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Abstract
Amid a heated debate on what are possible and what are plausible climate futures, ascer-
taining evident changes that are attributable to historical climate change can provide a clear 
understanding of how warmer climates will shape our future habitability. Hence, we detect 
changes in the streamflow simulated using three different datasets for the historical period 
(1901–2019) and analyze whether these changes can be attributed to observed climate 
change. For this, we first calibrate and validate the Soil and Water Integrated Model and 
then force it with factual (observed) and counterfactual (baseline) climates presented in 
the Inter-Sectoral Impact Model Intercomparison Project Phase 3a protocol. We assessed 
the differences in simulated streamflow driven by the factual and counterfactual climates 
by comparing their trend changes ascertained using the Modified Mann–Kendall test on 
monthly, seasonal, and annual timescales. In contrast to no trend for counterfactual climate, 
our results suggest that mean annual streamflow under factual climate features statisti-
cally significant decreasing trends, which are − 5.6, − 3.9, and − 1.9 m3s−1 for the 20CRv3-
w5e5, 20CRv3, and GSWP3-w5e5 datasets, respectively. Such trends, which are more pro-
nounced after the 1960s, for summer, and for high flows can be attributed to the weakening 
of the monsoonal precipitation regime in the factual climate. Further, discharge volumes in 
the recent factual climate dropped compared to the early twentieth-century climate, espe-
cially prominently during summer and mainly for high flows whereas earlier shifts found 
in the center of volume timings are due to early shifts in the nival regime. These find-
ings clearly suggest a critical role of monsoonal precipitation in disrupting the hydrological 
regime of the Jhelum River basin in the future.
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1  Introduction

The future climate is uncertain as we are not sure how the responsible factors will 
evolve and whether the Earth System will follow a more plausible pathway out of infi-
nite possibilities. In contrast, we are sure about changes that are evident in the system 
and can be detected through evaluating historical observations. However, these detected 
changes need to be attributed to the responsible factors. Such attribution can indicate 
how much disruption in the system is solely caused by any single factor, such as cli-
mate change, and which system component is most sensitive to it. The Working Group 
II (WGII) of the IPCC describes that climate change impact is “detected” if a natural 
or human system has changed relative to the counterfactual (system’s behavior without 
climate change) baseline scenario (IPCC 2014, chap. 18.2.1), whereas “attribution” elu-
cidates the contribution of climate change to the observed change in a system. Accord-
ing to these definitions, we can attribute a particular detected change in natural, human, 
or managed system to climate change if we compare the observed state of our system to 
that of the baseline or the reference state that features no change in climate.

Since the Fourth Assessment Report (AR4), there has been a growing consensus that 
recent climate change has impacted the overall natural and human systems and that the 
hydrological cycle has gone through serious alterations, which are distinct on global, 
regional, and local scales (Khattak et al. 2011). Since the economic progress of a region 
is highly dependent upon hydrological processes, their changes under climate change 
may affect socioeconomic development across the globe. This is particularly true for 
the irrigated agrarian economies, such as Pakistan, where shrinking frozen water res-
ervoirs and altering precipitation patterns under climate change are already affecting 
the glacial, nival, and pluvial regimes, transforming the overall hydrological system, 
and subsequently the water yield and its seasonality. For instance, the water availability 
over the 1951–2005 period has been abridged from 5000 to 1100 m3 per capita per year 
making the country highly water-stressed (WWF 2007). As climate change will exacer-
bate existing water resource management problems in the future, it is timely to investi-
gate which changes can be attributed to climate change and which system components 
are most sensitive to support policymakers in devising efficient action plans to enhance 
resilience and mitigate future risks.

Hardly few studies explored to which extent the observed changes in the hydrologi-
cal cycle are attributable to climate change or how the hydrological cycle would look 
should the climate remain stationary, particularly at the regional scale. For instance, 
Wei et  al. (2022), Zhao et  al. (2023), Xu et  al. (2022), and Mondal and Mujumdar 
(2012) have attributed decreasing streamflow of the Han River, Danjiang River, Weihe 
River, and Mahanadi River basins to climate change, respectively. Similarly, Ahmed 
et al. (2022) and Luo et al. (2016) attributed the increasing streamflow of the Yangtze 
River Source Region and the Heihe River to climate change, respectively. These studies 
suggest that although changes in the hydrological systems are distinct, they are caused 
solely by observed climate change.

Pakistan is one of the least contributors to greenhouse gas emissions yet one of 
the most affected countries in the world (Government of Pakistan 2021). Besides this 
fact, studies mainly focused on analyzing historical changes and future projections 
of the water availability in Pakistan (Hasson 2016; Hasson et al. 2019). Yet, no study 
has attributed observed changes in the country’s water resources to historical cli-
mate change for any watershed, including the Jhelum River basin (JRB), which feeds 
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Pakistan’s second largest reservoir of Mangla for irrigation and hydropower generation, 
and in turn, plays a significant role in the socioeconomic development of the country.

Hence, following the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) 
framework’s 3a protocol (https://​www.​isimip.​org/), we first set up and evaluate the Soil and 
Water Integrated Model (SWIM) for the transboundary JRB and then detect changes in the 
simulated discharge and analyze whether such changes can be attributed to climate change. 
For impact attribution, we force the validated SWIM model with the long-term datasets of 
both factual (reanalysis, corresponding to observed) and counterfactual (no climate change 
baseline) climates provided by the ISIMIP-3a protocol, and then, we compare the simu-
lated discharges under factual climate with those under counterfactual climate. We com-
pare the simulated discharges for quantitative changes, such as their trends in annual mean, 
median, minimum, and maximum discharges, their 10th, 25th, 75th, and 90th percentiles, and 
for qualitative changes, such as overall hydrograph alteration, and changes in the center of 
timings.

2 � Study area

The JRB is a sub-basin of the Indus basin. It is located within the western Himalayas, 
between 73°–75.62°E and 33°–35°N (Fig. 1). With an elevation range of 438–6111 masl, 
the basin is around 26,426 km2 in area, 56% of which belongs to India and the rest to Paki-
stan. The Jhelum River originates from the northwestern slopes of the Pir Punjal mountains 
and feeds the Mangla reservoir, which is the second largest reservoir in Pakistan after the 

Fig. 1   Study area of the transboundary Jhelum River basin (JRB), western Himalaya 

https://www.isimip.org/
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Tarbela. Commissioned in 1967 with a storage capacity of 5.88 Million Acre Feet (Kayani 
2012), the Mangla reservoir regulates irrigated waters for around six million hectares and 
generates hydropower of around 1000 MW (Archer and Fowler 2008).

The JRB is located at the extreme margins of two prevailing precipitation regimes that 
are associated with two distinct modes of large-scale circulation, such as the South Asian 
summer monsoon and the westerly disturbances (Hasson et al. 2013; Hasson et al. 2016) . 
Hence, the hydrological cycle of JRB is nourished by the monsoonal precipitation regime 
between July and September and by the westerly precipitation for the rest of the year, 
both contributing 62% and 38% of around 1200  mm mean annual precipitation, respec-
tively (Mahmood and Babel 2013). Elevated areas receive moisture in the form of snow, 
mainly from the westerly precipitation, whereas lower valleys mostly receive monsoonal 
rainfall (Hasson et al. 2017). During winter, around 65% of the basin area is covered by 
snow, which reduces to around 3% in summer (Hasson et al. 2013; Azmat et al. 2018). Gla-
ciers cover only around 200 km2 of the basin area. The mean annual temperature is around 
13.72 °C.

The overall hydrological regime of the basin is dominated by snowmelt and rainfall 
runoff. The high flow period spans from March to September, which starts with the melt-
ing of snow in March and extends with heavy monsoonal rains between July and Septem-
ber. Annual average streamflow at the Azad Pattan gauging site (33.73°N and 73.60°E), 
upstream of the Mangla reservoir, is around 829 m3s−1, which constitutes around 16% of 
the total water availability in Pakistan. In the JRB, two hydroelectric power projects, URI-
II and Kishenganga, were recently commissioned in 2014 and 2018, respectively. Hence, 
these projects had little effect on the JRB’s discharge dynamics for the studied period.

3 � Dataset

3.1 � Hydro‑climatic datasets

We obtained observed daily mean, maximum, and minimum temperatures (tas, tasmax, 
tasmin in °C), surface downwelling shortwave radiation (rsds in Wm−2), relative humid-
ity (hurs in %), and precipitation (pr in mm) from three different datasets for factual and 
counterfactual climates. The details regarding these datasets are added to the supplemen-
tary material (SM). These datasets have been prepared at a half-a-degree resolution and 
included in the ISIMIP-3a protocol (SM, Table A1). The factual climate corresponds to 
the observed climate, which is represented by the reanalysis data whereas the counter-
factual climate is the baseline from which the climate change signal has been removed. 
We used the counterfactual climate prepared using the ATTRICI (ATTRIbuting Climate 
Impacts) method described in Mengel et al. (2021). By assuming a smooth annual cycle of 
the associated scaling coefficients for each day of the year, the ATTRICI method eliminates 
solely the long-term regional trends in the observed daily climatic variables that are corre-
lated to the fluctuations in the global mean temperature, instead of time (Lange 2019). The 
ATTRICI approach however retains the short-term natural climate variability caused by 
events like the El-Nino-Southern Oscillation and ensures that both factual and counterfac-
tual data for a given day have identical ranks in their corresponding statistical distributions. 
For calibration and validation of the SWIM model, observed daily discharges for the period 
1994–2004 were obtained from the Surface Water Hydrology Project (SWHP) of the Water 
and Power Development Authority (WAPDA) of Pakistan.
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3.2 � Physiographic datasets

The SWIM model considers basin at three level disaggregation scheme: basin-subbasins-
hydrotopes (HRU), where HRUs are unique combinations of soil and LULC within sub-
basins. For basin delineation and topographical properties, we employed a one-arc second 
Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM) 
(https://​earth​explo​rer.​usgs.​gov/), provided by the United States Geological Survey (Farr 
et al. 2007). The LULC features were taken from the GlobCover global land cover map for 
the year 2009, generated at 300-m planar resolution based on the imagery of the MERIS 
sensor on board the ENVISAT satellite (Arino et al. 2010). The GlobCover land use classi-
fication was translated into 15 land cover classes adopted by the SWIM. The soil data were 
acquired from the Harmonized World Soil Database (HWSD), available at a one-kilometer 
spatial resolution (Fischer et al. 2008). Glacier ice thickness was taken from the Randolph 
Glacier Inventory version 6.0 (RGI Consortium 2017) prepared by Farinotti et al. (2019).

4 � Methods

The present study exclusively focuses on the ISIMIP-3a protocol. According to the guide-
lines provided in the IPCC AR5 Working Group II, Chapter 18, the ISIMIP-3a component 
of the third-round framework focuses on both the evaluation and improvement of impact 
models as well as on the detection and attribution of observed impacts. For evaluation and 
improvement, we set up the SWIM hydrological model over the JRB and calibrated and 
validated it against the observed daily discharge over the 1994–2004 period. We objec-
tively selected the calibration period of 1999–2004 as it included a severe drought in Paki-
stan. This helped in the robust calibration of the snowmelt regime. The model performance 
was assessed against multiple criteria. The adopted methodology is explained in Fig. 2.

The simulated flows under both factual and counterfactual climates were compared 
against each other for quantitative changes, such as trends in the annual mean, median, 
minimum, and maximum discharges, and their 10th, 25th, 75th, and 90th (P10, P25, P75, and 
P90) percentiles. The trends in annual minimum and maximum are further assessed based 
on smoothed daily timeseries using a 7-day moving average to eliminate day-to-day varia-
bility and to highlight the continued periods of very low and high flows (Stahl et al. 2012). 
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Fig. 2   Methodological framework of the present study
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We also quantify how discharges have changed in the recent 30-year climatology relative 
to the first 30-year climatology of the twentieth century for each dataset using the Tukey 
test. Further, flow duration curves (FDCs) were compared for the factual and counterfac-
tual discharges to analyze how climate change has changed the overall hydrological regime 
of JRB. The FDC demonstrates the percentage of time (or duration) a specified discharge is 
equaled or exceeded during a given period (Vafakhah and Khosrobeigi Bozchaloei 2020). 
It unfolds the dynamics of high, medium, and low flows (Kim et al. 2014). We also ascer-
tained trends in the center of timing (CT), which refers to the day of a hydrological year at 
which 50% of the annual discharge volume is reached (Hidalgo et al. 2009). CT is a robust 
measure as compared to peak discharges, which can occur before or after most of the sea-
sonal flows (Hodgkins et al. 2003).

We employed a nonparametric Mann–Kendall (MK) test for trend detection (Kendall 
1948; Mann 1945) and Theil-Sen (Sen 1968; Theil 1950) method to estimate the trend 
slope. These methods neither require a timeseries to be normally distributed (Tabari and 
Talaee 2011) nor are sensitive to missing values, outliers, and breaks (Bocchiola and 
Diolaiuti 2013). The MK test has been widely used to detect monotonic trends in hydro-
meteorological timeseries and has been thoroughly explained in numerous studies (Hasson 
et  al. 2017; Karki et  al. 2017). To prevent the impact of serial dependence of naturally 
observed timeseries in detecting false trend and its slope magnitude, we used a modified 
version of MK, which pre-whitens the timeseries for the autoregression process before 
ascertaining a trend (Hasson et al. 2017; Yue and Wang 2002).

4.1 � Hydrological model setup

The study employs SWIM, which is a continuous, semi-distributed, and process-based 
deterministic eco-hydrological model (Krysanova et al. 2000). The SWIM is developed on 
top of SWAT (Arnold et al. 1998) and MATSALU models (Krysanova et al. 1989). This is 
the first SWIM application in Pakistan, although the model has already been successfully 
applied across the world (Didovets et al. 2021; Hattermann et al. 2017). For instance, the 
model has been employed to study the impacts of climate change on discharges (Lobanova 
et al. 2016), comprehend extremes (Aich et al. 2016), assess dynamics of glacial lake out-
burst floods (Wortmann et al. 2014), investigate impacts of hydrological processes on irri-
gation (Huang et al. 2015), and for the agriculture studies (Liersch et al. 2013). The set-
tings of the SWIM are added to the supplementary material.

For the JRB, the sensitive parameters (SM, Table A2) have been calibrated and validated 
over the hydrological years of the 1994–2004 period. The model was calibrated manually 
considering the second half of the observational record (1999–2004), which encompasses 
the worst drought period of 1999–2003. This prevented the possible bias compensations 
from snowmelt to rainfall runoff. We validated the model for the 1994–1999 period. We 
used multiple efficiency criteria to assess the robustness of the model setup on a daily 
time step. These include the Nash–Sutcliffe Efficiency (NSE) (Nash and Sutcliffe 1970), 
Percentage Bias (PBIAS), Volumetric Efficiency (VE), Mean Error (ME), Coefficient of 
Determination (R2), and Root Mean Square Error (RMSE). Ritter and Muñoz-Carpena 
(2013) have interpreted the model performance solely based on NSE by subjectively estab-
lishing four classes that range between the lower acceptable limit of NSE = 0.65 (Mori-
asi et al. 2007) and a perfect fit of NSE = 1.0. Using multiple efficiency criteria, Moriasi 
et  al. (2015) considered the watershed-scale model performance “satisfactory” if all the 
conditions of R2 > 0.60, NSE > 0.50, and PBIAS within ± 15% are satisfied for the daily 
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simulated flows. Here, we considered four performance evaluation classes based on R2, 
NSE, and PBIAS, as given in SM, Table A3.

5 � Results

5.1 � Calibration and validation

The SWIM calibration and validation results are summarized in Table 1 and are shown in 
Fig. 3. For the calibration period, model NSE, R2, and VE are above 0.83, 0.84, and 0.76, 

Table 1   SWIM calibration and validation statistics 

NSE Nash–Sutcliffe Efficiency, PBIAS Percent Bias, VE Volumetric Efficiency, ME Mean Error, R2 Coef-
ficient of Determination, RMSE Root Mean Square Error

Basin Procedure Period (Oct–
Sep)

NSE PBIAS VE ME R2 RMSE 
(m3s−1)

Overall 
(Moriasi et al. 
2015)

Jhelum Calibration 1999–2004 0.83  − 0.5 0.76  − 3.02 0.84 205.62 Very Good
Validation 1994–1999 0.76  − 5.2 0.73  − 46.07 0.76 362.29 Good
Overall 1994–2004 0.79  − 3.3 0.74  − 24.81 0.79 294.51 Good

Fig. 3   Comparison of observed and simulated discharges for the calibration (1999–2004), validation (1994–
1999), and overall (1994–2004) periods, a daily timeseries of observed and simulated discharges for the 
period (1994–2004), b long-term mean monthly observed and simulated discharges for the calibration, vali-
dation, and overall periods, c scatter plots of observed versus simulated daily discharges for overall, calibra-
tion, and validation periods in the left, middle, and right columns, respectively
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respectively whereas PBIAS and ME are negligible and RMSE is above 200 m3s−1. For 
the validation period, NSE, R2, and VE dropped to 0.76, 0.76, and 0.73, whereas PBIAS 
increased to around − 5%, ME to around − 46, and RMSE to above 350 m3s−1. Evaluating 
overall model performance based on multiple criteria is difficult. Moriasi et al. (2015) clas-
sified the overall model performance into four categories based on R2, NSE, and PBIAS 
(SM, Table A3). Based on such criteria, the SWIM model performance can be classified as 
“Very Good” for the calibration period and “Good” for the validation period. For the whole 
period, the model efficiency criteria indicate that the SWIM reasonably reproduces the 
hydrological processes of the JRB, and its overall performance can be classified as “Good.” 
The mean monthly annual cycle also suggests only small differences between the observed 
and simulated flows for all periods.

5.2 � Streamflow changes

Discharges simulated under counterfactual climates largely exhibit statistically insignifi-
cant trends for all indices, seasons, and for all datasets. This indicates that the JRB water 
availability would not have changed throughout the century should there be no climate 
change. To quantify how much climate change has impacted the water availability from the 
JRB, we compared discharges driven by the factual and counterfactual climates more sim-
plistically by only plotting the differences in their annual mean, minimum, maximum, and 
median estimates (Fig. 4). We calculated the differences as the annual simulated discharges 
driven by the factual dataset minus those driven by the corresponding counterfactual data-
set. All annual quantities are based on the hydrological year (Oct–Sep).

Fig. 4   Differences in a annual minimum discharges, b annual maximum discharges, c annual mean dis-
charges, and d annual median discharges between simulations driven by the factual and counterfactual cli-
mates for each of the three climate datasets over the 1901–2019 period. Note: differences are calculated as 
the annual discharges simulated under factual climate minus the annual discharges simulated under counter-
factual climates
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Qualitative analysis suggests that there was no significant difference between fac-
tual and counterfactual discharges at the beginning of the twentieth century, but the dif-
ference emerged by 1920 and became stark first around 1930 and then after 1960. Such 
signal is uniform among the mean, minimum, maximum, and median indices, which all 
are decreasing under factual climate relative to counterfactual climate throughout the cen-
tury. Quantitatively, such a decrease is stronger for the 20CRv3-w5e5 as compared to the 
20CRv3 and GSWP3-w5e5 datasets for all indices. For instance, annual minimum dis-
charges for the 20CRv3-w5e5 decreased by about 100 m3s−1 in the last decade compared 
to a negligible decrease for the other two datasets. For the annual maximum and mean 
discharges, simulations driven by 20CRv3 also follow the pattern of simulations driven by 
the 20CRv3-w5e5 dataset, both suggesting a higher decrease relative to simulations driven 
by GSWP3-w5e5. Overall, the largest difference between simulations forced by the fac-
tual and counterfactual climates is observed for the annual maximum discharge, followed 
by the annual mean discharge (Table 2). The 7-daily smoothed time-series analysis also 
reveals a noticeable decrease in annual maximum discharges (Table 2). Annual trend anal-
ysis suggests that the annual maximum factual flows are decreasing at the rates of up to 15 

Table 2   Seasonal and annual trends for minimum, maximum, mean, and median flows

CF and F represent counterfactual and factual climate scenarios, respectively. Slopes (m3s−1) significant at 
the 95% level are given in bold italic. Seasons are defined as: Summer (JJA), Winter (DJF), Spring (MAM), 
and Autumn (SON)

ISIMIP-3a datasets Indices Summer Winter Spring Autumn Annual (1-day) Annual (7-day)

20CRv3_CF Min − 1.3  − 0.1  − 0.4  − 0.2  − 0.1  − 0.1
Max − 2.6 0.1  − 3.5  − 0.6  − 2.6  − 2.7
Mean − 1.5  − 0.1  − 1.5  − 0.5  − 0.9
Median − 0.6  − 0.1  − 1.2  − 0.6  − 0.7

20CRv3_F Min  − 4.9  − 0.3  − 0.7  − 0.5  − 0.3  − 0.3
Max  − 14.3 0.6  − 9.5  − 2.7  − 14.0  − 14.0
Mean  − 10.2  − 0.4  − 3.2  − 1.6  − 3.9
Median  − 10.5  − 0.4  − 2.7  − 1.6  − 2.0

20CRv3_w5e5_CF Min  − 2.7  − 0.003  − 0.2  − 0.1 0.01 0.02
Max  − 2.3 0.4  − 3.3  − 2.0  − 2.3  − 2.5
Mean  − 2.6 0.3  − 2.0  − 0.9  − 1.1
Median  − 2.8 0.1  − 2.3  − 0.8  − 1.0

20CRv3_w5e5_F Min  − 8.1  − 0.6  − 1.4  − 1.3  − 0.6  − 0.7
Max  − 15.5  − 1.9  − 15.4  − 6.6  − 15.1  − 15.2
Mean  − 11.9  − 0.9  − 6.6  − 3.3  − 5.6
Median  − 11.8  − 0.9  − 5.6  − 2.9  − 4.3

GSWP3_w5e5_CF Min  − 0.7  − 0.002 0.003  − 0.01  − 0.03  − 0.03
Max  − 0.5 0.3  − 0.6  − 1.6  − 0.7  − 0.8
Mean  − 0.8 0.0  − 0.06  − 0.6  − 0.3
Median  − 0.7  − 0.01  − 0.6  − 0.5  − 0.1

GSWP3_w5e5_F Min  − 3.7  − 0.1 0.4  − 0.9  − 0.1  − 0.1
Max  − 6.5 0.8  − 4.0  − 4.4  − 4.5  − 4.6
Mean  − 5.6 0.01 0.2  − 2.2  − 1.9
Median  − 5.6  − 0.2 0.2  − 1.9  − 1.2
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m3s−1 for 20CRv3-w5e5 and 20CRv3, whereas the decreasing trend for the GSWP3-w5e5 
is around − 4.5 m3s−1 (Table 2). 

Seasonal trend analysis clearly exhibits inter-dataset differences. Table 2 shows that sim-
ulations driven by 20CRv3 and 20CRv3-w5e5 factual datasets feature significant decreas-
ing trends for all seasons. In contrast, such trends for the GSWP3-w5e5 are significant only 
for the summer and autumn seasons, implying that the simulated nival regime driven by 
this dataset is less affected by climate change. Nevertheless, the decreasing trends in fac-
tual discharges are the highest for summer, followed by spring, autumn, and winter sea-
sons. Moreover, such decrease is most obvious for the maximum discharges of the season, 
followed by mean, median, and minimum discharges, and higher for simulations driven by 
20CRv3-w5e5 dataset followed by those driven by 20CRv3 and GSWP3-w5e5 datasets.

We further investigated inter-dataset differences by analyzing trends in factual and 
counterfactual discharge indices on the monthly basis (Table 3). In addition to insignificant 
trends for counterfactual simulations, we note significant decreasing trends for the simu-
lations driven by 20CRv3 and 20CRv3-w5e5 factual datasets throughout the year, where 
such trends are stark for the latter dataset for all indices. In contrast, simulations driven 
by the GSWP3-w5e5 factual dataset suggest such significant decreasing trends only for 
the June–November period. In addition, significant increasing trends in most indices are 
observed for February and March for the simulations driven by the GSWP3-w5e5 factual 
dataset. These datasets further differ from each other quantitatively. For instance, simula-
tions driven by the 20CRv3-w5e5 factual dataset exhibit stark decreases in monthly mean 
and maximum factual discharges (above 6 m3s−1) between high flow months of April and 
September and for minimum and median factual discharges between May and August. In 
contrast, simulations driven by the 20CRv3 factual dataset feature such stark decreases in 
relatively fewer months, such as, in May–August for the maximum, and only in June and 
July for the rest of the indices.

Figure 5 shows the long-term mean annual cycles of all indices from simulations driven 
by factual and counterfactual datasets. All the simulated discharge indices, driven by three 
datasets, consistently feature a discharge peak during May–June and a high flow period 
spanning over April to September. The difference between the simulations driven by fac-
tual and counterfactual climates is prominent for the maximum, mean, and median dis-
charges, particularly for summer months. Since summer flows for the JRB are generated 
from the monsoonal rainfall-runoff (Archer and Fowler 2008), such a decrease may result 
from the weakening of the monsoonal regime under climate change (Fig. 5). This is con-
firmed by decreased mean monthly precipitation for monsoon months in factual as com-
pared to counterfactual datasets (SM, Fig A1). Precipitation in factual datasets of 20CRv3 
and 20CRv3-w5e5 decreased throughout the year compared to the counterfactual datasets, 
except in September and October for the former dataset. For GSWP3-w5e5, precipitation 
in factual climate decreases in all months except in February, March, and June. Subse-
quently, February and March feature a significant positive trend in discharge indices for the 
simulations driven by the GSWP3-w5e5 factual dataset (Table 3).

5.3 � Comparing climates

We compared annual cycles of the discharge climatology driven by the factual data-
set with that driven by the counterfactual dataset to assess how climate change has 
altered the overall hydrological regime until now. For this, we calculated the dis-
charge climatology for the first 30 years of the twentieth century (p1) and for the last 



Climatic Change (2023) 176:149	

1 3

Page 11 of 20  149

Ta
bl

e 
3  

M
on

th
ly

 tr
en

ds
 fo

r m
in

im
um

, m
ax

im
um

, m
ea

n,
 a

nd
 m

ed
ia

n 
flo

w
s

C
F 

an
d 

F 
re

pr
es

en
t c

ou
nt

er
fa

ct
ua

l a
nd

 fa
ct

ua
l c

lim
at

e 
sc

en
ar

io
s, 

re
sp

ec
tiv

el
y.

 S
lo

pe
s (

m
3 s−

1 ) s
ig

ni
fic

an
t a

t t
he

 9
5%

 le
ve

l a
re

 g
iv

en
 in

 b
ol

d 
ita

lic

IS
IM

IP
-3

a 
da

ta
se

ts
In

di
ce

s
Ja

n
Fe

b
M

ar
A

pr
M

ay
Ju

n
Ju

l
A

ug
Se

p
O

ct
N

ov
D

ec

20
C

R
v3

_C
F

M
in

 −
 0.

14
 −

 0.
15

 −
 0.

49
 −

 0.
81

 −
 1.

95
 −

 3.
35

 −
 0.

89
 −

 1.
30

 −
 0.

54
 −

 0.
52

 −
 0.

22
 −

 0.
12

M
ax

 −
 0.

13
 −

 0.
19

 −
 1.

28
 −

 0.
99

 −
 3.

58
 −

 2.
94

 −
 2.

26
 −

 0.
04

 −
 0.

95
 −

 0.
59

 −
 0.

51
−

 0.
19

M
ea

n
 −

 0.
14

 −
 0.

21
 −

 1.
06

 −
 0.

98
 −

 3.
01

 −
 3.

07
 −

 0.
99

 −
 0.

68
 −

 0.
77

 −
 0.

48
 −

 0.
32

−
 0.

15
M

ed
ia

n
 −

 0.
14

 −
 0.

21
 −

 1.
02

 −
 0.

78
 −

 2.
96

 −
 2.

96
 −

 0.
80

 −
 0.

91
 −

 0.
65

 −
 0.

53
 −

 0.
28

−
 0.

14
20

C
R

v3
_F

M
in

 −
 0.

37
 −

 0.
41

 −
 0.

79
 −

 1.
85

 −
 2.

64
 −

 11
.4

2
 −

 9.
09

 −
 4.

73
 −

 2.
19

 −
 1.

20
 −

 0.
50

 −
 0.

34
M

ax
 −

 0.
47

 −
 1.

04
 −

 2.
76

 −
 3.

20
 −

 9.
53

 −
 14

.3
2

 −
 14

.3
5

 −
 6.

60
 −

 3.
26

 −
 1.

68
 −

 1.
05

−
 0.

48
M

ea
n

 −
 0.

42
 −

 0.
59

 −
 1.

77
 −

 2.
70

 −
 5.

54
 −

 13
.4

3
 −

 11
.6

7
 −

 5.
40

 −
 2.

58
 −

 1.
43

 −
 0.

77
 −

 0.
38

M
ed

ia
n

 −
 0.

39
 −

 0.
55

 −
 1.

73
 −

 2.
56

 −
 5.

07
 −

 13
.7

9
 −

 11
.9

8
 −

 5.
35

 −
 2.

56
 −

 1.
44

 −
 0.

74
− 

0.
36

20
C

R
v3

_w
5e

5_
C

F
M

in
 −

 0.
02

0.
01

 −
 0.

31
 −

 1.
40

 −
 1.

88
 −

 2.
70

 −
 2.

27
 −

 2.
80

 −
 1.

03
 −

 0.
55

 −
 0.

03
 −

 0.
05

M
ax

0.
41

0.
51

 −
 2.

45
 −

 2.
04

 −
 3.

38
 −

 3.
29

 −
 3.

10
 −

 2.
66

 −
 2.

26
 −

 1.
56

 −
 0.

70
0.

35
M

ea
n

0.
28

0.
44

 −
 1.

00
 −

 1.
95

 −
 3.

11
 −

 2.
41

 −
 3.

03
 −

 2.
64

 −
 1.

31
 −

 0.
97

 −
 0.

30
0.

22
M

ed
ia

n
0.

28
0.

26
 −

 1.
27

 −
 2.

16
 −

 3.
46

 −
 1.

77
 −

 3.
02

 −
 2.

27
 −

 1.
19

 −
 0.

94
 −

 0.
26

0.
26

20
C

R
v3

_w
5e

5_
F

M
in

 −
 0.

73
 −

 0.
84

 −
 1.

50
 −

 3.
70

 −
 6.

92
 −

 12
.4

4
 −

 10
.2

6
 −

 8.
24

 −
 4.

21
 −

 2.
25

 −
 1.

16
 −

 0.
86

M
ax

 −
 1.

54
 −

 1.
93

 −
 5.

57
 −

 6.
56

 −
 15

.4
6

 −
 16

.7
6

 −
 13

.6
8

 −
 11

.9
9

 −
 7.

04
 −

 4.
07

 −
 2.

27
−

 0.
95

M
ea

n
 −

 0.
83

 −
 1.

06
 −

 3.
20

 −
 5.

38
 −

 11
.2

1
 −

 14
.2

5
 −

 11
.8

9
 −

 10
.1

9
 −

 5.
28

 −
 3.

09
 −

 1.
65

− 
0.

78
M

ed
ia

n
 −

 0.
74

 −
 1.

11
 −

 3.
12

 −
 5.

49
 −

 11
.6

4
 −

 13
.9

6
 −

 11
.8

1
 −

 9.
95

 −
 5.

02
 −

 3.
00

 −
 1.

56
− 

0.
76

G
SW

P3
_w

5e
5_

C
F

M
in

 −
 0.

03
0.

01
0.

00
4

 −
 0.

31
1.

24
 −

 0.
15

 −
 0.

56
 −

 0.
88

 −
 0.

62
 −

 0.
52

0.
03

 −
 0.

00
8

M
ax

0.
06

0.
23

 −
 0.

49
0.

46
−

 0.
69

 −
 0.

94
 −

 0.
55

0.
29

 −
 1.

73
 −

 0.
68

 −
 0.

57
0.

03
M

ea
n

0.
07

0.
18

0.
05

−
 0.

27
0.

27
 −

 0.
49

 −
 1.

06
 −

 0.
63

 −
 0.

97
 −

 0.
71

 −
 0.

22
 −

 8.
70

 ×
 10

−
5

M
ed

ia
n

0.
09

0.
07

0.
09

−
 0.

56
0.

46
 −

 0.
58

 −
 1.

31
 −

 0.
64

 −
 0.

86
 −

 0.
79

−
 0.

10
0.

00
7

G
SW

P3
_w

5e
5_

F
M

in
 −

 0.
20

 −
 0.

03
0.

46
0.

74
1.

78
 −

 6.
22

 −
 4.

65
 −

 4.
01

 −
 2.

59
 −

 1.
77

 −
 0.

83
 −

 0.
46

M
ax

 −
 0.

11
1.

37
0.

64
1.

87
 −

 4.
05

 −
 7.

48
 −

 5.
50

 −
 4.

05
 −

 4.
65

 −
 2.

49
 −

 1.
68

−
 0.

80
M

ea
n

 −
 0.

03
0.

73
1.

13
0.

81
 −

 0.
74

 −
 7.

24
 −

 5.
32

 −
 4.

38
 −

 3.
43

 −
 2.

20
 −

 1.
19

−
 0.

59
M

ed
ia

n
 −

 0.
13

0.
48

1.
27

0.
41

 −
 0.

69
 −

 7.
50

 −
 5.

64
 −

 4.
50

 −
 3.

26
 −

 2.
26

 −
 1.

02
−

 0.
55



	 Climatic Change (2023) 176:149

1 3

149  Page 12 of 20

30 years (p2) for both factual and counterfactual datasets. Comparing p1 with p2 from 
the counterfactual dataset revealed no significant changes on the monthly and annual 
scale (Fig. 6a). Same is the case when comparing p1 between counterfactual and fac-
tual datasets as changes remain markedly below 10%. On the other hand, p2 from 
factual datasets is substantially different from that of counterfactual datasets, mainly 
because factual climatology has changed significantly over the period of 120  years. 
Main changes are observed during the monsoon months of June to August (Fig. 6b). 
We have applied the Tukey test to describe the differences between different periods 
(SM, Fig A2). Differences are up to 50% for July, up to 40% for June and August, and 
around 20% for the rest of the months. Comparing p1 and p2 from factual datasets also 
provides similar changes, indicating how much climate change has altered the overall 
hydrological regime of the JRB, so far.

The timing of peak discharges has also been shifted between the p1 and p2 cli-
mates from the simulation driven by the factual dataset. The simulation driven by the 
GSWP3-w5e5 dataset clearly suggests that the discharge peak in p2 has dampened 
relative to p1 and shifted to May–June. For 20CRv3-w5e5, the original peak was not 
clearly designated for the month of June among p1 of factual or counterfactual datasets 
and p2 of the latter. The 20CRv3 dataset however suggests no change in the timing of 
peak discharge. Discharge peak in p2 factual climate either shifted from June as in the 
case of GSWP3-w5e5 or sustained in May as in the case of 20CRv3-w5e5, which is 
more realistic because the observed discharge of JRB also peaks in May as shown in 
Fig. 3b. Overall, the discharge has been reduced mainly for the high flow period, where 
such decrease is higher for pluvial and post-monsoonal regimes than for nival regimes 
(April–June).

Fig. 5   Long-term mean annual cycles of minimum, maximum, mean, and median discharges simulated 
under factual and counterfactual climates over the 1901–2019 period
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5.4 � Flow duration curve and center of timing

Flow duration curves are generally divided into five zones, representing high flows 
(0–10%), moist conditions (10–40%), mid-range flows (40–60%), dry conditions (60–90%), 
and low flows (90–100%). These ranges can be used to assess the hydrological state of 
the river (US Environmental Protection Agency 2007). In simulations driven by all three 
datasets, the exceedance probability of high flows and moist conditions is reduced in the 
case of factual relative to counterfactual climate, suggesting a lower frequency of these 
events in the former climate (Fig. 7). The FDCs of the simulations driven by 20CRv3 and 
20CRv3-w5e5 datasets show a relatively high drop in exceedance probability as com-
pared to GSWP3-w5e5. For the simulations driven by the 20CRv3 dataset, the difference 
between factual and counterfactual exceedance probabilities is more pronounced between 
high flows and moist condition flows, while in the case of 20CRv3-w5e5 driven simula-
tions, the difference is evident from high to medium flows. In GSWP3-w5e5 driven simula-
tions, the variance between factual and counterfactual exceedance probabilities occurs in 
the range of high flows and moist condition flows, but it is relatively less pronounced as 
compared to the simulations driven by 20CRv3 and 20CRv3-w5e5 datasets.

Fig. 6   a Annual cycles of mean monthly discharges for the p1 climate of the twentieth century and p2 cli-
mate for simulations driven by both factual (F) and counterfactual (CF) datasets, b monthly percentage 
change in discharge between the simulations driven by both factual (F) and counterfactual (CF) datasets for 
the p1 climate (first column), and for the p2 climate (middle column). The third column refers to the per-
centage change in discharge between the p1 and p2 climates of the simulation driven by the factual dataset. 
The p1 climate is defined as the initial 30 years, and the p2 climate represents the recent 30 years for each 
dataset
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In addition to analyzing transient changes in the median flows (50th percentile), we can 
see how certain percentiles belonging to low and high flows evolve over time. For this we 
plot differences in the 10th, 25th, 75th, and 90th percentiles of factual and counterfactual 
discharges (SM, Fig A2). Differences are calculated as factual minus counterfactual dis-
charge percentiles for each corresponding hydrological year. Low percentiles of 10% and 
25% refer to low flow and dry conditions or high exceedance probability, whereas high per-
centiles of 75% and 90% correspond to high flows and moist conditions or lower exceed-
ance probability (SM, Fig A2). Our results suggest significant falling trends for all types 
of flows driven by factual datasets except for low flows (P10 and P25) driven by GSWP3-
w5e5. The decreasing trends were more pronounced for high flows (90th percentile) relative 
to the low flows and dry conditions (Table 4). Specifically, for the 20CRv3-w5e5 factual 
case, the decreasing trend was prominent for the 90th percentile (− 12.30 m3s−1) and less 
pronounced for the 10th percentile (− 0.93 m3s−1). The same is the case with the 20CRv3 
factual scenario; the falling trend was more pronounced for the high flows at the 90th per-
centile (− 11.79 m3s−1) but less marked for the low flows at the 10th percentile (− 0.48 
m3s−1).

For simulations driven by all three datasets, the CT for both factual and counterfactual 
climates lie within the second half of the hydrological year, mostly varying between May 
and July (Table 4). The trends for all three datasets indicate that the CT is shifting to ear-
lier days (Table 4 and Fig. 8). Such shifts are mainly due to the shifts in the timings of the 
snowmelt runoff to earlier dates. Our inter-dataset comparison suggests that such a shift 
was more pronounced for the simulations driven by the GSWP3-w5e5 dataset (12 days per 
century) followed by the 20CRv3-w5e5 dataset (8 days per century) and the 20CRv3 data-
set (6 days per century). The shift of CT to earlier dates is somehow consistent with an 
earlier shift of peak discharge in the p2 of factual climate.

Fig. 7   Flow duration curves for simulations driven by the factual and counterfactual climates over the 
1901–2019 period
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6 � Discussions

We note that performance for the validation period is relatively lower than that of the calibra-
tion period because the model failed to capture a few of the discharge peaks during the wet 
validation period (Fig. 3a, c). Since NSE is particularly sensitive to the peaks (Krause et al. 
2005), its value is, therefore, lower for the validation period. The model’s failure in simulat-
ing discharge peaks is probably due to a half-a-degree resolution of input datasets, which is 
rather coarse for the mountainous JRB and is not able to retain the intense localized precipi-
tation events. We believe that the model can capture the right intensity of streamflow peaks 
given it is driven by station observations or high-resolution robust datasets. For instance, 
forcing the semi-distributed hydrological model of the University of British Columbia for 
the JRB using observed stations, Hasson et  al. (2019) reported higher NSE of 0.88, 0.80, 
and 0.84 for the calibration, validation, and whole periods, respectively. Hence, the use of 
high-resolution datasets for the complex mountainous catchments can resolve the fine-scale 
hydro-meteorological processes and improve the model evaluation and robustness of its pro-
jections, allowing better comprehension of the climate change impacts. Performing resolution 
sensitivity experiments is however not the focus of our study. Further, we fixed the LULC 
throughout the simulation period based on the reports of insignificant changes in the mean 
annual runoff of the Kunhar subbasin of JRB due to changes in LULC (Akbar & Gheewala 
2021). However, LULC changes need to be assessed for the whole JRB and across the whole 
length of the simulation period from multiple datasets to represent them more realistically in 
the model. This will be the focus of our future studies.

We found that climate change is responsible for a decrease in the JRB mean annual water 
availability. Similar decreasing trends have been attributed to climate change by various stud-
ies. For instance, Najafi et  al. (2017) have attributed decreasing streamflow for the British 
Columbia basins to anthropogenic climate change. Lv et al. (2021) have reported that Yellow 
River flows were decreasing between 1958–1993 and 1994–2017 period and that the observed 
climate change is responsible for such a decrease. Similarly, Kormann et al. (2015) have attrib-
uted declining streamflow to climate change for western Austria. In contrast to only decreasing 
trends, seasonally distinct streamflow changes detected in the Western United States between 
1950 and 1999 have also been attributed to observed climate change (Barnett et al. 2008).

We observed earlier shifts in the CT due to an early shift in nival regime. These results 
are consistent with the reports of Hidalgo et al. (2009) for the Western United States since 

Fig. 8   Differences between the 
centers of timing (CT) estimated 
for simulations forced by factual 
and counterfactual climates 
(factual minus counterfac-
tual) of three datasets for the 
hydrological years in the period 
1901–2019
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1950 where they attributed earlier shifts in CT to climate change. Similar findings are 
reported for the snowmelt runoff from the mountains of Colorado (Clow 2010). In contrast, 
shifts in CT are found insignificant for four large Sierra Nevada basins (Maurer et al. 2007).

7 � Conclusions

To understand how climate change can shape our future habitability, this study first detects 
changes in the simulated streamflow of the JRB for the historical period (1901–2019) and 
then analyzes whether these changes can be attributed to observed climate change. Follow-
ing the ISIMIP-3a protocol, we forced a well-calibrated and validated SWIM model with 
three datasets prepared for both factual and counterfactual climate datasets. The intercom-
parison was performed based on MK trend tests and Sen Slopes for monthly, seasonal, 
and annual mean, minimum, maximum, and median discharges. We further analyzed flow 
duration curves, extreme percentiles, and center-of-volume timings to understand differ-
ences in low, medium, and high flows and their timings between simulations forced by fac-
tual and counterfactual climates. The study concludes that the discharges simulated under 
the counterfactual climates largely exhibit statistically insignificant trends for all indices, 
seasons, and for all datasets. This indicates that the JRB water availability would not have 
changed notably throughout the century should there be no climate change.

The simulations driven by the three datasets differed mainly on the quantitative scale 
but agreed well qualitatively. Nevertheless, the decreasing trends in factual discharges are 
the highest for the summer, followed by the spring, autumn, and winter seasons. Moreo-
ver, such a decrease is stark for the maximum discharges, followed by mean, median, and 
minimum discharges, and higher in the simulations driven by the 20CRv3-w5e5 followed 
by the 20CRv3 and GSWP3-w5e5 datasets. Overall, the discharge has been reduced mainly 
for the high flow period where such decrease is higher for pluvial monsoonal regimes 
(monsoon and post-monsoon season) than for nival regime (April–June). Earlier shifts in 
the CT are due to early shifts in nival regime. Substantial streamflow decrease during sum-
mer months clearly suggests a critical role of the monsoonal precipitation regime in dis-
rupting the hydrological cycle of JRB in the future. Further, future studies can focus on 
disentangling the effect of anthropogenic climate change factors from natural factors.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
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available from the Pakistan Water and Power Development Authority (WAPDA). The simulated streamflow 
datasets can be requested from the corresponding author.
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