggest that the constructed library is sufficiently large to
have a sparse representation of the dynamics underlying the dataset,
and the well-developed PDE theory can be integrated to add terms
with physical meaning, such as convection terms and dissipative
terms.

To understand the influence of the choice of dictionary matrix
on discovery results, consider the one-dimensional Schrödinger
equation with a cubic nonlinear term,

zt = izxx + iν|z|2z, (4.2)

where the Schrödinger operator izxx represents the advection (wave
propagation) and the cubic nonlinear term |z|2z with the dissipa-
tion coefficient ν represents the diffusion. The actual data fields
we analyze are the real representation and the imaginary one
of z, denoted by u(x, t) and v(x, t), respectively. Inserting z(x, t)
= u(x, t)+ iv(x, t) into (4.2), the dynamics of u(x, t) and v(x, t) are
described by

ut = −vxx − νv
(
u2 + v2

)
,

vt = uxx + νu
(
u2 + v2

)
,

which possess the traveling-wave solution with arbitrary constants
c1, c2

u(x, t) = c1 cos
(
x +

(
c2

1ν − 1
)

t + c2

)
,

v(x, t) = c1 sin
(
x +

(
c2

1ν − 1
)

t + c2

)
.

(4.3)

We take c1 = 5, ν = 0.1, c2 = 6. In Fig. 8, we display the evolution of
solution, where the uniform space grid possesses 512 elements and
the time interval is 4t = 0.003. By computation, one can prove that
the traveling-wave solution in (4.3) also satisfies

ut = −vxx − 25νv,

vt = uxx + 25νu.

We construct a dictionary consisting of 25 basis functions. The basis
functions include any combination of the state, u(x, t), and the cor-
responding derivatives up to the third order. By applying the S3d
algorithm to the data, the identified results are as follows:

ut = 0.75vxx − 0.75v,

vt = −0.75uxx + 0.75u.

It can be seen that our algorithm is prone to select the coefficients
minimizing the `1 norm. Further, if the true term uxx is not included
in the candidate terms, the identified results are

ut = −1.5v,

vt = 1.5u,

which demonstrates that our algorithm tends to select the parsimo-
nious model.

We further verify the robustness of our S3d algorithm by using
the Gaussian mixture noise and the noise that stems from an Orn-
stein–Uhlenbeck process proposed in Refs. 54 and 55 to construct
two new sets of noisy data. The Gaussian mixture noise obeys the

FIG. 8. Traveling solution of the Schrödinger equation (4.2).
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following distribution:

(1 − ξ)N
(
0, σ 2

)
+ ξN

(
0, κσ 2

)
,

where ξ = 0.5, σ = 1, and κ = 2. The magnitude of the noise is set
to 1%. We randomly sub-sample 10 000 data points from the domain
[−0.9940, 0.2209] × [2.56, 4.144]. Our algorithm correctly discov-
ers the nonlinear Schrodinger’s equation with an accuracy of MSE
= 0.6907%, STD = 0.4139%. The identified result is as follows:

ut = i0.3014uxx + i3.2944u|u|2 − i3.3184u.

The noise stemming from an Ornstein–Uhlenbeck process vio-
lates the i.i.d. Gaussian noise. We write the measurements with
added colored noise as

y
(
xj, ti

)
= u

(
xj, ti

)
+ ηj,i,

in which

ηj,i = ηj,i−1 + 1tθ
(
µ− ηj,i−1

)
+

√
1tε,

where 1t is the time stepsize, µ is the long-term expectation of
the mean of noise, θ indicates the desire for the noise to migrate
back toward the mean, and ε conforms to a normal distribution
N

(
0, σ 2

)
with standard deviation σ . We set ηj,1 = 0 at all spa-

tial grid points at t1, θ = 5, µ = 0, and σ = 0.01. We use the
same snapshots and the basis functions. The experiment shows that
our algorithm can correctly identify the nonlinear Schrödinger’s
equation from the data corrupted by the non-Gaussian noise. The
experimental result is presented as follows:

ut = i0.3000uxx + i3.2809u |u|2 − i3.3181u,

where mean = 0.6818%, STD = 0.8018%.

V. CONCLUSION AND DISCUSSION

This work proposes a framework to discover PDEs from exper-
imental observations and synthetic spatiotemporal data. The pro-
posed S3d method discovers the dynamics underlying a state of
traveling-wave convection from experimental data, i.e., the simplest
complex Ginzburg–Landau equations. Additionally, many canoni-
cal PDEs are also re-discovered from synthetic spatiotemporal data.
The merit of the proposed method is its ability to freely con-
struct a model class with candidate functions and to automatically
select the key ones that reproduce the observed spatiotemporal pat-
terns. Benefiting from sparsity, the inferred PDEs are parsimonious
and accurate, enabling interpretability. In the various examples, we
observe that we are additionally able to robustly handle different
types of noise and the measurement data with small sample size.
We expect the S3d method to be useful for the modeling of spa-
tiotemporal dynamics from experimental data. This framework, as
demonstrated through numerous examples, could potentially accel-
erate the discovery of new laws and stimulate physical explanations
for the discovered equations, which lead to the discovery of the
underlying mechanisms.

Although the dynamics we refer to in this work are Eulerian
dynamics described by PDEs, S3d, as a general method, is also able to
infer ODEs and static functional relations using datasets in Refs. 24
and 59. S3d unifies results for the discovery of natural laws.5,59 Future

work will focus on three important aspects of extension of our
method for a wider range of practical applications. First, the cur-
rently proposed method relies on estimating temporal and spatial
derivatives of the measured state variables from data, while there are
cases that the system variables are not necessarily observable. Sec-
ond, the current method can reconstruct equations that are linear
with respect to parameters. We will extend this proposed method to
the cases that are nonlinear in parameters. Finally, we assume that
the constructed library is sufficiently large to have a sparse repre-
sentation of the dynamics underlying the dataset. However, when
there is no any prior knowledge on the to-be-identified governing
equation, it is possible that the constructed library is insufficient. In
these cases, genetic symbolic regression works much better. We may
integrate genetic symbolic regression and the sparse regression into
a unified framework, which could overcome this limitation.
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APPENDIX: POLYNOMIAL APPROXIMATION

For noise-contaminated data, polynomial approximation is a
better choice to alleviate effects due to noise. With sampled data,
u(xj, ti), at time, ti, with j = 1, . . . , nx, we construct an approxi-

mation of the q-order derivative ∂qu(x,t)
∂xq by selecting the following

sequence of polynomials of degree p ∈ N
+ with q < p:

Lp(x) = a0 + a1x + a2x
2 + . . .+ apx

p,

subject to Lp(xj) = u(xj, ti). For example,

a0 + a1x1 + a2x
2
1 + . . .+ apx

p
1 = u(x1, ti),

a0 + a1x2 + a2x
2
2 + . . .+ apx

p
2 = u(x2, ti),

(A1)

. . . . . .

a0 + a1xnx + a2x
2
nx

+ . . .+ apx
p
nx

= u(xnx , ti).

Further, we write Eq. (A1) into matrix form and solve for parameters
using a QR factorization. Then, with u(x, ti) = Lp(x), we compute

the qth-order derivative, ∂
qu(x,t)
∂xq . We demonstrate in our experiment

that the error values caused by noise can be removed using poly-
nomial approximation, leading a closer-to-real estimation of the
derivative.
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