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Abstract: Vine phenology modelling is increasingly important for winegrowers and viticulturists.
Model calibration is often required before practical applications. However, when multiple models
and optimization methods are applied for different varieties, it is rarely known which factor tends to
mostly affect the calibration results. We mainly aim to investigate the main source of the variability
in the modelling errors for the flowering timings of two important varieties of vine in the Douro
Demarcated Region (DDR) of Portugal; this is based on five phenology model simulations that use
optimal parameters and that are estimated by three optimization algorithms (MLE, SA and SCE-
UA). Our results indicate that the main source of the variability in calibration can be affected by the
initially assumed parameter boundary. Restricting the initial parameter distribution to a narrow range
impedes the algorithm from exploring the full parameter space and searching for optimal parameters.
This can lead to the largest variation in different models. At an identified appropriate boundary, the
difference between the two varieties represents the largest source of uncertainty, while the choice of
algorithm for calibration contributes least to the overall uncertainty. The smaller variability among
different models or algorithms (tools for analysis) compared to between different varieties could
indicate the overall reliability of the calibration. All optimization algorithms show similar results
in terms of the obtained goodness-of-fit: the RMSE (MAE) is 5–6 (4–5) days with a negligible mean
bias and moderately good R2 (0.5–0.6) for the ensemble median predictor. Nevertheless, a similar
predictive performance can result from differently estimated parameter values, due to the equifinality
or multi-modal issue in which different parameter combinations give similar results. This mainly
occurs for models with a non-linear structure compared to those with a near-linear one. Yet, the
former models are found to outperform the latter ones in predicting the flowering timing of the two
varieties in the DDR. Overall, our findings highlight the importance of carefully defining the initial
parameter boundary and decomposing the total variance of prediction errors. This study is expected
to bring new insights that will help to better inform users about the importance of choice when these
factors are involved in calibration. Nonetheless, the importance of each factor can change depending
on the specific situation. Details of how the optimization methods are applied and of the continuous
model improvement are important.

Keywords: grapevine; phenology modelling; ensemble simulation; parameter estimation; parameter
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1. Introduction

Plant phenology, the annually recurring pattern of plant development, has been
identified as one key biological indicator of climate change [1]. The relationship between
the timing of phenological events and climatic factors, such as temperature, is fundamental
for understanding the ecosystem’s response to global warming [2]. Phenology prediction is
primarily driven by temperature, which is a pivotal part of process-based crop modelling.
It is typically implemented as a phenological module within crop models [3,4]. The
accurate simulation of phenology development is a prerequisite for modelling other crucial
physiological processes, such as transpiration, photosynthesis and yield formation, etc. [3,4].
Therefore, many crop modelling studies focus specifically on phenology modelling [5–8].

Viticulture phenology modelling has received much attention in the last decade, as
many studies have shown the potential of using simple temperature-based statistical or
mechanistic models to successfully predict and monitor the vine phenology of commercial
grape varieties [9–12]. For instance, a simple Grapevine Flowering Veraison (GFV) model
using the concept of growing degree days (GDD), was shown to be able to accurately
(generally RMSE ≤ 7 days) reproduce the observed flowering and veraison timings of 95
and 104 common varieties, respectively, which spanned across 123 locations in Europe with
a wide range of environmental conditions [9]. Similarly, Leolini et al. [12] demonstrate
the applicability of six common phenology models for predicting the budbreak of main
grapevine varieties. Although many of these models were satisfactorily calibrated and eval-
uated for simulating vine phenology, deciding which model to use in a new environment is
often difficult, as no single individual model could consistently outperform the others [13].
Each model has its strengths and weaknesses, depending on the environmental conditions
(e.g., climate and soil) and the type of cultivar being simulated [9–12].

A multi-model ensemble could be used to overcome the limitations of individual
models, where the ensemble mean or median of the model outputs can be used to represent
robust predictions [6,14]. The multi-model ensemble can be directly integrated into decision
support systems. For example, they could be conveniently coupled with existing real-time
climate forecasts to provide early-season phenology predictions [15,16]. This can support
monitoring vine development, which is particularly necessary in the context of anticipating
more frequent extreme weather conditions with the projected climate change [17–21]. Multi-
model ensembles are also an integral part of the Agricultural Model Intercomparison and
Improvement Project (AgMIP) [6,22,23].

Before any practical applications, phenology models need to be calibrated [24]. During
calibration, model-specific parameters are adjusted (optimized), in order to simulate the
observed conditions as close as possible. Different models have different parameters,
but most of these parameters are considered to reflect the genetic differences between
cultivars, i.e., cultivar-dependent characteristics of phenology development [5,7,9,25]. To
estimate the optimal values of these parameters (i.e., parameter vector), a large diversity
of calibration approaches are available, each having their own statistical assumptions,
calibration steps, criteria of best-fit parameters and optimization algorithms [6–8,13,26].
Variations in calibration approaches, model structures and input data represent three main
sources of uncertainty in crop model (including phenology model) simulations [5,26,27].
In particular, different optimization algorithms are available, but the algorithm selection,
according to the calibration method, could considerably affect parameter estimations
(including the associated uncertainties) and calibration results [7,8,13,26].

The best algorithm is often dependent on a specific context. For instance, Gao et al. [7]
suggest that the importance of algorithms can vary depending on the priority of the
study: if the priority is on the goodness-of-fit between the observations and simulations,
the Ordinary Least Square (OLS) method is the most effective choice; meanwhile, in
cases where an estimation of the parameter uncertainty and model prediction is more
important, the Markov Chain Monte Carlo (MCMC)-based algorithms are more appropriate.
Kawakita et al. [8] further report that uncertainties in the parameter estimations and the
associated calibration performance are affected not only by parameter estimation methods
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or optimization techniques, but also by the model structure. However, these studies do not
yet address, when multiple models and algorithms are available, whether the application
of different algorithms for a given model or the assessment of different models for a certain
algorithm is more important. Available information on this matter is important. For
instance, if different optimization algorithms tend to give similar results, users may just
choose the simplest one for their models.

Some well-known examples of applied optimization algorithms include the Maximum
Likelihood Estimation (MLE) [28], the Simulated Annealing (SA) [29] and the Shuffled
Complex Evolution-University of Arizona (SCE-UA) [30]. These algorithms have different
strategies to search along the parameter space. Nevertheless, it is essential to specify the
parameter search space, e.g., by defining the lower and upper boundary in an optimal way.
Yet, this is often defined empirically by researchers [7,8,31,32], and it is rarely investigated
whether the pre-defined boundary of parameter distribution is sufficient to warrant finding
the optimal parameters by the algorithm.

In this study, we utilized five phenology models with varying degrees of complex-
ity, which were all previously shown to be able to adequately reproduce vine phenology
(see Section 2.2). These models were calibrated for simulating the flowering timing of
two main grapevine varieties in Portugal, i.e., Touriga Franca (TF) and Touriga Nacional
(TN), using three optimization algorithms (MLE, SA and SCE-UA). In general, the main
objective represents an attempt to provide one plausible answer to the research question:
when common factors of parameter estimations are explicitly taken into account, includ-
ing models, algorithms and varieties (predicting events), which one tends to have the
greatest effect on the final calibrations? This is carried out using Analysis of Variance
(ANOVA) to identify the main source of variability (a larger magnitude of variations)
among 5 models × 3 algorithms × 2 varieties. Note that a preliminary analysis with differ-
ent assumptions for the initial parameter boundary is performed to determine the most
appropriate constraint for the prior parameter distribution during parameter optimiza-
tion. Based on the estimated parameter values from each optimization algorithm, the
calibrated multi-model ensemble is constructed. For each algorithm, we then evaluate
the goodness-of-fit between the observations and individual model simulations using a
number of conventional statistical measures. Consequently, the ensemble median of the
multi-model simulations is used to represent our best predictions against the observations.
The variability in the resulting estimated parameter values among the different algorithms
is also presented.

2. Data and Methods
2.1. Study Region and Data Collection
2.1.1. Study Region

The Douro Demarcated Region (DDR), known as the Douro/Port Wine Region, located
in northeast Portugal, is one of the oldest winemaking regions in the world [33–37]. It is
recognized and included in the world heritage list by UNESCO for its unique mountainous
landscape and long history (nearly 2000 years) of a wine-producing culture [36]. DDR
spreads over an area of ~250,000 ha and is divided into three subregions (Baixo Corgo,
Cima Corgo and Douro Superior) that differ greatly from each other in their heterogeneous
topography (Figure 1a). Viticulture is the main socioeconomic activity of the region and
vineyards are traditionally grown on terraces over steep slopes along the Douro valley [36].
It comprises an area of about 45,000 ha, accounting for approximately 22% of the total
area of Portugal [34–36]. DDR features a typical Mediterranean climate with warm dry
summers and a mild wet autumn and winter. The low precipitation, high temperature and
radiation amount in the summer months (June-August) frequently gives rise to situations
of intense plant water stress [33].
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Figure 1. The spatial distribution of (a) study sites (numbered per Table 1) where the phenology
data of two grapevine varieties (TF: Touriga Franca, TN: Touriga Nacional) are collected within the
Douro Demarcated Wine Region and (b) the monthly mean of daily minimum (Tmin, ◦C), average
(Tavg,◦C) and maximum (Tmax, ◦C) temperatures over 1991−2020 (error bars: standard deviation of
monthly means), along with the maximum duration (days) of consecutive hot days (Tmax ≥ 25 ◦C for
at least 5 days) for each month. The meteorological statistics are based on the spatial average of all
study sites.

Table 1. Mean and standard deviation (sd) of the Day Of Year (DOY) for the observed flowering
(BBCH65) of two main grapevine varieties (Touriga Franca: TF; Touriga Nacional: TN) within the
Douro Demarcated Region (DDR) during the period of 2014–2021.

Touriga Franca (TF) Touriga Nacional (TN)

Site1 Site2 Site3 Site4 Site5 Site6 Site7 Site8

Longitude −7.037◦ W −7.769◦ W −7.623◦ W −7.537◦ W −7.538◦ W −7.755◦ W −7.755◦ W −7.433◦ W
Latitude 41.040◦ N 41.166◦ N 41.153◦ N 41.189◦ N 41.215◦ N 41.240◦ N 41.154◦ N 41.209◦ N

Observations (Mean ± sd) 134 ± 5 135 ± 4 139 ± 4 130 ± 6 139 ± 8 139 ± 10 131 ± 9 129 ± 8

2.1.2. Phenology Measurements

In the present study, we focused on the grapevine phenology stage of full flowering
(BBCH65), i.e., the date when 50% flowering occurred, following the definition of the growth
stages of mono-and dicotyledonous plants [38]. Data for two main Portuguese grapevine
varieties (Touriga Franca: TF; Touriga Nacional: TN) were collected over 2014–2021 in
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eight experimental vineyard plots within the DDR (Table 1), via a viticultural observatory
network coordinated by the Association for the Development of Viticulture in the Douro
Region (ADVID). The geographic locations of these plots are shown in Figure 1a. Across
the study sites, there was a greater inter-annual variability in the observed flowering timing
for TN (8–10) than for TF (4–6) (Table 1). To better represent the phenological characteristics
of the variety, we pooled all site data (blend all) for a given variety; thus, each variety had
32 observations from 4 sites× 8 years for calibration. The amount of data was comparable to
a similar study that used 27 observations of rice phenology from different year–site–season
combinations in order to estimate the optimal model parameters [5].

2.1.3. Climate Observations

The recent E-OBS (v24.0e) observational gridded meteorological dataset, with a spatial
resolution of 0.1◦ [39], was employed to extract daily temperature series for phenology
modelling. The advantage of utilizing a gridded dataset, instead of data from site-specific
weather stations, was its potential for large-scale applications in agro-environmental studies,
e.g., producing regional maps [40,41], and its wide spatial coverage, which was especially
important for data-scarce regions [42]. Moreover, the applicability and reliability of the
E-OBS dataset, when coupled with phenology models, has already been successfully
demonstrated to reproduce the observed vine phenology in many Portuguese wine regions
(including the DDR) well [31,43,44]. The monthly temperature statistics for Tmin, Tavg and
Tmax, deriving from the E-OBS data, are shown in Figure 1b for the respective study sites.
For the flowering stage, the critical months were mostly from April to June (end of spring to
the beginning of summer), during which Tavg could increase from 13 to 20 ◦C (Tmax from 18
to 28 ◦C), which was accompanied by a prolonged high-temperature event (Tmax ≥ 25 ◦C
for at least 5 days) (Figure 1b). Such high-temperature events could extend through to half
of May and all of June (Figure 1b).

2.2. Phenology Models

The five models selected were GDD [45], GDD–Richardson (Richardson for short) [46],
Sigmoid [47], Triangular [48] and Wang [49]. From an onset/starting date (t0), these thermal
forcing/driving models simulated the occurrence of a given phenology stage at the day (ts),
when the state of the forcing temperatures (S f ) reached a threshold value of F* (generally
thought to be variety-dependent) [9,10]:

S f (ts) =
ts

∑
t0

R f (xt) ≥ F∗ (1)

where R f (xt) was calculated as a function of the daily mean temperature (xt). The phe-
nology models differ depending on how R f (xt) are applied. They could be divided into
two types: degree-day-based models (GDD and Richardson) that generally handled R f (xt)
via the accumulation of xt above a given threshold, and non-degree-day-based models
(Sigmoid, Triangular and Wang) that computed R f (xt) based on the normalized function
of temperature (R f varied from 0 to 1) [48]. A graphic representation of each model with
different settings of parameter values is shown in Figure S1. Detailed explanations of the
model parameters are presented in Table 2. It is noteworthy that the Richardson, Triangular
and Wang models share a similar definition of parameters (Tb and Tmax) (Table 2). All
models were initialized on January 1st, which was the initialization date adopted in other
modelling studies for predicting the flowering timing of important varieties of vine in
major Portuguese wine regions (including DDR) [10,50,51]. Suboptimal photoperiod and
vernalization effects are not considered.
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Table 2. Selected parameters of phenology models for calibration. The specified initial lower and
upper boundary of uniform parameter distribution corresponds to the baseline setting. The “×”
symbol indicates the parameter intended for the calibration of a given model. All model simulations
are driven by the daily mean temperature from the first day of the year (t0).

Parameter
Abbreviation

Description Unit
Initial
Lower
Bound

Initial
Upper
Bound

Model Name

Growing
Degree Day

(GDD) *
Richardson Sigmoid Triangular Wang

F* Critical state of
thermal temperature

degree.days−1 *
or temperature

ratios *

40 * or
1100 *

80 * or
1300 * × × × × ×

Tb

Minimum development
temperature

(base temperature)

◦C 0 5 × × ×

Topt
Optimum develop-
ment temperature

◦C 22 25 × ×

Tmax
Maximum develop-
ment temperature

◦C 32 38 × × ×

d
Fitted parameter of

sharpness of
response curve

/ −15 0 ×

e Fitted parameter of mid-
response temperature

◦C 10 20 ×

* GDD and Richardson models compute the F* with the degree.days−1, while the other models compute F*
(explained in Equation (1)) with temperature ratios (between 0 and 1). Accordingly, the initial F* search boundary
is defined as 1100–1300 degree.days−1 for GDD and Richardson, and 40–80 for other models. For the GDD model,
the base temperature (Tb) is constantly set at 0 ◦C.

2.2.1. GDD

The GDD model (Figure S1) is based on the classical thermal time concept [45]. It
includes two parameters (Tb and F*) (Table 2), which generally assume a linear approach
for the effective accumulation of daily thermal forcing when xt > Tb (base temperature):

R f (xt) =

{
0 i f xt ≤ Tb

xt − Tb i f xt > Tb
(2)

We set Tb at 0 ◦C (not calibrated) since this was successfully applied for the GDD in a
simulation of the flowering timing of up to 95 grapevine varieties (over 123 locations) [9,11].
Hence, only a single parameter, F*, was adjusted during parameter optimization (Table 2).

2.2.2. Richardson

The Richardson model (Figure S1) is a modified version of the GDD model. It includes
three parameters (Tb, Tmax and F*) (Table 2), which additionally consider a plateau above
the high threshold temperature (Tmax) [46]:

R f (xt) = Max(Min(xt − Tb, Tmax − Tb), 0) (3)

As shown in previous studies, the Richardson model was able to accurately predict
the flowering timing of both TF and TN for important wine regions in Portugal [50].

2.2.3. Sigmoid

The Sigmoid model (Figure S1) adopts the logistic function/sigmoid curve as the
temperature–response curve [47]. It includes three parameters (d, e and F*) (Table 2), which
have a similar structure to the UniFORC model [10–12]:

R f (xt) = 1/(1 + e(d∗(xt−e))) (4)
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The sigmoid model has been calibrated and evaluated for simulating the flowering
stage of numerous different grapevine varieties over multiple Portuguese wine regions [51].

2.2.4. Triangular

The Triangular model (Figure S1) uses the piecewise linear function with three tem-
perature thresholds (Tb, Topt, Tmax) to define the temperature–response function [48]. It
includes four parameters (Tb, Topt, Tmax and F*) (Table 2):

R f (xt) =


0 i f xt ≤ Tb

xt−Tb
Topt−Tb

i f Tb < xt ≤ Topt
xt−Tmax

Topt−Tmax
i f Topt < xt < Tmax

0 i f xt ≥ Tmax

(5)

This model has been well adapted to simulate the flowering timing of many white
and red varieties in Portugal [10].

2.2.5. Wang

The Wang model (Figure S1) uses similar temperature thresholds (Tb, Topt, Tmax) to
the Triangular model, but integrates the temperature effects with a non-linear response
function [49]. It includes four parameters (Tb, Topt, Tmax and F*) (Table 2):

R f (xt) =


2(xt−Tb)

α(Topt−Tb)
α−(xt−Tb)

2α

(Topt−Tb)
2α i f Tb ≤ xt ≤ Tmax

0 i f xt〈 Tb or xt〉 Tmax
with

α = ln 2

ln
(

Tmax−Tb
Topt−Tb

)
(6)

This model has proven to be able to accurately represent the observed flowering timing
of TF and TN in important Portuguese wine regions [50].

2.3. Applied Optimization Algorithms
2.3.1. Maximum Likelihood Estimation (MLE)

The maximum likelihood estimation (MLE) is a simple optimization method intended
to find the local maximum of the objective function [28]. Therefore, the objective function is
regarded as a likelihood function with the parameter vector representing function variables.
Hence, the optimum parameter vector maximizes the likelihood. For the present study,
MLE is implemented as a Markov chain Monte Carlo process based on the Metropolis–
Hastings algorithm [52]. In each iteration step, a random parameter vector is drawn from a
Gaussian kernel in the neighborhood of the current best vector xold. If the new parameter
vector xnew outperforms the current one, the latter is exchanged and the next iteration cycle
begins. MLE often only finds the local maxima of the objective function. Therefore, to
improve the efficiency, the parameter space is scanned randomly to find the best initial
parameter vector prior to the MLE iterations, i.e., burn-in samples [53].

2.3.2. Simulated Annealing (SA)

Simulated annealing is a probabilistic optimization method that is able to find the
global optimum of the objective function [29]. Its design resembles the annealing process in
metallurgy. Simulated annealing utilizes the Metropolis algorithm [54]. The optimum pa-
rameter is found iteratively by randomly drawing a new parameter set xnew in the vicinity of
the current optimum xold. The new parameter set is accepted if the objective function f (xnew)
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calculated from this set has increased from the previous optimum f (xold). Otherwise, the
non-optimal parameter set can still be accepted based on the Boltzmann distribution:

P(xnew) ∝ exp
(
− f (xold)− f (xnew)

T

)
(7)

Here, T represents a numerical temperature, intended to be reduced during iteration.
Reducing the temperature will effectively reduce the probability of accepting non-optimal
parameter sets. Simulated annealing has three parameters (initial temperature, number
of draws at a fixed temperature level and rate of temperature reduction) that need to be
carefully tuned for each problem [29].

2.3.3. Shuffled Complex Evolution-University of Arizona (SCE-UA)

The Shuffled Complex Evolution method, developed at The University of Arizona
(SCE-UA). is an efficient, flexible and robust algorithm that is able to find the global op-
timum of the calibrated model [30]. Following Duan et al. [30], SCE-UA embodies the
properties that an optimization algorithm must possess: (1) global convergence when
multiple local optimums can be found; (2) ability to avoid being trapped in non-optimum
regions on the objective function surface; (3) robustness when the parameter sensitivities
differ and parameter interdependencies exist; (4) non-reliance on the availability of an
explicit expression for the objective function or the derivatives; and (5) high-parameter
dimensionality handling. The method is based on four main concepts [30,55]: (1) a combi-
nation of deterministic and probabilistic methods; (2) systematic evolution of a ‘complex’
in a systematic search by drawing points spanning the parameter space, which is the global
optimum; (3) competitive evolution; and (4) shuffling of the complex. Indeed, SCE-UA
combines the algorithms of the simplex procedure [56], random search [57], competitive
evolution [58] and complex shuffling [59]. The parametrization of SCE-UA needs to be
carefully tuned for each problem, and has been one of the most widely used algorithms in
hydrological applications [53].

2.4. Analysis Steps for Model Parameter Calibration
2.4.1. Application of Different Optimization Algorithms for Parameter Estimations

A brief summary of the important features and case-specific settings for the studied
algorithms are presented in Table 3. The three algorithms differ in their approaches to
deriving the initial best-guess value (and other initial settings), numeric methods and
objective functions (Table 3). We have presented a diagram showing the general procedures
to estimate the parameters for each model using any of these optimization algorithms
(Figure 2). In brief, this could be described as follows:

1. Define the initial distribution of the parameters. Here, we choose the uniform prob-
ability distribution function (Table 3); thus, parameter values were drawn with an
equal probability between a given lower and upper boundary.

2. Draw the initial parameter vector and choose the appropriate algorithm settings. In
this step, we mostly adopt the default settings (Table 3) using the implementation
software (Section 2.6) [53]. Note that the step size parameter was used for the following
parameter sampling.

3. Sample the parameters around the current values, which vary mainly depending on
the numeric method of the algorithm (Table 3).

4. Perform model simulations with the sampled parameter vector and obtain the objec-
tive function by comparing the model output to the observed values.

5. Evaluate whether the new parameter vector should be kept or not, which differs in
the criterion for different algorithms (Table 3). In general, a better objective function
could result in a new parameter position [53].

6. Repeat steps 3–5 in an iterative process unless the finishing criterion of the algorithm
has been reached (Figure 2).



Agronomy 2023, 13, 679 9 of 22

Table 3. A brief summary of the features and user-specified settings for the three employed optimiza-
tion methods.

Features Maximum Likelihood
Estimation (MLE) Simulated Annealing (SA)

Shuffled Complex
Evolution-University of Arizona

(SCE-UA)

Optimization direction
Adapting parameters in

directions with an increasing
likelihood

Emulating the physical
process whereby a solid is

slowly cooled until the
minimum possible energy

Evolution based on a statistical
“reproduction” using the “simplex”

geo-metric shape towards an
improvement direction

Algorithm Metropolis-Hastings Metropolis
Combines the simplex procedure,

random search, competitive
evolution and complex shuffling

Risk to stuck in
local optimum High Medium Low

Supporting Reference [28] [29] [30]

Case-study settings

Prior assumed
distribution of

parameter values
Uniform distribution Uniform distribution Uniform distribution

Maximum number
of repetitions 30,000 30,000 30,000

Initial best-guess of
parameter values

Best parameter sets after
running the first 10% of

repetitions (a burn-in analysis)

Median of randomly sampled
values from the prior

distribution
(sample size = 1000)

Randomly sampled from
initial population

Initial algorithm setting

Step size: difference between
50th and 40th percentile over

randomly sampled values
from the prior distribution

(sample size = 1000)

Step size: difference between
50th and 40th percentile over

randomly sampled values
from the prior distribution

(sample size = 1000)

Number of complexes: 40;
Number of past evolution

loops: 100

Objective function
calculated between

simulations
and observations

Maximize the
logarithmic probability Maximize the negative RMSE Minimize the RMSE

Finish criterion Maximum
repetitions exhausted

Maximum repetitions
exhausted or complete cooling

down of optimization

Maximum repetitions exhausted or
parameter convergence occur

The details of how the calibration approach was applied could have important impacts
on the estimated parameters, e.g., the initial lower and upper boundary of parameter
distribution [26]. Therefore, we have empirically defined the parameter boundary (baseline
setting), shown in Table 2, according to the information collected from the literature
data, modelling experts and local winegrowers or viticulturists. However, it could not
be determined for certain that the specified boundary settings would guarantee that the
algorithm would find optimal parameters. Therefore, we imposed in our experiment
a variable range for the parameter boundary (Figure 2): we gradually expanded the
baseline setting on each parameter range by a fixed percentage of 20%, 40%, 60%, 80% and
100%, respectively (i.e., 120–200% relative to baseline range). For each of these expanded
range settings, we performed a full optimization run and computed the RMSE (modelling
errors) between observations and simulations using the obtained optimized parameter
vectors. Note that MLE and SA did not choose to minimize the RMSE as the objective
function (Table 3). It was expected that a plateau/saturation in the modelling errors (RMSE)
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would be found, which would possibly imply that the appropriate parameter search space
was found.
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2.4.2. Identification of the Main Source of Variability by ANOVA

ANOVA is a standard approach to quantifying different sources of uncertainty in crop
modelling and climate impact assessment studies [5,21]. To quantify the contribution of
the models (5 levels), algorithms (3 levels) and varieties (2 levels) to the total variance
in the prediction performance (fit to calibration data), a 3-factor ANOVA with a fixed
experiment design was conducted. To obtain a uniform structure for the ANOVA, the
predictive performance of the calibrated model was quantified, as the RMSE explained
in Section 2.4.1. Note that the ANOVA was conducted per boundary setting. This could
be useful in investigating whether the main source of variability (i.e., uncertainty) during
optimization/calibration could vary with different boundary settings.

2.4.3. Parameter Variability between Algorithms

The parameter variability for each model was quantified as the variation (i.e., the
coefficient of variation, CV) in the obtained optimal parameter values across the different
optimization algorithms. The dimensionless nature of CV allows the comparison of pa-
rameters in different models. It also permits an assessment of whether a model has more
unstable parameters than others when different algorithms are applied. Note that this was
different from studies that computed the variability (uncertainty) in calibrated parameter
values from either multiple folds of cross-validation [8], or from the obtained posterior
distribution of parameters [7].
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2.5. Evaluations of Goodness-of-Fit

A number of conventional goodness-of-fit measures were adopted to evaluate the
agreement between the observation and simulation of the optimal parameters [5,7,8],
including Mean Bias Error (MBE), Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE) and the coefficient of determination (R2). These metrics mainly evaluated how
well the model simulations, using the obtained parameters for each algorithm, agreed
with the observations. Note that the evaluation was based on the same data that were
used for calibration, meaning that the results are generally not indicative of the predictive
performance for new and different situations. This could be useful for comparison with
other studies [5,13]. The ensemble median among different models was adopted as the best
predictor, in accordance with a study with 27 different phenology modelling groups that
showed a slightly better prediction performance for the ensemble median than that of the
ensemble mean [6]. Moreover, since the selected models had varying degrees of complexity,
Akaike’s Information Criterion (AIC) [60] was used to rate the prediction accuracy over
the model structures. It aimed to evaluate the trade-off between model parsimony and
efficiency, as it allowed the combination of information on the model complexity in terms
of the number of parameters and the prediction accuracy in terms of the mean squared
error [60]. It has recently been recommended that its application is integrated into standard
calibration guidelines [13]. The lower the AIC score is, the better trade-off the model has:

AIC = n× ln

(
∑n

i=1(Si −Oi)
2

n

)
+ 2k (8)

where Oi and Si were the observed and simulated values using the obtained best-fit
parameters, respectively, and n and k corresponded to the sample size of the observation
and the number of parameters, respectively.

2.6. Implementation Software

All the phenology models were written in python according to Equations (1)–(6).
Numpy (v1.21.2), Panda (v1.3.4), Matplotlib (v3.4.3) and Statsmodels (v0.13.1) were in-
volved in the data processing, statistical analysis and result visualization. For the parameter
optimization procedures illustrated in Figure 2, the open source python package of Sta-
tistical Parameter Optimization Tool (SPOTPY, v1.5.14) was used [53]. SPOTPY provided
a wide range of implementations for the parameter optimization algorithms for calibra-
tion, uncertainty and sensitivity analysis in a simple, independent, flexible and consistent
environment [53].

3. Results and Discussion
3.1. Overview of Optimization Performance

It is evident that all three algorithms tend to follow a very similar pattern, which
consistently shows that the different boundaries of the initial parameter distribution have
an impact on the optimization performance (Figure 3). However, it also depends on
the phenology model in use. When the search space is expanded by 100% from the
initial baseline setting (Table 2), the optimized final RMSE is considerably reduced from
approximately 10–12 days (depending on the variety) to 6–7 days for the GDD model,
while the remaining models have a relatively smaller variation of about 5–8 days (Figure 3).
The plateau/saturation of the optimization performance for all the models and algorithms
was when the expanded parameter range was between 80% and 100% (Figure 3).

A sufficient setting for the initial parameter distribution is important for the parameter
optimization. The assumed uniform distribution is generally considered appropriate [7,32].
Therefore, our focus turns to the lower and upper parameter limits. The results indicate
that the initially defined parameter boundary (baseline settings) (Table 2) is insufficient, as
smaller optimized RMSE values are found when it is expanded. An appropriate boundary
is found when the initial range is expanded by 100% (80% is not chosen to avoid random
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variability between 60–80%, which is detected in MLE) (Figure 3). The corresponding
updated parameter boundary is presented in Table S1, which should set the standard for
the subsequent analysis. With this setting, a better fit to the calibration data is consistently
found in TF rather in TN (Figure 3), which could be possibly due to the smaller temporal
variability in the phenology observations for TF than for TN (Table 1).
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Figure 3. Root Mean Squared Error (RMSE) computed between five phenology model simulations
of the optimum parameters obtained from three global optimization algorithms (MLE: Maximum
Likelihood Estimation; SA: Simulated Annealing; SCE-UA: Shuffled Complex Evolution) and the
corresponding observed flowering data of two dominant Portuguese grapevine varieties (Touriga
Franca: filled orange symbols; Touriga Nacional: filled green symbols). The orange and green
symbols are slightly displaced in the x-axis to avoid the symbol overlap. The analysis is carried out
by gradually expanding the initially defined range of distribution for each model parameter (baseline
settings) by up to 100% (the percentage in the x-axis corresponds to each expanded percentage test
category). An expanded range of 20–100% corresponds to 120–200%, relative to the initial baseline
range. The observed phenology data correspond to blended multi-vineyard observations within the
Douro region in the period of 2014–2021.

Many parameter estimation studies choose to define the initial parameter boundary
using their empirical knowledge and information in the literature [7,8,31,32]. For instance,
in a case study from arid Northwest China, Ran et al. [32] suggest that the initial lower and
upper parameter boundary can be directly set as ±30%, which is around the nominal value
defined by the data in the literature; however, they found two key parameters with incorrect
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posterior distributions, resulting from their inaccurate initial nominal values [32]. This
implies that the empirical choice could sometimes be inaccurate. Hence, it is important to
explicitly examine different boundaries. For all the algorithms, different boundary settings
cause a larger variation in the optimized RMSE for the GDD model (for both varieties) than
for the other models (Figure 3). GDD is a simple linear model and has only one parameter
(F*); this is calibrated in our case (Table 2). Accordingly, more precise information on the
initial parameter distribution is required. However, it also seems that the appropriate value
of the thermal threshold (F*) for the flowering stage of the two varieties of vine is not
covered by our initial baseline setting (Table 2).

3.2. Variations in the Main Source of Uncertainty

The ANOVA results quantify the different sources of variance to the total prediction
errors (quantified using RMSE) of the calibrated models, which are presented in Table 4. The
results indicate that the dominant source of variability can depend on the initial parameter
boundary (Table 4). Variations among models explain most of the total variance when
the initial boundary is expanded by up to 40% (Table 4). At a larger expanded boundary
between 60% and 100%, the difference between the two varieties appears to account for
most of the variance (Table 4). In comparison, the variations among the algorithms or the
algorithm-related combinations (Algorithm ×Model or Algorithm × Variety) contribute
only a small fraction to the total variance throughout (Table 4). All factors, including their
interactions, show statistical significance (p < 0.01), except for the interaction between
algorithm and variety (Table 4).

Table 4. Analysis of Variance (ANOVA) for RMSE computed between observations and simulations
(with the optimal parameters) from different combinations of optimization algorithms, phenology
models and grapevine varieties. ANOVA is conducted under different settings of parameter search
space. Asterisks indicate the statistical significance of F statistics at p < 0.01 (df: degree of freedom).
The main source of variance is highlighted in bold for each experimental setting. The results for
intercept are not shown. Note computation of all statistics (e.g., F value) is based on the full numeric
precision, but numbers are all rounded to only three decimal digits for simplicity in this table.

Experimental Settings on
the Parameter
Search Space

Source of Variability Sum of Squares df Mean Squares F

Baseline

Algorithm 0.021 2 0.010 10.921 *
Model 109.746 4 27.436 28,783.694 *
Variety 2.546 1 2.546 2671.396 *

Algorithm ×Model 0.050 8 0.006 6.502 *
Model × Variety 7.561 4 1.890 1982.982 *

Algorithm × Variety 0.004 2 0.002 2.062
Residual 0.008 8 0.001

20%

Algorithm 0.028 2 0.014 20.509 *
Model 46.037 4 11.509 16,937.038 *
Variety 2.891 1 2.891 4253.860 *

Algorithm ×Model 0.038 8 0.005 7.015 *
Model × Variety 3.876 4 0.969 1425.862 *

Algorithm × Variety 0.001 2 0.000 0.630
Residual 0.005 8 0.001

40%

Algorithm 0.039 2 0.019 1.547
Model 16.555 4 4.139 329.154 *
Variety 2.753 1 2.753 218.942 *

Algorithm ×Model 0.102 8 0.013 1.015
Model × Variety 2.031 4 0.508 40.375 *

Algorithm × Variety 0.036 2 0.018 1.451
Residual 0.101 8 0.013
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Table 4. Cont.

Experimental Settings on
the Parameter
Search Space

Source of Variability Sum of Squares df Mean Squares F

60%

Algorithm 0.055 2 0.027 39.323 *
Model 7.792 4 1.948 2789.948 *
Variety 4.749 1 4.749 6802.155 *

Algorithm ×Model 0.139 8 0.017 24.871 *
Model × Variety 0.382 4 0.095 136.731 *

Algorithm × Variety 0.005 2 0.002 3.563
Residual 0.006 8 0.001

80%

Algorithm 0.047 2 0.024 36.510 *
Model 5.399 4 1.350 2091.537 *
Variety 4.989 1 4.989 7731.389 *

Algorithm ×Model 0.106 8 0.013 20.564 *
Model × Variety 0.478 4 0.120 185.283 *

Algorithm × Variety 0.001 2 0.000 0.724
Residual 0.005 8 0.001

100%

Algorithm 0.126 2 0.063 51.434 *
Model 5.658 4 1.415 1159.106 *
Variety 5.139 1 5.139 4210.815 *

Algorithm ×Model 0.249 8 0.031 25.455 *
Model × Variety 0.446 4 0.111 91.354 *

Algorithm × Variety 0.002 2 0.001 0.967
Residual 0.010 8 0.001

The ANOVA design is analogous to that of a study estimating the variance in model
errors based on simulations with optimized parameters using three different calibration
methods [7]. It is important to decompose the total variance in model errors to better
understand the contributions of different sources. Similarly, Kawakita et al. [8] present
a study involving 3 optimization methods × 3 phenology models × 3 Japanese wheat
cultivars, concluding that all three factors impact the predictive performance (quantified
with RMSE). However, they do not reveal which factor tends to play a major role [8]. In an
attempt to fill this research gap, we demonstrate that the main source of uncertainty for the
optimization results can vary with the assumed initial parameter boundary. The choice of
model tends to play a major role when the initial parameter boundary is expanded by up to
40%, which can relate to the relatively high prediction errors of the GDD model (Figure 3).
It appears that expanding the initial range by 40% (i.e., 140% relative to baseline setting) is
still insufficient to optimize every model.

Given that the standard setting is to expand the initial baseline boundary by 100%, the
“true” dominant source of uncertainty is identified as variety (Table 4). For a given variety,
either the choice of the model or optimization method can be treated as a tool for analysis.
Ideally, smaller uncertainties should be expected from them in order to better approximate
observations of different varieties (predicting events), which can be considered as the
external factor. This is especially important when there is a natural variability between
observations, i.e., different variability in observed phenology between TF and TN (Table 1).
Therefore, an overall reasonable calibration result is achieved in our study. Indeed, the
difference between varieties represents the second largest source of uncertainty even
when there is a still remarkable variability between models (boundary expansion ≤ 40%)
(Table 4). In contrast, the selection of the optimization algorithm is identified as the smallest
contribution to the overall uncertainty (Table 4), which can also be evidenced by a very
similar pattern of evolution for the predictive performance shown in Figure 3. Gao et al. [7]
come to similar findings using three different calibration approaches, namely Generalized
Likelihood Uncertainty Estimation (GLUE), MCMC and OLS for the flowering timings
of four different rice varieties in a multi-environmental trial in Madagascar and Senegal.
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However, for another study simulating the heading date of Japanese winter wheat, the
simulation errors of the calibrated models for new and different environments tend to
vary considerably among different algorithms [8]. Therefore, we assume that whether the
results among different algorithms agree or not may depend on the subject, region and
focus of the study. In our case, for predicting the flowering timing of two vine varieties, the
focus is on the predictive performance of the same data used for calibration. The identified
small variability among the algorithms could prompt users to just choose the simplest one,
i.e., MLE (relatively simple in terms of code implementation), to calibrate their models.
However, it could be of high interest to evaluate how well the calibrated models that use
these algorithms predict new and different situations using independent data sets [6]. Note
that the spatial variability in the prediction performance can also contribute to the total
prediction uncertainties; however, this is not separately quantified, as it is already included
at the variety level.

3.3. Estimations of Parameter Variability

At the standard initial boundary setting (Figure 3), the estimated parameter values are
considered optimal by a given algorithm, which is presented in Table S2. The resulting pa-
rameter variability among algorithms is shown to depend on the model structure (Figure 4).
For both varieties, a relatively lower CV (≤20%) is found for models with near-linear
functions (linear plateau for GDD and Richardson, and piecewise linear for Triangular),
while the non-linear models (Sigmoid and Wang) present a much higher CV (up to 274%)
(Figure 4). In particular, all the obtained optimal parameters diverge substantially among
the algorithms for the Sigmoid model (CV is 25–75% for TF and 42–95% for TN), while for
the Wang model, the unstable parameter among the algorithms mainly occurs for the Tb
parameter (CV is 30% for TF and 274% for TN) (Figure 4). In contrast, stable (CV ≤ 6%)
parameters are obtained for the GDD and Richardson models, with a near-linear structure
and a growing degree-day-based concept (Figure 4 and Table S2).
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with the expanded lower and upper boundary of parameter distribution by 100%, relative to the
baseline settings. The obtained individual parameter values are presented in Table S2. Note that the
CV value for Tb parameter of the Wang model in TN is denoted as it exceeds 100%.

Selected optimization algorithms should ideally converge into the same or nearly the
same parameter values for a given model. The variation in the final parameter values, if any,
could be small and possibly result from inherently different numeric accuracies between
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the algorithms or the intrinsic randomness of each algorithm [13,53]. In our case, similar
parameter values occur for near-linear models (GDD, Richardson and Triangular). However,
a larger parameter variability is found for Sigmoid and Wang. Parameter variability
could be associated with the issue of equifinality or being multi-modal [61]: different
parameter combinations (Figure 4 and Table S2) result in similar prediction errors among
algorithms (Figure 3). This is a common phenomenon in phenology modelling [13,26,31].
The underlying cause can be the issue of parameter correlation [8,25]. Liu et al. [25] show
that parameters with a higher uncertainty can have a stronger relationship with others,
using data collected across major winter wheat production provinces in China. In most
of the temperature–response functions of our models (Figure S1), a negative correlation
is found between Tb and F*, where a lower Tb value can be offset by a higher F*. This
means that an increased temperature accumulation rate (per day) due to a lower base
temperature can be eventually offset by setting a higher thermal threshold (we confirm this
point, but it is not shown). Therefore, calibration does not always lead to unique parameter
values [8,13,26,27,31].

Moreover, our results illustrate that the variability in the estimated parameter val-
ues, using different optimization algorithms, may depend on the model structure. It was
previously reported that models with fewer parameters can have smaller parameter uncer-
tainties: the largest uncertainty mainly occurs for a sigmoidal and exponential function
model (similar to our sigmoid model) with many mutually correlated parameters [8].
Besides the number of parameters, our study further reveals that models with a more
complex (e.g., non-linear) structure tend to have more unstable parameters than those
with a simpler structure (e.g., near-linear) (Figure 4). In other words, equifinality or being
multi-modal is more prone to occur during the optimization of non-linear models than for
near-linear ones. It is possible that complex models tend to have a more complex surface of
objective functions, leading to multiple local optimums with different parameter vectors.
Nevertheless, higher parameter variability is generally found for TN than for TF (Figure 4),
which can be associated with the higher inter-annual variability in the observed phenology
of TN than for TF (Table 1), i.e., it is more difficult to find best-fit parameters given the
observed data.

3.4. Evaluations between Observations and Simulations of Optimized Parameters
3.4.1. Similarity among Algorithms

For individual models, the evaluation results generally show satisfactory agreement
between the observations and simulations using optimized parameters, regardless of the
algorithm (Figures S2–S4). Differences in the MBE, MAE and RMSE among the algorithms
are negligible (≤2 days), while no changes are detected for R2 except for the Sigmoid model
(Figures S2–S4). Specifically, the Sigmoid model optimized with SA (Figure S3) provides
slightly less satisfactory predictions (R2 = 0.5) than those (R2 is 0.6–0.7) by coupling it
with either MLE (Figure S2) or SCE-UA (Figure S4). Consequently, the ensemble median
predictor results in a similar predictive performance over the algorithms, where the corre-
sponding RMSE (MAE) is 5–6 (4–5) days, with minimized MBE (0–1 days) and moderately
good R2 (0.5–0.6) (Figure 5).

The evaluation of how well the calibrated model (with the obtained optimized pa-
rameters) can reproduce the data is an integral part of model calibration studies [5,7,
8,25]. Although these algorithms diverge in their obtained optimal parameter values
(mostly for non-linear models) (Figure 4), they nearly converge in their prediction per-
formance (Figures 5 and S2–S4). This is also consistent with the ANOVA results (Table 4).
The algorithms are all demonstrated to be useful and effective for parameter estima-
tions/calibrations for the multi-model ensemble, as evaluated by a range of goodness-of-fit
metrics (Figures 5 and S2–S4). The results are generally comparable to those within the
grapevine phenology modelling community [9–11,51]. For instance, the RMSE is 5.9–
6.3 days for a differently parameterized Spring Warming model when predicting the
flowering stage of 43 grapevine varieties based on 1092 observations across a wide range
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of European wine regions [11]. RMSE ≤ 7 days is generally regarded as the key criterion
for an acceptable predictive performance [9–11,51]. This is obtained in the current study,
together with almost zero mean bias and a small MAE (≤6 days); this is the case for either
the individual models or for the ensemble median predictor. The multi-model ensem-
ble median predictions are comparable to or nearly as good as those of the best model
(Figures 5 and S2–S4). This aspect is consistent with other studies [6,14].
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Figure 5. Comparison between observed flowering timing (DOY) and the median of the ensemble
model simulations using optimized parameter values (Table S2) from (a) MLE, (b) SA and (c) SCE-
UA. Touriga Franca (TF) and Touriga Nacional (TN) are denoted with orange and green symbols,
respectively. Mean Bias Error (MBE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE)
and the coefficient of determination (R2) are conventional statistics for evaluating the goodness-
of-fit. The geographic locations of the study sites for each variety are presented in Figure 1 and
Table 1. Evaluations for individual model simulations are shown in the supplementary material
(Figures S2–S4).

Slightly poorer predictions for the Sigmoid model optimized by SA than those of the
other two algorithms could be mainly due to the unrealistically small F* value (7.7 for
TN) obtained by the SA, accompanied by a high e value (Table S2), i.e., more difficulties
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in obtaining effective temperature accumulations. SA, as a hyper-parameter algorithm,
should be carefully tuned for each specific optimization task. Thus, it is advisable that the
different parameter settings of SA are tested and explored in future studies. Moreover, the
obtained R2 (0.4–0.7) is less satisfactory (Figures S2–S4), and the ensemble median predictor
can only explain up to 60% of the total spatial–temporal variations in the observations
(Figure 5). It should be noted that the current study utilized a gridded meteorological
dataset (0.1◦) [39] for phenology modelling. It is expected to have input errors during
calibration. The overall moderate performance suggests the feasibility of the gridded
dataset for modelling actual observed phenology, hinting at the potential for large-scale
applications. Yet, to better capture the underlying spatial–temporal variability, models
need to see continuous improvement (e.g., to incorporate the photoperiod and dormancy
effects), along with better and high-quality field measurements (e.g., data from a target
population) [6].

3.4.2. Difference between Modelling Types

AIC shows a similar pattern to that of previous evaluation results (Figures S2–S4),
where a better performance is found for TF than for TN, and different algorithms result in
very similar results but with variations among models (Figure 6). For TF, the AIC values
are, on average, about 123 for degree-day (GDD, Richardson) and 118 for non-degree-
day (Sigmoid, Triangular and Wang) models, respectively (Figure 6a). For TN, they are,
respectively, 134 and 126 for degree-day and non-degree-day models (Figure 6b). Small
variations are generally found within each model type (Figure 6).
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It is of particular interest to quantitatively evaluate individual model performances
to understand the ensemble variability, which could indicate the ensemble quality, e.g.,
if some models outperform others. One of the somewhat commonly applied evaluation
metrics for phenology modelling is AIC, which considers both the predictive performance
and model complexity [11,12,50]. To predict the flowering stage in the DDR, Costa et al. [50]
report AIC values of 159–172 for TF and 170–180 for TN, using four phenology models
optimized by SA. In comparison, our AIC values are considerably smaller for both varieties
(<135) (Figure 6), suggesting that a better trade-off (parsimony and efficiency) is obtained
for the currently applied model and algorithm combinations. Moreover, our results indicate
that the non-degree-day-based models mostly outperform the degree-day-based models
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(Figure 6). Although GDD is preferentially selected over many other models as the best
choice for simulating the flowering timing of 95 different grapevine varieties [9], it is not
the favorite choice for TF and TN within the DDR, where high-temperature events are
frequent (Figure 1b) [33]. It is known that models based on the concept of “degree-days”
have limited applicability in phenology predictions under extreme climate conditions [2].
Meanwhile, for non-degree-day models, better performance is achieved with a non-linear
structure (Sigmoid and Wang) (Figure 6). Although these models tend to have more
unstable parameters when different algorithms are used (Figure 4), they seem to have more
appropriate temperature–response functions for predicting the flowering stage of the two
varieties in the DDR. Nevertheless, the best model and/or algorithm should be dependent
on a specific situation, e.g., environment and/or variety.

4. Conclusions

We have presented a study illustrating the influencing of common factors (model,
optimization algorithm and variety) on the predictive performance of calibrated phenology
models. The parameters of five models (GDD, Richardson, Sigmoid, Triangular and Wang)
with varying degrees of complexity are optimized for simulating the flowering stage of two
important grapevine varieties in a mountainous wine region (DDR), using three different
optimization algorithms (MLE, SA and SCE-UA). We demonstrate that it is important to
first define the appropriate boundary of the initial parameter distribution. A narrow range
in the distribution could hinder the optimization algorithm from finding out the best-fit
parameters, leading to a contrasting prediction performance between the model groups.
Using the appropriate parameter boundaries, the variety in the simulation represents the
largest contribution to the overall variability. Ideally, the variability among the models
or optimization algorithms (considered as internal factors) should be smaller than that
between varieties (considered as the external factor), in order to provide indicative results
for a reasonable calibration. This is particularly necessary when there is natural variability
between two varieties, as reflected by the different inter-annual variability in the observed
phenology data. In contrast, the lowest contribution to the overall variability is the choice
of the applied algorithm. All algorithms result in a similar magnitude of goodness-of-
fit, with the calibrated multi-model ensemble median providing fairly good predictions.
Within the multi-model ensemble, non-linear models (Sigmoid and Wang) outperform near-
linear ones, especially for those with the degree-day-based concept (GDD and Richardson).
However, the former models tend to have more variable parameters than the latter ones
when different algorithms are used, suggesting the link between parameter variability and
model structure.

Overall, our study could provide new insights in order to better inform users about the
importance of their choice when different optimization methods are available and when es-
timating cultivar-dependent parameters for multiple phenology models. Consequently, this
study might contribute to formulating guidelines on the appropriate calibration practices
for phenology models or crop models in general.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13030679/s1, Figure S1: Graphic representation of
examples of different parameter sets provided for each studied phenology model; Figures S2–S4:
Comparison between observed and simulated flowering DOY (day of year) by individual phenology
model simulations with optimized parameter values from the Maximum Likelihood Estimation
(MLE), Simulated Annealing (SA) and Shuffled Complex Evolution-University of Arizona (SCE-
UA) respectively for Touriga Franca (TF) and Touriga Nacional (TN). Conventional statistics such
as Mean Bias Error (MBE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and
the coefficient of determination (R2) are calculated; Table S1: Selected parameters of phenology
models for calibration with the specified initial lower and upper boundary of parameter distribution
corresponds to the expanded baseline setting of each parameter range in Table 2 by 100%; Table S2:
The optimized parameter values of applied phenology models under different algorithms given the
observed flowering data for the variety of Touriga Franca (TF) and Touriga Nacional (TN). These are
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obtained with the expanded lower and upper boundary of parameter distribution by 100%, relative
to the baseline settings.
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