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Arctic weather variability and connectivity

Jun Meng1, Jingfang Fan 2,3 , Uma S. Bhatt 4,5 & Jürgen Kurths 3,4,5,6

The Arctic’s rapid sea ice decline may influence global weather patterns,
making the understanding of Arctic weather variability (WV) vital for accurate
weather forecasting and analyzing extreme weather events. Quantifying this
WVand its impacts under human-induced climate change remains a challenge.
Herewedevelop a complexity-based approach anddiscover a strong statistical
correlation between intraseasonal WV in the Arctic and the Arctic Oscillation.
Our findings highlight an increased variability in daily Arctic sea ice, attributed
to its decline accelerated by global warming. This weather instability can
influence broader regional patterns via atmospheric teleconnections, elevat-
ing risks to human activities and weather forecast predictability. Our analyses
reveal these teleconnections and a positive feedback loop between Arctic and
global weather instabilities, offering insights into how Arctic changes affect
global weather. This framework bridges complexity science, ArcticWV, and its
widespread implications.

Arctic sea ice is declining and thinning at an accelerating rate due to
anthropogenic climate change1,2. Theoverall warming trend is double
in the Arctic compared to the global average and is even higher in
some Arctic regions3 due to a phenomenon known as Arctic ampli-
fication (AA)4–8. Arctic sea ice conditions can affect the Arctic eco-
system, wildlife, hunting, shipping, natural resource exploration and
more9–11. As one crucial component of the complex Earth system12,13,
changes in Arctic sea ice are found to have statistically observable
and dynamic connections with regional and remote climatic
phenomena14–17 (as shown in Fig. 1) through both large-scale atmo-
spheric and oceanic circulations18–22. The rapid shrinking of the ice
cover has attracted much attention to the Arctic sea ice tele-
connections and predictions on seasonal-to-decadal time scales in
recent years23–26. However, our understanding of the Arctic sea ice
variability on weather time scales is still in its infancy27,28, despite the
importance that it has for weather forecasting, the safety of com-
mercial and subsistence maritime activities, the survival of polar
mammals and the benefit of polar economics. The impact of day-to-
day Arctic sea ice variations has been underestimated in most of the
climate models29. To resolve this knowledge gap, here we employ
complexity-based approaches and the climate network framework to
investigate the daily weather variability (WV) of Arctic sea ice and
assess its connections in relation to climate phenomena on different

spatiotemporal scales. This includes processes such as the Arctic
Oscillation (AO), climate change, andweather conditions both locally
and at remote locations.

Complexity science employs the mathematical representation
used by network science and provides a powerful tool to study the
structure, dynamics and function of complex systems30. The climate
system is a typical complex adaptive system due to its nonlinear
interactions and feedback loops between and within different layers
and components. In recent years, network science has been applied to
the climate system to construct the climate network (CN)31. The CN is
an innovative tool used to reveal andpredict various important climate
mechanisms and phenomena32, including forecasting of the El Niño
Southern Oscillation33,34, the Indian summer monsoon rainfall35,36, the
global pattern of extreme-rainfall37, the changes in the global-scale
tropical atmospheric circulation under global warming38, teleconnec-
tions among tipping elements in the Earth system39, the Indian Ocean
Dipole40 and other phenomena.

The AO is one of themajormodes of atmospheric circulation over
the mid-to-high latitudes of the Northern Hemisphere (NH)41, which
influences climate patterns in Eurasia, North America, Eastern Canada,
North Africa, and the Middle East, especially during boreal winter42–44.
The AO index is defined as the leading empirical orthogonal function
of NH sea level pressure (SLP) anomalies from latitudes 20°N to 90°N
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and is characterized by the shifting of atmospheric pressure between
the Arctic and the mid-latitudes.

During the positive AO phase, the SLP is below average in the
Arctic region and above average in the mid-latitudes. The jet stream
is zonal and shifts northward, accompanied by a poleward shift of
the storm tracks45. In line with these dynamics, our recent findings
demonstrate more rapid changes in sea ice and air temperature
within the NH’smid-to-high latitudes, as evidenced by a blue-shifted
frequency spectrum. This stands in contrast to the relatively stable
weather conditions observed in the further southern mid-latitudes,
which are characterized by a red-shifted spectrum. These patterns
diverge from those seen during the negative AO phase, which
exhibits higher-than-normal Arctic SLP. To quantify the blue-shift/
red-shift effect indicating increased/reducedWV and its geographic
distribution, here we introduce two innovative mathematical tech-
niques: the advancedweighted autocorrelation functionmethod, i.e.,
WACF and the advanced weighted power spectrum method, i.e., WPS

(see “Methods”).
By employing thesemethods, we are able to demonstrate that the

enhanced day-to-day variability in the ice cover across much of the
Arctic can be attributed to substantial declines in sea ice area46. This
has serious consequences, such as the increased risk of severeweather
due to climate change47–50. Further, it is also possible that changes in
the Arctic may have some role in affecting the likelihood of extreme
weather conditions globally, although this is subject to ongoing
research.

Finally, we statistically verify the existence of these teleconnec-
tions between Arctic sea ice and weather conditions in remote global
regions via a multivariate climate network framework. These tele-
connections can result in a positive WV feedback loop between the
Arctic and other global locations. This improves our understanding of
the mechanisms that link AA and mid-latitude weather51.

The presented results and methodology not only encourage a
quantitative assessment of the risks posed by extreme weather events

but also reveal the existenceof pathways that permit the interaction or
synchronization among regional and global climate components.
Unveiling the interconnections between different climatic elements
advances our understanding of climate dynamics and enhances the
potential predictability of the Earth’s climate system.

Results
Linkage of the weather variability and the AO
The WV refers to the irregularity/predictability of the climate data at
weather time scales (i.e., hours—days). There are various ways to
evaluate data variability/irregularity, such as entropy52–54, the detren-
ded fluctuation analysis55,56, correlation dimension57, Lyapunov expo-
nents analysis58, etc. However, most of them would be problematic,
biased or invalid when dealing with short and noisy data, like weather
data. The standard deviation (SD) is an effectivemetric for quantifying
the dispersion of data, but is not a good way to measure irregularity,
e.g., the SD of randomly shuffled data is the same as the original. In
addition, the autocorrelation function describes the speed at which
the self-similarity of a variable decays with time59, and power spectral
analysis60 allows us to discover periodicity within data. However, a
comprehensive evaluation of the autocorrelation and the power
spectrum, as well as their dynamic evolution for nonstationary climate
data, is still lacking.

Therefore, we present two mathematical methods, WACF and WPS

(refer to the “Methods” section for detailed explanations), to measure
the WV within and near the Arctic region on a monthly basis. These
methods are applied to the daily data spanning from 1979 to 2019.
These functions allowus toquantify thedynamicbehaviorof theArctic
WV spanning from January 1980 to December 2019. For a given time
series, the physical meaning of these metrics is as follows: higherWACF

values indicate a weaker short-term memory; while higher WPS values
suggest faster changes (high-frequency variations).

In particular, to better understand their physical interpretations,
we generate various nonlinear time series (illustrated in Fig. 2a) using

Fig. 1 | A visual representation of the importance of the Arctic system and its
interactions with the global climate system. a Schematic view of a climate net-
work. Links indicate interactions between different regional climate systems
around the globe. The golden links specifically represent teleconnections between
the Arctic and regions outside of the Arctic, indicating the influence and con-
nectivity of the Arctic with the rest of the world. b illustrates the complex Arctic
system, highlighting its various components, such as the cryosphere, biosphere,
hydrosphere, and atmosphere. These components interact with each other, and

changes in one component can trigger cascading effects and feedbacks in inter-
connected processes. The circular arrow suggests a positive feedback loop of
weather variability (WV) between the Arctic and the rest of the climate system. This
indicates that changes in WV in the Arctic can influence weather patterns and
climate dynamics in other regions and vice versa. The feedback loop emphasizes
the interconnected nature of the Earth’s climate system, where changes in one
component, such as ArcticWV, can have wide-ranging effects on the entire system.
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the following dynamical equations,

xt = cosð2πt=20Þ, ð1Þ

yt = cosð2πt=10Þ, ð2Þ

zxt =0:2xt +0:8ut , ð3Þ

zyt =0:2yt +0:8ut , ð4Þ

where t is measured in days and belongs to the interval [1000, 10000].
The function ut+1 = μut(1 − ut) represents a nonlinear logistic function,
where we have set the parameter μ = 3.8 and u0 = 0.01. This specific
parameter configuration results in the generation of chaotic
behavior61. Mathematically, Eqs. (1) and (2) are two periodic functions
but with periods of 20 days and 10 days, respectively. On the other
hand, Eqs. (3) and (4) consist of a combination of a periodic term and a
chaotic term (as shown in Fig. 2a).

Therefore, strictly speaking, the value ofWACF for zxt (z
y
t ) is higher

than xt (yt), indicating weaker short-term memory caused by the pre-
sence of the chaotic termut. The value ofWPS for yt (z

y
t ) is higher than xt

(yt), indicating faster changes attributed to the distinct periods of the

Fig. 2 | The influence of the Arctic Oscillation on Arctic weather variability.
a shows a set of nonlinear time series generated based on Eqs. (1–4). Auto-
correlation functions andweighted autocorrelation functionWACF values are shown
in (b), while power spectrum density and weighted power spectrumWPS values are
shown in (c). Correlations between the annual mean of the Arctic Oscillation (AO)
index and the WACF for Arctic sea ice are depicted in (d) and for WPS in (e). Nodes
with correlations significant at the 95% confidence level (Student’s t-test) are
markedwith “x". f compares the normalized power spectral density (PSD) of sea ice

for nodes marked with “x" in (e) during Jan. 1989 (positive AO phase, blue solid
lines) and Jan. 2010 (negative AO phase, red dashed lines). g The monthly and
annual AO index (pink solid and dashed lines, respectively) are plotted against the
monthly and annualWACF index (dark blue solid and dashed lines, respectively)
averaged over the nodesmarkedwith “x" in (d).h The relationship between the AO
and WACF indices is further illustrated through scatter plots of annual indices. The
correlation coefficient (r) between these two indices is 0.63, with a p-value of
5.5 × 10−6. Source data are provided as a Source Data file.
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periodic term. We analyzed 31 consecutive data points from each
sample, representing one month of climate data, using WACF and WPS

methods. The results presented in Fig. 2b, c support our theory,
demonstrating that WACF and WPS effectively describe the variability
(both disorder and frequency) of the given time series.

In this study, we assess theWVof Arctic sea iceby employingWACF

and WPS based on the sea ice extent dataset (daily data from 1979 to
2019, see “Data” section for details). The results of our analysis are
presented in Fig. 2d–h. The positive correlation coefficient r, repre-
sented by blue shading in Fig. 2d or e, suggests a positive correlation
between the annualmean of theWACF orWPS values with the AO index.
We observe that both WACF and WPS exhibit higher values, implying
faster and more irregular day-to-day changes in ice cover during the
AOpositive phases compared toAOnegative phases. This is particularly
true in certain Arctic regions such as the Canadian Archipelago,
Beaufort Sea, and Central Arctic. To illustrate the effect of the AO on
theWPS, we show that the power spectrum for Arctic sea ice during the
positive AO phase, e.g., Jan. 1989, is significantly blue-shifted com-
pared to the negative AOphase, e.g., Jan. 2010 (see Fig. 2f). Similarly, to
illustrate the effect of the AO on theWACF, we show that the time series
for the AO index and WACF are significantly synchronized during the
period 1980-2019 (as shown in Fig. 2g, h).Moreover, we reveal that the
climatic effects of the AO are more prominent in the winter-spring
seasons than in summer-autumn (see Supplementary Figs. S1 and S2).

The underlying physical mechanism can be attributed to the
characteristic atmospheric behavior of the AO and the close interac-
tions between the Arctic sea ice and the surface atmosphere. During
the positive phases of the AO, the northward shift of the jet streamand
the displacement of storm tracks to higher latitudes62 (as illustrated in
Supplementary Fig. S3) contribute to increased regional weather
variability in the mid-to-high latitudes of the Northern Hemisphere
(NH). Consequently, this leads to higher values ofWACF andWPS in the
air temperature data, as depicted in Fig. 3 and Supplementary Fig. S3.
Conversely, during negative AO phases, the Arctic region exhibits
lower values of WACF and WPS in air temperature, indicating higher
predictability of weather63,64. Simultaneously, in the mid-latitudes of
the NH, the WACF and WPS of air temperature increase with the occur-
rence of significant weather events such as cold events, frozen pre-
cipitation, and blocking days62. This occurs as the zonal wind weakens
during negative AO phases, as depicted in Fig. 3 and Supplemen-
tary Fig. S3.

In particular, as shown in Supplementary Fig. S4, we observe
notable connections between the AO andWVwithin specific regions of
the Southern Hemisphere (SH). These correlations between WV and
the AO in the SH are noteworthy due to their significant seasonal
fluctuations. A more detailed examination reveals a correspondence
between these correlations and the position of the jet stream. Areas
along the jet stream belt in the SH demonstrate significant correlation
coefficients, and these coefficients display a marked seasonal diver-
gence, especially between summer and winter. This pattern hints at a
mutual influence between the positions and strengths of the jet
streams in the northern and southern hemispheres, thereby under-
scoring the interconnectedness of atmospheric dynamics across
hemispheres and the global implications of the AO. Moreover, the
seasonality of these correlations emphasizes the importance of con-
sidering seasonal variations and their interaction with the AO when
assessing the impacts of this atmospheric phenomenon on weather
patterns.

Overall, the analysis of WACF and WPS provides an additional
quantitative approach to understanding the response of Arctic sea ice
and the atmosphere to the AO. This methodology can be utilized to
assess the riskof extremeevents in themid-to-high latitudes of theNH,
enhancing our understanding of the relationships between the AO,
weather variability, and the potential occurrence of extreme events in
these regions.

Increased irregularity of Arctic sea ice cover
Using the past four decades (1980–2019) of data, our analysis reveals
an evident upward trend in the weather variability linked to the day-
to-day changes in the ice cover within a substantial region of the
Arctic, with a specific concentration in andnear theCentral Arctic (see
Fig. 4b, c). This increasing trend is supported by a notable rise
observed in both theWACF andWPS values. Figure 4 demonstrates that
during this period, a significant proportion of Arctic nodes show a
significant increase in the values of WACF or WPS when comparing
values for the same months in earlier years (see Fig. 4a).

The observed increasing trend in WV can be attributed to two
main factors. First, advancements in remote sensing and data analysis
technology have led to improved data resolution and accuracy
throughout the observation record. Second, the rise in air temperature
has played a substantial role in the thinning of sea ice65, with the rapid
decline in multiyear ice cover being particularly influential in enhan-
cing WV levels. The multiyear sea ice has been defined as the ice that
survives at least one summer melt and represents the thick sea ice
cover, while the first-year ice refers to the ice that has only one year of
growth or less. Asmore perennial ice cover is replaced by younger and
thinner ice cover, the regional ice cover becomes more fragile and
vulnerable to fluctuations in air temperature or other forces46.

Supporting our findings, Supplementary Fig. S5 illustrates a sub-
stantial decline in sea ice thickness within the same period
(1980–2019) in regions exhibiting a significant enhancing trend ofWV.
To further examine the relationship between increased WV and
decreased multiyear sea ice cover in the Arctic, we conducted addi-
tional analysis (Supplementary Fig. S6). These results show that sub-
regions of the Arctic with no significant trends in ice cover thinning
also exhibit no significant trends in increasing weather variability.
However, in most regions experiencing significant trends of ice cover
thinning, there is a notable increase in weather variability. These
findings provide further evidence for the connection between declin-
ing thick perennial ice cover and heightened WV in the Arctic region.

Moreover, we observe a higher occurrence of significant trends
indicating enhanced instability during the melt season under global
warming, as shown in Fig. 4a. This is because during the melt season
(Apr.-Aug.), sea ice declines and fluctuates more dramatically than in
other seasons. The distinct variability in weather patterns across dif-
ferent calendar months suggests the presence of a predictability bar-
rier, particularly in June when both WAuto and WPS reach their peak
values. The enhanced weather variability during this period makes
weather prediction more challenging and less predictable. Addition-
ally, an intensification of summer Arctic storm activity is also antici-
pated as the land-sea thermal contrast increases under global
warming66–68. This could increase the WV in both the ocean and the
atmosphere.

Arctic-global teleconnection patterns
Next, we propose the multivariate climate network approach to sta-
tistically reveal the potential teleconnection patterns between Arctic
sea ice (Supplementary Fig. S7a) and the global air temperature field
(Supplementary Fig. S7b); see more details in “Methods”. Unlike tra-
ditional climate network approaches that focus on single climate
variables (see refs. 32,69 and references therein), our approach con-
structs climate networks with links connecting nodes in the Arctic
(Supplementary Fig. S7a) to nodes located elsewhere in the world
(Supplementary Fig. S7b). Each link in the network quantifies the
similarity of the temporal evolution between two different climate
variables: Arctic sea ice and global air temperature. The statistical
significance of each link is determined through a comparison with the
null model (refer to “Methods” for specifics).

By applying the multivariate climate network, we are able to
detect significant synchronizations between Arctic sea ice and global
air temperature variations. In Fig. 5a, a typical link is observed,
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indicating a strong synchronization between the daily sea ice cover for
one Arctic node and the air temperature for another remote global
node during December 2018 (the corresponding time series are
depicted in Supplementary Fig. S8). Specifically, Supplementary
Fig. S8 illustrates that temperature changes at the node located in the
Sichuan Province of Southwest China (30°N, 105°E) precede variations
in sea ice at the Arctic node (77.5°N, 160°E) by a span of five days. This
indicates that the evolution of air temperature in Southwest China can
influence Arctic sea ice anomalies. To gain deeper insights into the
relationship between sea ice and distant air temperature variability, we

utilize the shortest path method (see “Methods” for more details) to
identify the most likely teleconnection propagation path.

We discover a potential propagation path for this teleconnection,
depicted in orange in Fig. 5a, which corresponds to negative wind
anomalies from Southwest China to the Arctic. Additionally, we con-
sider the feedback in the opposite direction. However, we observe a
relatively weaker connection, specifically following a straight line from
the Arctic to Southwest China via Eastern Russia andMongolia. From a
meteorological perspective, our analysis is highly consistent with wind
climatology (refer to thebackground information in Fig. 5a). These two

Fig. 3 | Relationships between the Arctic Oscillation (AO) and weather varia-
bility. a and b show correlation maps between the annual mean of the AO index
and weighted autocorrelation functionWACF values for air temperature at the 850
hPa pressure level from 1980 to 2019. Similarly, c and d display the correlation

maps for theweighted power spectrumWPS. The “x" in each panel indicates regions
with correlations significant at the 95% confidence level (Student’s t-test). The color
bar represents the cross-correlation coefficients, denoted as r. Source data are
provided as a Source Data file.
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propagation paths form an interactive loop that suggests a large-scale
atmospheric WV feedback between the Arctic and Southwest China.

Remarkably, we have identified similar propagation paths in other
months, such as February 1998 (Fig. 5b and Supplementary Fig. S9). To
further substantiate the robustnessof this feedback loop,we construct
climate networks based on the similarity between Arctic and global air
temperature variations during longer time durations. Specifically, we

analyze time series spanning the past 40 years (1980–2019) (as shown
in Fig. 5c), as well as time series spanning themost recent 30, 20, or 10
years (as illustrated in Supplementary Fig. S10a–c). Strikingly, these
extended time series analyses consistently reveal that the propagation
paths exhibit similar patterns akin to those observed during individual
months. In particular, we observe a negative anomalous wind flow
from Southwest China to the Arctic, followed by a nearly straight-line

Fig. 5 | Visualization of the propagation pathway of teleconnection in the cli-
mate network. a illustrates the teleconnection pathway (dashed curves with
arrows) between an Arctic node (77.5°N, 160°E) and a global node at (30°N, 105°E)
in SouthwestChina, asobserved inDecember 2018.bdepicts the samepathwaybut
for the month of February 1998. c presents the same teleconnection, but spans a
longer period, covering the recent 40 years (1980–2019). The colors and white

arrows represent themagnitudes and directions of the 500 hPa winds on a specific
day within the network period in (a) and (b), while in (c), they represent the tem-
poral averageover the recent 40 years. Panelsd–f showcase analogous information
as (a–c), but for another teleconnection link between California, United States
(35°N, 115°W) and the Arctic (87.5°N, 165°W). Source data are provided as a Source
Data file.

Fig. 4 |Weather variability of Arctic daily sea ice cover in June. a shows the ratio
of nodes with statistically significant increasing trends in weighted autocorrelation
function WACF (gray) and weighted power spectrum WPS (purple) for each month,
overlaid with areas of at least 15% ice cover (blue) from 1980 to 2019. The weather
variability is quantified on a monthly basis using the daily data from 1979 to 2019.

b and c display changes per decade as multiples of one standard deviation (σ) for
WACF andWPSof Arctic nodes in June. The “x" in panels (b) and (c) represent regions
with significant trends at the 95%confidence level (Student’s t-test). Source data are
provided as a Source Data file.
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path from the Arctic back to Southwest China, thereby forming a
feedback loop. This consistency across different time spans under-
scores the robust nature of these teleconnections between the Arctic
and Southwest China, as they closely follow large-scale atmospheric
circulation patterns.

Moreover, we observe another notable teleconnection (California
and Arctic) as depicted in Fig. 5d–f. This teleconnection pathway,
similar to thepreviousoneobservedbetweenSouthwestChina and the
Arctic, is characterized by negative zonal wind anomalies, indicating
that fluctuations in air temperature in California can influence Arctic
sea ice. Conversely, changes in Arctic sea ice can also impact tem-
perature fluctuations in California, albeit to a lesser extent, along
upper wind routes in the opposite direction (more details are shown in
Supplementary Fig. S11). The teleconnection path between the Arctic
and California, as depicted in Fig. 5d for March 2019, demonstrates
similar patterns in othermonths, such as January 2000 (see Fig. 5e and
Supplementary Fig. S12). These patterns remain consistent throughout
the time spans of the past 40 years (see Fig. 5f), aswell as 30, 20, and 10
years (Supplementary Fig. S10d–f). These teleconnections persist
across different time periods and reinforce the potential for Arctic sea
ice decline to contribute to droughts and wildfires in California70.

The synchronization of day-to-day weather between the Arctic
and other regions can favor positive feedbacks in WV, whereby an
increase in WV/instability of Arctic sea ice may amplify the risk of
extreme weather conditions in distant global regions. Conversely,
impacts from global regions can also induce unstable weather condi-
tions in the Arctic. These mutual interactions emphasize the potential
for cascading effects within the Earth’s climate system, where changes
in one region can amplify weather variability and contribute to con-
sequential weather events in remote areas.

Discussion
In summary, we have introducedmathematical methods, namelyWACF

andWPS, as tools to quantify the changes of WV in climate data. These
methods allow us to analyze the temporal variations and irregularities
in WV, providing insights into the short-term dynamics of this impor-
tant climate variable. By applying these methods, we have identified
the significant influence of the AO on day-to-day changes in Arctic sea
ice and WV in mid-to-high latitude regions of the NH. This influence is
attributed to shifts in the location of the jet stream and storm-steering
associated with different phases of the AO. Furthermore, our analysis
reveals that over the past 40 years, the variability of Arctic sea ice on
weather time scales has increased, partially attributable to the melting
of thick perennial sea ice. This finding underscores both the profound
impact of climate change and the role of internal climate variability on
the Arctic region71,72.

To analyze the teleconnections of Arctic weather, we have con-
structed multivariable climate networks that connect Arctic sea ice
with the global air temperature field. By employing the shortest path
method, we have identified teleconnection paths and positive feed-
back loops of WV. In particular, a more meandering jet stream has the
potential to enhance the interchange of airmasses between higher and
lower latitudes, thereby establishing a connection between the Arctic
and lower latitudes73–77. The reduced stability of Arctic sea ice can lead
to unstable weather conditions and reduce the accuracy of weather
forecasts78 globally via Arctic-global teleconnection feedback loops.

Positive feedback loops are central to our understanding of cli-
mate systems as they can either amplify or reduce the impact of a
particular climatic phenomenon, leading to potentially larger changes
in the global climate. Our findings provide valuable insights into the
physical mechanisms linking the Arctic Amplification (AA) and the
global climate system. They also highlight the significant global
impacts of Arctic WV on human and natural systems, particularly
under climate change conditions6,51.

The Arctic region plays a crucial role as a barometer of global
climate change, and the ongoing loss of Arctic sea ice is approaching a
tipping point with far-reaching implications for Earth’s climate79. In
addition to its immediate utility in analyzing WV dynamics and asses-
sing global impacts, our framework can be applied to studying the
synchronicity of connectivity among remote global regions, forecast-
ing sea ice conditions, and assessing systemic risks associated with
complex subsystem interdependencies. This has important implica-
tions for systemic risk-informed global governance.

Overall, our research enriches the understanding of the dynamic
interactions between the Arctic and the global climate system and
highlights the need for comprehensive strategies to address the
impacts of Arctic changes on a global scale.

Methods
Data
This study primarily utilizes two variables: the daily sea ice cover and
the air temperature at the 850hPa pressure level at 0 hr (UTC). The sea
ice cover refers to the fraction of a gridbox that is covered by sea ice. It
provides informationon the extent of sea icewithin each grid box. The
air temperature at the 850 hPa pressure level represents the atmo-
spheric temperature at a specific vertical level above the Earth’s sur-
face. This pressure level is chosenbecause it is just above the boundary
layer,whichhelps avoid direct interactions between the sea ice and the
surface atmosphere26. These data were extracted from the ERA5 rea-
nalysis datasets, which can be obtained from the European Centre for
Medium-Range Weather Forecasts (ECMWF) website80. The spatial
resolution of the data is 2.5° in both the zonal (latitude) andmeridional
(longitude) directions.

To ensure global coverage, we selected a total of 8040 grids from
the air temperature datasets, distributing them approximately equally
across the globe (refer to Supplementary Fig. S7b for further details).
Within these selected grids, we identified 377 grids located in the
Arctic regionover the ocean,which exhibited nonzero sea ice cover for
at least one day (refer to Supplementary Fig. S7a for visualization). For
each calendar year y and for each grid point, we calculated the
anomalous value for each calendar day t by subtracting the original
value from the corresponding climatological average and then divid-
ing by the climatological standard deviation. The calculations for the
climatological average and standard deviation were based on data
spanning the period from 1979 to 2019. Leap days were excluded to
maintain consistency in the calendar year duration and simplify the
analysis.

The wind data at 500 hPa pressure level was extracted from ERA5
reanalysis datasets, with a temporal resolution of daily and monthly.

The AO index data was obtained from the following URL: https://
www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/
monthly.ao.index.b50.current.ascii [Accessed in Sep. 2021].

The Arctic Sea Ice extent, sourced from the National Snow and Ice
Data Center (NSIDC) and depicted as the blue curve in Fig. 4a, was
acquired from the URL: https://nsidc.org/data/g02135/versions/3
[Accessed in Jan. 2021]. The Sea Ice extent data product is based on
gridded fields of sea ice concentration data derived from passive
microwave radiometers and is commonly used for monitoring and
analyzing changes in Arctic sea ice extent over time81.

The dataset used to analyze the thinning of ice cover in the Arctic
is sourced from NSIDC and obtained from the URL: https://nsidc.org/
data/nsidc-0611/versions/4. It provides weekly estimates of sea ice age
for the Arctic Ocean, which are derived from remotely sensed sea ice
motion and sea ice extent. The dataset covers the time period from
January 1984 to December 2021, with a spatial resolution of 12.5 km by
12.5 km. In our analysis, the ratio of thin ice cover refers to the fraction
of the area within a specific Arctic sub-region (as illustrated in Sup-
plementary Fig. S6) that is covered by first-year ice or has a sea ice
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concentration of less than 15%. A rising proportion of thin ice signifies
the melting of the Arctic’s ice cover under global warming.

Assessing weather variability
The autocorrelation function (ACF) is widely used to measure the
memory of a time series and reveals how the correlation between any
two values of the signal changes as their time lag59. For a given time
series denoted as xt, the ACF is defined as follows:

CðτÞ= Cov xt,xt + τ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xt

� �
Var xt+ τ

� �q , ð5Þ

where Cov(X,Y) = E[(X − E[X])(Y − E[Y])] and Var(X) = E[X2] − E[X]2. If xt
is completely uncorrelated, for example, a white noise process, C(τ) is
zero at all lags except a value of unity at lag zero (τ = 0). A correlated
process, on the other hand, has nonzero values at lags other than zero,
which indicates a correlation betweendifferent laggedobservations. In
particular, the short-range memory of xt is described by C(τ), which
declines exponentially

CðτÞ∼ exp �τ=τ*
� �

, ð6Þ

with a characteristic time scale, τ*. For long-range memory, C(τ)
declines as a power-law

CðτÞ / τ�γ, ð7Þ

with an exponent0 < γ < 1. However, a direct calculationofC(τ), τ* and γ
is usually not appropriate due to noise superimposed on the collected
data xt anddue tounderlying trends of unknownorigin82. Toovercome
these challenges, we propose an advanced weighted autocorrelation
function, WACF, to quantify the memory strength, encompassing both
short and long-range correlations in the time series. It is defined as
follows:

WACF =
max jCðτÞjð Þ � mean jCðτÞjð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var jCðτÞjð Þ
p � 1� mean jCðτÞjð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var jCðτÞjð Þ
p : ð8Þ

Here, max(∣C(τ)∣) and mean(∣C(τ)∣) represent the maximum and mean
values of the absolute autocorrelation function ∣C(τ)∣, respectively. τ
belongs to the interval [ − τmax, τmax], which represents the range of
time lags considered. In the present work, we consider a maximum
time lag of τmax = 10 days since we are considering the day-to-day
changes in data at the time scale ofweather forecasting, i.e., within two
weeks. Equation (8) describes the fluctuations of the ACF, and its
values reveal the strength of memory, i.e., a higher (smaller) WACF

indicates a weaker (stronger) correlation and results in a weak (strong)
memory. For example, white noise has a maximum value

WACF = ð2τmax + 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τmax

2τmax + 1

q
. Other examples are described in Fig. 2.

An essential advantage of our method is that it captures the
memory strength of the data and provides a robust measure of irre-
gularity, even with limited data points. In contrast, many other meth-
ods, such as entropy-based measures and detrended fluctuation
analysis (DFA), suffer from reduced accuracy or validity when applied
to shorter time series. This aspect makes our method particularly
advantageous in situations where data availability is limited, enabling
meaningful analysis and assessment of irregularity despite the shorter
time series. This also enables the examination of how irregularity
evolves and changes over time, uncovering potential trends or pat-
terns in the data. Another significant advancement of ourmethod is its
ability to address problematic nonstationarities.

To demonstrate the effectiveness of the WACF method in elim-
inating the influence of data length and nonstationarity, we apply

our method to artificial model data with known properties, the
MIX(p) stochastic processes52 and the Logistic map. The MIX(p)
time series, with p ranging between 0 and 1, can be informally
described as a sine wave with random noise, where N × p randomly
selected points are replaced with random noise values. This sub-
stitution introduces irregularity, which escalates as the p increases.
On the other hand, the irregularity of a Logistic map, given by the
equation x(t+1) = μxt(1 − xt), is controlled by the parameter μ. Both
the MIX(p) time series and the Logistic maps provide controlled
parameters to adjust the level of irregularity, allowing for a sys-
tematic evaluation of the performance of the WACF method across
different irregularity levels.

Subsequently, we calculated the WACF for time series of varying
lengths (i.e.,N = 30 and 100) and different types of trends. Specifically,
we generated multiple sets of MIX(p) time series and logistic maps, to
which we added strong monotonous trends (1000tb) with varying
power b = 1/2, 1 and 2, or oscillatory trends (10 sinð2πtf Þ) with different
frequencies f = 1/500 and 1/1000, following the approach outlined in
ref. 82. The results, as depicted in Supplementary Fig. S13, clearly
illustrate that the WACF accurately reflects the irregularity of the data,
regardless of strong and slow (monotonic or periodic) trends being
superimposed on the raw data. This substantiates the robustness and
reliability of our method in managing nonstationarities and capturing
the inherent data irregularity.

Additionally, our approach remains effective even for shorter data
series with N = 30, enabling us to capture and scrutinize patterns of
variability effectively. By partitioning the time series into smaller
portions, we gain the ability to monitor shifts in data variability over
time. This process affords us valuable insight into the dynamic nature
of the systemunder investigation.However, it is important to note that
the shortest length that makes the WACF method valid may vary for
different real-world systems, depending on the intrinsic characteristics
of the systemunder study. It is therefore essential to carefully consider
the specific properties and dynamics of the data when determining the
appropriate segment length for analysis.

The advanced autocorrelation function WACF sufficiently
quantifies the memory for an arbitrary time series but does not
reveal any information about the frequency content. For example,
Eqs. (1) and (2) are two functions with different periods. TheirWACF

values are almost the same, as shown in Fig. 2. To fill this gap, we
further develop an advanced power spectrum (PS) method. Based
on Welch’s method83, we define the advanced weighted power
spectral density WPS as,

WPS =
Z

f
Pðf Þ× f df , ð9Þ

where P(f) is the normalized spectral density and f stands for the cor-
responding frequency, which can be obtained by Fourier transform.
WPS is indeed the weighted mean of f and thus has the same unit as
frequency. Notably, a relatively higher value of the WPS indicates a
larger ratio of the high-frequency components (i.e., blue shift), see
examples shown in Fig. 2.

Climate networks
Unlike the classical climate network, which only uses single node
classification, see refs. 32,84 and references therein, here, we define
two types of nodes: global nodes i with the air temperature variable
Ti(t) and Arctic nodes j with the Arctic sea ice cover variable Ij(t). We
thus have 8040global nodes (as shown in Supplementary Fig. S7b) and
377 Arctic nodes (as shown in Supplementary Fig. S7a).

We constructed a multivariate climate network for each month
from Jan. 1980 to Dec. 2019. To obtain the strength of the links
between each pair of nodes i and j, we computed, for each month m,
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the time-delayed, cross-correlation function

Cm
i, jðτÞ=

Tm
i ðtÞImj ðt � τÞ

D E
� Tm

i ðtÞ
� �

Imj ðt � τÞ
D E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðTm

i ðtÞÞVar ðImj ðt � τÞÞ
q , ð10Þ

and

Cm
i, jð�τÞ=

Tm
i ðt � τÞImj ðtÞ

D E
� Tm

i ðt � τÞ� �
Imj ðtÞ

D E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðTm

i ðt � τÞÞVar ðImj ðtÞÞ
q , ð11Þ

where the bracket 〈 〉 denotes an average over consecutive days during
a givenmonthm, and τ∈ [0, τmax] is the time lag. Sincewemainly focus
on the dynamic WV in the Arctic, here we chose the maximal time lag
τmax = 20 days for Eqs. (10) and (11).

We identified the time lag θ at which the absolute value of the
cross-correlation function jCm

i, jðτÞj reached itsmaximum. Theweightof
link (i, j)m was defined as the corresponding value of the cross-
correlation function, i.e., Cm

i, j =C
m
i, jðτ =θÞ. Therefore, the weight of each

link could be either positive or negative, but with the maximum
absolute value. The sign of θ indicates the direction of each link; that is,
when the time lag is positive θ>0ð Þ, thedirection of this link is from j to
i, and vice versa85.

Next, we investigated the statistical significance of the link
weights in the real networks by comparing them to the shuffled sur-
rogate networks. In the surrogate networks, we calculated the link
weights by utilizing two data segments, each consisting of 30 con-
secutive days. These segments were randomly selected from the per-
iod between Jan. 1980 andDec. 2019. The purposeof this selectionwas
to ensure that there were no actual correlations between the nodes in
the temporal dimension.

We constructed 100 surrogate networks using this strategy and
established a significance threshold, denoted as q, for each link. This
threshold for a specific link was determined as the 95th percentile of
the absolute weights for the same link in the surrogate networks. For
the real network, specifically for a particularmonthm, we classified the
link (i, j)m as significant if its weight exceeded q or fell below −q.
Mathematically, this can be represented as jCm

i, j j>q.
Constructing climate networks spanning longer time spans

involves calculating time-delayed cross-correlation functions (Eqs.
(10) and (11)) between pairs of nodes using data records ranging
from 10 to 40 years. To assess the significance of the links con-
necting Arctic nodes to global nodes, null model is created by
shuffling the order of years in the original climate data. This
approach allows for the examination of long-term relationships
between climate variables and the identification of robust connec-
tions between the Arctic and the globe.

Teleconnection path mining
To identify the teleconnectionpath,we apply the shortest pathmethod
to complex networks tofind theoptimalpaths in our climate networks.
A path is a sequence of nodes in which each node is adjacent to the
next one, in particular, in a directed network, the path can follow only
one direction. Here, our climate network is based on only one climate
variable—air temperature at the 850 hPa pressure level, and we select
726 nodes from the 10,512 nodes36,39. This selection ismade tomanage
computational complexity. For each climate network link (i, j)m, we
define its cost function value as

Em
i, j =

1
jCm

i, j j
: ð12Þ

The Dijkstra algorithm86 was used to determine the directed optimal
path between a source node i and a sink node j with the following

constraints39,87: (1) the distance for each step is limited to less than
1000 km. However, should we fail to identify a path, the distance is
then adjusted to 1500 km; (2) the link time delay θ ≥0, ensuring that all
steps have the same direction; (3) the sum cost function value for all
collection of links through path i⟶ j is minimal. In this way, we
identify the optimal paths that information/energy/matter follow in
two-dimensional space.

Data availability
The ERA5 reanalysis data used here are publicly available at: https://
cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-
levels. The Arctic Oscillation data used here are publicly available at:
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_
index/monthly.ao.index.b50.current.ascii. The Arctic Sea Ice extent
data used here are publicly available at: https://nsidc.org/data/g02135/
versions/3 and https://nsidc.org/data/nsidc-0611/versions/4. All other
data that support the plots within this paper and other findings are
provided as a Source Data file and in a Zenodo repository88.

Code availability
The analysis codes used in this study havebeen deposited in Zenodo88.
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