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Uncertainties in critical slowing down
indicators of observation-based fingerprints
of the Atlantic Overturning Circulation
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Niklas Boers 1,2,3

Observations are increasingly used to detect critical slowing down (CSD) to
measure stability changes in key Earth system components. However, most
datasets have non-stationary missing-data distributions, biases and uncer-
tainties. Here we show that, together with the pre-processing steps used to
deal with them, these can bias the CSD analysis. We present an uncertainty
quantification method to address such issues. We show how to propagate
uncertainties provided with the datasets to the CSD analysis and develop
conservative, surrogate-based significance tests on the CSD indicators. We
apply our method to three observational sea-surface temperature and salinity
datasets and to fingerprints of the AtlanticMeridional Overturning Circulation
derived from them.Wefind that theproperties of these datasets and especially
the specific gap filling procedures can in some cases indeed cause false indi-
cation of CSD. However, CSD indicators in the North Atlantic are still present
and significant when accounting for dataset uncertainties and non-stationary
observational coverage.

In recent years there has been increasing focus on non-linearities and
the potential of abrupt transitions in the Earth system, especially in
response to anthropogenic greenhouse gas emissions. Of particular
interest are systems that have multiple stable equilibrium states, and
so could rapidly transition in a self-perpetuating way to a different
state once a critical forcing threshold is reached1. When such systems
approach a transition to a different state in response to gradual
changes in forcing, they may exhibit so-called critical slowing down
(CSD), in which their response to perturbations changes in a char-
acteristic manner2. CSD can be a sign of a forthcoming transition and
may in certain situations be used to anticipate it; statistical signs of
CSD, such as increasing variance or autocorrelation, have hence also
been termed early-warning signals3. CSD has been identified in
observations of numerous Earth system components that have been
identified as tipping elements1. These include theGreenland Ice Sheet4,
the Atlantic Meridional Overturning Circulation (AMOC)5,6, the Ama-
zon rainforest7, as well as other parts of global vegetation8,9.

However, CSD indicators such as the variance and lag-one
autocorrelation3 or the restoring rate5,10 are calculated from observa-
tional datasets that are not optimised to capture higher-order statis-
tics. Observational datasets employ a variety of methods to combine
data from different instruments, adjust observational biases and fill in
missing grid cells. These methods are tuned to best capture mean
global trends in the data, sometimes at the cost of underlying statis-
tical properties. For example, variance may decrease just as a result of
increasing data coverage. This can be causedby an increasing numbers
of observations that canbe taken into account for each reported value,
e.g. by taking the mean over samples of increasing size and corre-
spondingly reduced standard error. However, this is just a simplified
example, and as each observational dataset has its own specific
methods of data assimilation and infilling, it is not possible to gen-
eralize the effect that observational dataset uncertainties would have
on higher-order statistics. For an in-depth investigation of data
aggregation effects using remote sensing data we refer to Smith et al.8.
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In this work we focus on sea-surface temperature (SST) and salinity
based CSD indicators for the AMOC. We show how dataset uncer-
tainties can be incorporated into the CSD analysis, and how the stan-
dard significance testing methods can be modified to account for the
influence of different infilling methods.

This study is based on the work by Boers et al. 20215 (hereafter
B21). B21 analysed SST- and salinity-based proxies of the AMOC
strength11,12 to investigate whether a declining stability of the AMOC
can be detected from statistical indicators. The AMOC is a key element
of the Earth’s climate system, transporting large amounts of heat and
salt northward in the upper layers of the Atlantic Ocean. Paleoclimate
proxy evidence as well as theoretical considerations suggest that the
AMOC isbistable, with a second, substantiallyweaker circulationmode
in addition to the present strongmode13–18. The bistability of theAMOC
has recently been supported by comprehensive high-resolutionmodel
simulations19. There are several lines of proxy- and observation-based
evidence suggesting that the AMOC has indeed weakened in the last
decades to centuries20, although the decline and its cause are still
controversial21,22. Finally, comprehensive models predict that the
AMOC will weaken further under anthropogenic global warming23.

The most commonly used CSD indicators are an increase in the
variance and autocorrelation of a time series. However, these indica-
tors can result in false positives, as an increase in the variance or
autocorrelation can also be caused by a corresponding statistical
change in the external conditions, such as an increase in the auto-
correlation of the driving noise. To avoid such false positives, B21
introduced the corrected restoring rate, estimated under the
assumption of non-stationary correlated noise driving the system. We
simply refer to as restoring rate λ in the following. For a system in state
x close to equilibrium, we can linearize about the equilibrium state and
thus the dynamics can be approximated as dx

dt ≈ λx +η, where η stands
for random external perturbations. λ can thus be estimated by
regressing and estimating of the derivative dx/dt against x. One can
then avoid false CSD indicators caused by the properties of η by per-
forming this regression with a generalized least square algorithm that
assumes noise with varying autocorrelation (for more details see B21).
λ is negative for systems close to a stable state, and when amultistable
system approaches a critical transition, λ increases to 0 from below.
We focus on λ in the main text of the paper; corresponding analyses
and figures for the variance and autocorrelation can be found in
the Supplementary Materials.

A prerequisite for a statistically significant increase in CSD indi-
cators is a sufficiently long time series. Direct observations of the
AMOC strength in the Northern Atlantic only go back to 200424.
Consequently, numerous AMOC fingerprints based on observations
spanning longer time periods have been suggested, which are thought
to reflect variations in the strength of the AMOC. As the AMOC
transports heat and salt northward, SSTs and salinity profiles are
commonly used as AMOC fingerprints. B21 took two approaches to
identifying CSD indicators for the AMOC. The first is to look for CSD
indicators in previously identified fingerprints that are constructed by
averaging SSTor salinity over a specific region11,12,25,26. For example, one
such fingerprint was proposed by Caesar et al. 201812 and is calculated
by taking the average SST in the subpolar gyre region minus the
average global SST (see also11). The second approach is to calculate the
CSD indicators for each grid cell in the SST or salinity dataset, and look
at the regions that are thought to be related to the AMOC strength. For
example, if the AMOC weakens, salinity is accumulated along its main
transport path, and thus the changes in near-surface salinity along the
Gulf Stream and North Atlantic Current are thought to reflect changes
in the strength of the AMOC15. B21 found significant increases in λ both
in the SST and salinity fingerprints and on spatially explicit maps, and
both of these approaches will be used in this work.

B21 used three observational datasets: the HadISST127 and
ERSSTv528 datasets for SSTs and the EN4.2.1 dataset29 for salinity

profiles. They provide smooth global fields from 1871 and 1854 to
present for the SSTdata, respectively, and from1900 topresent for the
salinity data. In this work we use an updated version of the
EN4.2.2 salinity data (EN4) and for further robustness testing addi-
tionally use the HadSST430 and HadCRUT531 SST datasets, which date
back to 1850.

Although this study will focus on SST and salinity datasets and on
CSD indicators, the work presented here can be generalised to many
other datasets and higher-order statistics (for example32).

Results
Uncertainty ensembles
In this section, we asses how uncertainties provided with the obser-
vational datasets propagate to uncertainties in the CSD indicators (or
other higher-order statistics). The only uncertainty provided for
EN4.2.2 is the uncertainty associated with the analysis method, and
that estimate has issues that limit its usefulness for our analysis; for
example, in some areas more observations actually increase the ana-
lysis uncertainty (see29). Thus, in this section, we make use only of the
uncertainties provided with the HadCRUT5, HadSST4 and ERSSTv5
datasets; see Methods for a detailed discussion of the analysis and
processing procedures of these datasets, as well as of the provided
uncertainties.

We first use all three datasets to calculate the AMOC fingerprint
proposed by Caesar et al. 201812 (Fig. 1). The advantage to using all
three datasets is that they represent three different ways of dealing
with missing observations. HadSST4 simply has no data where there
are no observations. In the HadCRUT5 infilled dataset those data
points are filled in, with the exception of a few remaining gaps, and in
the ERSSTv5 dataset all data points are filled in. Thus, HadSST4 only
has continuous coverage of the SPG from 1873, afterwhich the number
of gridcellswith data in eachmonth gradually increases (Fig. 2c),whilst
HadCRUT5has about the samenumber of grid cells in the SPGover the
whole period (Fig. 2e), and ERSSTv5 has full coverage throughout (not
shown). Thus, in HadSST4 the AMOC index could be biased towards a
sub-region of the SPG with more observations in certain time periods.
The increasing number of averaged full grid cells can affect the var-
iance due to the increased signal-to-noise ratios with higher data
density. On the other hand, infilling themissing grid cells inHadCRUT5
and ERSSTv5 comes with the uncertainties of the respective infilling
methods (see Methods).

For HadSST4, we create an ensemble that captures the uncer-
tainty at each grid cell by sampling the provided uncertainties (see
Methods) around each bias ensemble member, creating 200x100
samples. For HadCRUT5 and ERSSTv5, we simply make use of the
provided 200-member and 1000-member uncertainty ensembles,
respectively. In HadCRUT5 this ensemble already accounts for all
aspects of uncertainty, including the interpolation uncertainty. In
ERSSTv5 the ensemble only accounts for the parametric uncertainty,
but since many parameters are associated with the reconstruction this
ensemble includes the data processing effects that can influence the
detection of CSD (see Methods). In all three cases, we calculate the
AMOC index following Caesar et al.12 for each sample or member and
then calculate its λ (Fig. 1c, d). Because of the infilling ofmissing values,
the HadCRUT5 and ERSSTv5 based indices and corresponding λ esti-
mates have a larger uncertainty range than for HadSST4, especially in
the early years. This is also reflected in the distribution of trends: the
fitted Gaussian of λ trends of the HadSST4 samples is much narrower
(μ = 0.0059, σ =0.0003) than the ones for HadCRUT5 and
ERSSTv5 (μ =0.0046, σ =0.0013 and μ = 0.0049, σ =0.0007, respec-
tively)(Fig. 1e,f). We show the median, mean and operational time-
series for HadSST4, HadCRUT5 and ERSSTv5, respectively, as those
are the time series a user would obtain when downloading
the data from the Met Office and NOAA websites (www.metoffice.gov.
uk/hadobs/hadcrut5/, www.metoffice.gov.uk/hadobs/hadsst4/,
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https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html).The
operational product in ERSSTv5 is produced using the operational
values of the parameters, as opposed to their perturbed versions in the
parametric ensemble (see Methods).

However, the magnitude of the trend is of lesser interest to us
thanwhether or not it is statistically significant. To test for significance,
we calculate 1000 Fourier surrogates (see Methods) from each AMOC
time series, and use the obtained linear trends from the λ time series
for each sample or member individually to calculate a p-value (Fig. 1g,
h). 85.56% of HadSST4, 65% of HadCRUT5 and 50.8% of ERSSTv5
p-values are below 0.05, and 99.7%, 84.5% and 90.1% are below 0.1,
showing that even considering the dataset uncertainties, the increase
in λ of the SPG-based AMOC index is significant.

For the HadCRUT5 and ERSSTv5 datasets, we can take the ana-
lysis a step further - most regions of the Atlantic are either com-
pletely infilled or have enough years of data (Fig. 2e) to compute λ for
each grid cell, and repeat this for all ensemble members. The
resulting map shows a significant positive linear trend of λ in the
North Atlantic (Fig. 3a, i), similar to that seen in B21 for the HadISST
dataset5. The trends in the ensemble members vary, but their mean is
very similar to the trend of the ensemble mean (Fig. 3b, j, c–h, k–p).
We also fit a Gaussian curve to the ensemble distribution at
each gridpoint and show the regions where most of the
uncertainty ensemble λ trends are positive (μ − 2σ > 0, ~95%). These
regions are along the northern subtropical gyre, the North Atlantic
Current and in the Greenland, Iceland and Norwegian Seas in

Fig. 1 | Uncertainties of the restoring rate λ for sea-surface-temperature-based
fingerprints. Significance of trend in the restoring rate λ of subpolar gyre Atlantic
Meridional Overturning Circulation (AMOC) index in HadSST4 (a, d, g, j), Had-
CRUT5 (b, e, h, k) and ERSSTv5 (c, f, i, l). a, b, cMedian (mean) AMOC index (black)
and min-max range (turqouise) of 20000 samples (200 and 1000 ensemble
members) for HadSST4 (HadCRUT5 and ERSST). We use the mean instead of the
median for HadCRUT5 as that is the default product a user would download when
not investigating uncertainties, and for ERSSTv5 we use the operational data pro-
duct (see main text). d, e, f Same as (a, b, c) but for the λ of the AMOC indices,
computed using a window size of 60 years. g Distribution (orange) of linear trends
of λ computed from 100 Fourier surrogates for each AMOC index sample from

HadSST; distribution (turquoise) of linear trends of λ of samples from HadSST4
with a fitted gausian distribution (solid black). The linear trend of the median
HadSST4 index is shown in dashed black. f, i Same as e but for HadCRUT5 and
ERSSTv5, using 1000 fourier surrogates (FS) of the ensemble member AMOC
indices, and the linear trend of the mean and operational data. j p-value of linear
trend of λ of each sample of the HadSST4 AMOC index with respect to its own 100
Fourier surrogates. The p-values of the median with respect to 10000 Fourier
surrogates is shown as a dashed black line, and the 0.05 significance value is shown
as a solid grey line. k, l Same as g but for the AMOC index of theHadCRUT5 (ERSST)
ensemble members, with the p-value of the mean (operational) AMOC index as a
dashed black line.
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HadCRUT5 and ERSSTv5, with the addition of the sub-polar gyre
(Fig. 3a, i).

Supplementary figures 1, 2, 3 and 4 show the same calculations for
the variance and autocorrelation. The autocorrelation behaves simi-
larly to λ, although with lower p-values. The variance has no overall
trend, due to amarked decrease from 1850 to the 1950s in all three SST
datasets, which is likely caused by the increasing number of observa-
tions for the reasons explained above.

Global significance estimation with surrogates
In addition to an uncertainty estimation, it is also important to calcu-
late the statistical significance of our higher-order statistic of interest.
When we want to test a statistic of a time series xt, for example the
linear trendof its lambda time series, denoted by sλ(xt), this is generally
done by generating surrogate time series of xt, �xi

t
33. The values of the

statistic for many surrogate time series sλð�xi
tÞ can then be used as a

distribution to estimate the significance of the actual sλ(xt). Our null
model determines theproperties that the surrogate time series need to
have. When calculating CSD indicators, our null model should be a
time series that has the same autocorrelation structure and variance as
xt, but is otherwise random. Such a time series can be produced either
by measuring a finite number of autocorrelation properties of xt and
generating an according time series, or by the method of Fourier
surrogates, where the Fourier phases are randomly shuffled (see
Methods). These surrogates canbemodified to include the effects that

interpolation methods or lack of data have on the time series (e.g.
removing data points that are missing in the original time series).

It is important to note that in the case of calculating CSD indica-
tors, our conservative null model is an SST or salinity time series with
given properties, not a λ time series. In this regard, the surrogate
analysis of this work is more conservative than that in B21, who con-
sidered surrogates of the λ time series. This is because the auto-
correlation structure of λt has a non-trivial dependence on the
autocorrelation of xt. By generating surrogates of λt as in B21 one
ignores the wider range of autocorrelations that λt can have given
the autocorrelation of xt. This can result in a narrower distribution of
surrogate λ trends, and the significance of sλ(xt) is thus overestimated.
It is therefore important to generate time series from xt and not λt,
even if the former is computationally more costly. Note that this also
implies that Fourier surrogates are not generally suited to test trend
significance in arbitrary time-correlated time series. They should only
be used in situations where the trend of a sliding-window higher-order
statistic is estimated from a given time series, and one has access to
that time series to compute surrogates from.

In addition to the SST datasets with uncertainty estimates used in
the previous section, we also apply the surrogate analysis to HadISST1
for consistency with B21. The HadISST and ERSSTv5 datasets are
globally interpolated, and thus the time series at each gridpoint is
complete, and we can use Fourier surrogates to calculate their regions
of significance (Fig. 4a). Due to the holes in the HadCRUT5 dataset we

Fig. 2 | Non-stationarity of sea-surface temperature (SST) observational data
coverage. a Mean number of SST observations per month in HadSST4 and Had-
CRUT5 for the time span 1850–2021 in each grid cell.bNumber of observations per
month in HadSST4 and HadCRUT5 in the subploar gyre (SPG, black) and globally
(turqouise). Raw observations are the same for both HadSST4 and HadCRUT.

c Number of years with complete annual mean data (see Methods) for HadSST.
d Fraction of full grid cells (grid cells with data in each month), after taking the
annual mean in the SPG (black) and globally (orange) in HadSST. e Same as (c) but
forHadCRUT. f Same as (d) but for HadCRUT. The SPG area is shown as a square on
the maps.
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cannot use Fourier surrogates (see Methods) and thus use AR(2) sur-
rogates instead to calculate the significant regions (Fig. 4b).

For all three datasets, the regions of increasing λ extends over the
whole North Atlantic with similar patterns, but only smaller regions
show statistically significant change at the 0.05 confidence level. For
HadISST, significant increase only occurs along the North Atlantic
Current, the density-driven part of the AMOC, whilst for HadCRUT5
the significant increase occurs at the northwestern edge of the sub-
tropical gyre, along the North Atlantic Current and in the eastern sub-
polar North Atlantic, including the Greenland, Iceland and Norwegian
seas. For ERSSTv5 the regions of significance are much smaller, with
only one major region around the northern subtropical gyre.

As opposed to the SST datasets, the infilling method in EN4.2.2
uses information fromprevious times, aswell as a climatology. This has
the potential to cause false indications of CSD (see Methods for a full
discussion). Thus when generating surrogates for a time series from
the EN4.2.2 salinity dataset, we must consider the effect the lack of
data and analysis method has on the earlier years. The full analysis
process is too complex to reproduce when generating the surrogates.
However, we can reproduce the specific effect that the analysis pro-
cedure has on the calculated CSD indicators. To do this, we use
the observational weights provided with the dataset (see e.g.

Supplementary Fig. 5h–m). These observational weights were pro-
duced by setting all observational values to one and the climatology to
0 and rerunning the analysis that produced the infilled dataset29. The
resulting weight w represents the amount of information in the given
analysis value that comes from observations. It should be noted that
this observational information comes from the whole globe, and so w
can be high even if there is no observation at the specific gridpoint at
that time. However, a loww value is still a good indicator of a datapoint
where the persistence based forecast dominates.

For each time series, we use the autocorrelation properties of its
last 40 years to generate AR(2) surrogates. Then, for each month that
has an observational weight below some limit w0, we replace the sur-
rogate value with the persistence-based forecast (Eq (1)). This creates
the same spikes in the surrogates that are present in the analysis data,
and thus modifies the autocorrelation structure in a similar way
(Supplementary Fig. 7).

Using the unmodified surrogates, there are regions of significantly
positive linear trends of λ for the EN4.2.2 salinity data at the northern
edge of the sub-tropical gyre and along the North Atlantic Current
(Supplementary Fig. 8e). The modification of the surrogates to
account for the non-stationary data coverage results in spurious
increasing and decreasing λ trends (Supplementary Fig. 8b–d), with

Fig. 3 | Spatial fields and distributions of trends of the restoring rate λ for sea-
surface temperatures. a Linear trends of restoring rate λ time series computed
from the ensemble mean in the HadCRUT5 (a–h) and ERSSTv5 (i–p) datasets. b.
Mean of the linear trends computed individually from each λ time series of the 200
ensemble members. c–h Distributions of 200 trends for locations marked with
corresponding letters in (b), with a vertical black dashed line showing the ensemble

mean, and light solid grey lines at 0. The green vertical hatches in (a) indicate the
regions where μ − 2σ >0 for the Gaussian fitted to the ensemble distribution, i.e.
where ~95% of the uncertainty ensemble trends are positive. i-p. same as a-h for the
1000 ensemblemembers of the ERSSTv5 dataset. Note that the shaded regions in a
and i do not represent regions of statistically significant trends, but rather the
regions that are increasing in most ensemble members.
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slightlypositive trends in theNorthAtlantic andnegativeones near the
equator, as would be expected from the autocorrelation values of
those regions. However, the magnitude of these false trends is much
smaller than the increases seen in the analysis data in some regions,
and thus the regions of significance in the Atlantic Ocean remain
basically unchangedwhenweuse themodified surrogates (Fig. 5). This
is true regardless of the limit value chosen for w0 (Supplementary
Fig. 8f–h).

The global surrogate analyses for variance and autocorrelation
canbe found in Supplementary Figs. 9, 10, 11 and 12. The results for the
autocorrelation are again similar to the results for λ estimated under
the assumption of non-stationary correlated noise. But although the
regions of positive trends in the North Atlantic are spatially coherent

with those of λ, the regions with significant (p <0.05) increase are
instead at the northern Gulf Stream and its extension into the Atlantic
Ocean (Supplementary Figs. 13, 14). The variance of each dataset has a
different result for the trends and their areas of significance (Supple-
mentary Fig. 10, 12). The possible causes of different results for the SST
datasets are discussed in the Methods. In contrast to the auto-
correlation and λ, the surrogates calculation for the variance in EN4.2.2
(Supplementary Fig. 12) is a clear example of the utility of modifying
the AR2 surrogates to match the analysis method. Without modifica-
tion the whole of the Atlantic seems to have a significant increase in
variance. But once the effectof the analysismethod is incorporated, no
significant regions remain, andwe recognise the increase in varianceas
spurious, caused by the analysis procedure of EN4.

Fig. 5 | Statistical significance of trends of the restoring rate λ calculated from
the EN4.2.2 salinity dataset. A Linear trend of restoring rate λ time series for the
average top 300m salinity in the EN4.2.2 dataset. Black stippling shows the regions
of 95th percentile significance in the positive trends calculated using 1000 AR(2)
surrogates modified following the EN4.2.2 analysis method with an observational

weight bound of 0.5. These significance regions are indistinguishable from those
calculated from the unmodified surrogates (see Supplementary Fig. 8). Only
regions between 90∘W and 30∘E with 60+ years of observational weight above 0.05
are shown. See Supplementary Fig. 6 and Methods for details.

Fig. 4 | Statistical significance of trends of the restoring rate λ calculated from
the sea-surface temperature uncertainty ensembles. a Linear trends of restoring
rate λ time series for the HadISST1 data. b Same as (a) but for the HadCRUT5mean
dataset. c Same as (a, b) but for the ERSSTv5 operational dataset. Light blue

stippling shows the regions where the positive trends are significant at 95th per-
centile, calculated from 1000 Fourier surrogates for each cell for HadISST (a) and
ERSSTv5 (c) and 1000 AR(2) surrogates for each cell for HadCRUT5 (b). See
Methods for more details.
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Discussion
We have addressed a common problem that arises when CSD indica-
tors are computed from pre-processed observational data, namely,
that the observational datasets have inherent and potentially non-
stationary uncertainties and biases that could influence the analysis8.
As well as complementing the analysis of B21, this work can thus be
used as a basis for observational uncertainty analysis of other higher-
order statistics.

Using the uncertainties provided with the datasets, we estimate
an uncertainty range of the linear trend of λ in the SST-based AMOC
index (Fig. 1) of 0.0059 ± 0.0003 for the HadSST4, 0.0046 ±0.0013
for the HadCRUT5 dataset and 0.0049 ± 0.0007 for the ERSSTv5
dataset, respectively. We have also updated the surrogate significance
analysis of B21 for the global SST and salinity data (HadCRUT5,
HadISST1, ERSSTv5 and EN4.2.2), and find that our more conservative
significance test reduces the area of significant CSD indicators com-
pared to that in B21. However, the four datasets show significant λ
increases in the area of the northern subtropical gyre, the North
Atlantic Current and in the Greenland, Iceland and Norwegian
Seas (Fig. 6).

Whilst our work demonstrates that the indication of CSD in the
chosen AMOC fingerprints is not due to the reported inherent prop-
erties of the observational datasets, it is beyond the scope of this work
to investigate whether or not this is a clear indication that the AMOC is
destabilizing. In fact, the choice of SPG SSTs as an AMOC fingerprint is
still debated34,35. This is because the extent that the AMOC controls the
temperatures in the so-called SPG warming hole is still uncertain36–40.
Although the SPG-based SST fingerprint has been shown to have a
lagged correlation with the AMOC streamfunction strength35,41, the
strength of the correlation seems to be forcing and model
dependent34,41. These caveats, together with studies showing that this
fingerprint is noisier than others35, mainly question the fingerprint’s
ability to detect a change in the mean state of the AMOC. However,
these criticisms should be less relevant for a CSD analysis, as that is
only focusedon the statistics of theperturbations from themeanstate,
not on the mean state itself or on the source of the perturbations.
However, there are yet to be any studies showing that signs of desta-
bilization along the North Atlantic Current or in the SPG are in fact
signs that the large-scale AMOC is destabilizing. In fact, the North
Atlantic SPG has recently been identified as a separate tipping
element42,43, and thus some of the identified CSD indicators may be
caused by only this subset of the Atlantic Ocean approaching a
transition.

These uncertainties in the SPG fingerprint are the reason that we
also look for CSD in every gridcell in the Atlantic (see Figs. 3, 4, 6),
allowing us to investigate their spatial patterns in detail. However,
there is still the possibility that the detected increase in λ is not caused
by an AMOC destabilization. Processes that act on shorter time-scales,
such as air-sea heat fluxes, act as the perturbing noise and changes in
their characteristics are accounted for in our calculation of λ (in con-
trast to the calculation of the classical CSD indicators, i.e. the variance
and AC1, see Methods). But there could be other long-term changes in
internal ocean processes that would cause an increase in the restoring
rate. For example, a gradual increase in mixed layer depth would
increase the effective heat capacity and possibly with it the response
time. However, we consider it implausible that this effect explains
the long-term trend in λ, as the oceanmixed layer is not observed to be
deepening overall and global warming is in fact expected to increase
the stratification of the upper ocean32. In addition, such damping of
fluctuations would not only increase λ but also decrease the variance,
andwefind that in the subpolarNorthAtlantic the variancehas actually
been increasing in the most recent decades, although this result is
more sensitive to the dataset properties than the increase in λ (Sup-
plementary Fig. 2).

In addition, the fact that the areas of significant CSD indicators on
the map are much smaller in our analysis than in B21 strengthen the
case that these trends are caused by an AMOC destabilization. In B21,
the whole North Atlantic was marked as significant, as well as large
regions in the South Atlantic. In this work, the significance is reduced
to smaller regions in the North Atlantic that are more typically asso-
ciated with the path of the warm branch of the AMOC: the northern
subtropical gyre, the North Atlantic Current, the Irminger Sea and the
Greenland, Iceland and Norwegian Seas. These CSD indicators could
be a sign of AMOC destabilization, as the SST and salinity in these
regionswouldbe sensitive to the strength of the AMOC15. The Irminger
and Iceland basins in particular have been recently identified as the
centres for subpolar AMOC variability, as opposed to the subpolar
gyre44,45. This could be the reason that λ in the regions used to define
the SST index is increasing, but not significantly, as opposed to the
significant increase in the Greenland, Iceland and Norwegian Seas
(Fig. 6). This may seem to contradict the significant increase found in
the AMOC fingerprint obtained by averaging SSTs over the SPG (Fig. 1),
but in fact when averaging the SST over an extended region one gets
rid of local processes and improves the observational accuracy,
allowing for the overall trend in λ to become significant. This is
the strength of combining both averaged indices and geographic

Fig. 6 | Regions in the North Atlantic with a statistically significant increase in
the restoring rate λ for sea-surface temperatures (SSTs) and salinity con-
centrations. For the EN4.2.2 salinity (purple), HadISST SSTs (turquoise),

HadCRUT5 SSTs (orange) or ERSSTv5 SSTs (grey). Significance is calculated from
1000 surrogates for each grid cell (see text and Methods).
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cell-by-cell analyses. Finally, note that the definition of significance on
the map in this work (Figs. 4, 6) is highly conservative. Significance is
calculated on a point-by-point basis and not globally, and we do not
take the spatial coherence of positive trends in the North Atlantic into
account in our significance testing.

Together with the computational expense, the uncertainty esti-
mates provided with the observational datasets are the most impor-
tant factors for a reliable uncertainty estimation of CSD. Although
running the full analysis algorithm that is used to create the observa-
tional datasets is beyond the scope of this work, we are able to make
modifications to the surrogates that influence the statistical properties
of the data in a similar way to the full analysis. However, we cannot
estimate the complete uncertainty on theCSD indicators of the salinity
dataset EN4.2.2 because the analysis but not the observational uncer-
tainties are provided. Even so, our results show that the influence of
observational analysis methods on higher orders statistics should be
taken into account alongside the effect on the long-term mean
properties.

In summary, for CSD indicators computed from observation-
based SST and salinity data we have presented a comprehensive
uncertainty estimation and propagation together with significance
testing. Such an analysis is a prerequisite to robustly assessing the
destabilization of a system from observational data. We find that data
processing methods can lead to false detection of CSD (see also8).
However, we demonstrate that such obstacles can be overcome by
incorporating the data processing effects into uncertainty estimates
and significance testing.

Methods
HadISST
The HadISST dataset is based on the Met Office Marine Data Bank as
well as the Comprehensive Ocean-Atmosphere Data Set (COADS)46,
and has been bias adjusted and then temporally and spatially homo-
genized using reduced-space optimal interpolation (RSOI). RSOI
uses a set of global empirical orthogonal functions (EOFs), and
includes regularizing terms when fitting the EOFs to the data. This is
done to avoid spurious large amplitudes in data-scarce regions and
times, but means that the fit tends to the zero anomaly where there is
no information. Althoughnon-interpolated in-situ data is subsequently
added to the RSOI reconstruction, this only improves the variance
where there is enough data, and thus in data-scarce times and regions
the variability is damped by RSOI. Together with other steps of the
preprocessing, this causes the variance in HadISST1 to artificially
increase with time. This infilling thus means that the dataset is not
optimal for statistical analyses of climate variability. In addition,
HadISST does not have an uncertainty estimation of either the bias
adjustement, analysis method, measurement or sampling uncertainty.
This makes it difficult to estimate possible effects on the CSD
analysis27.

HadSST4 and HadCRUT5
Given the lacking uncertainty information for HadISST we focus pri-
marily on three similar SST datasets, namely HadSST430 and the SST
part of HadCRUT531, as well as ERSSTv5 (see next section below).
HadSST4 is based on observations from the International Compre-
hensive Ocean-Atmosphere Data Set (ICOADS46,) gridded to a 5° by 5°
grid. Various bias adjustments are applied to the data to account for
the changes in historical SST measurement techniques. The HadSST4
dataset has a 200 member ensemble which explores variations of the
bias schemeparameters, and in addition comeswithmeasurement and
sampling uncertainties. The measurement uncertainty is associated
with the measurement error, and the sampling uncertainty estimates
the uncertainty arising from the under-sampling of the data, and
scales as the inverse of the number of observations. This uncertainty
analysis is ideal for estimating uncertainties of CSD indicators.

However, as the HadSST4 dataset is non-infilled, it has large gaps
where there is no data. This makes a grid cell by grid cell CSD analysis
impossible, and even causes difficulties when averaging data over
larger regions such as the subpolar gyre. In this work, we therefore
complement our analysis with SSTs from the HadCRUT5 dataset. The
SST data in HadCRUT5 is based on the HadSST4 dataset, but provides
an additional, more globally complete analysis dataset. The gaps in the
data are filled using a Gaussian-process-based statistical method. In
regions where the local observations offer an insufficient constraint
this infilled data is removed, so thefinal dataset still has some gaps (see
Fig. 2). The dataset is comprised of 200 ensemble members, which
sample the reconstruction error for theGaussianprocess in addition to
the bias and observational uncertainty in the data.

The number of individual SST observations has increased
approximately exponentially over the last 150 years (Fig. 2). This
increase in observations affects the statistical properties of the data.
Primarily, an increase in observations might cause a decrease in the
variance, as the data in later times is an average of more values and
the variance of the mean scales as ∼ σ2

n , where σ2 is the variance of the
individual observations and n is the number of observations30. The
effect this would have on the autocorrelation is more difficult to
determine. The more accurate values in later times could cause a
higher autocorrelation due to the improved signal-to-noise ratio of the
data (see8), but the larger range of measurement instruments used in
later times could also reduce any false contributions to the auto-
correlation that are related to the instruments. In all these cases, a large
part of the effect would be included in the uncertainties provided with
the datasets, as they account for both sampling and measurement
uncertainties.

ERSSTv5
The ERSSTv5 dataset47 is based on the same set of observations as
HadSST4 and HadCRUT5 (ICOADS version 3.046). After quality control
and bias correction, an interpolation method using empirical ortho-
gonal teleconnections (EOTs) is used to make the dataset globally
complete. This is done by first seperating the data into low and high
frequency components using a moving filter of 26° by 26° and then a
median filter of 15 years. The high frequency component is then
decomposed with 140 EOTs, which were trained on the 1982-2011
period of the National Centers for Environmental Prediction (NCEP)
Weekly Optimum Interpolation SST (WOISST) dataset48. EOTs are
similar to empirical orthogonal functions, but are restricted spatially.
The high frequency component of the SST data is then reconstructed
using only those EOTs that are not undersampled by the data. In the
low frequency component the missing values are filled in with the
running average of the 26° × 26° regionwhen the ratio of observational
coverage within the region reaches a minimum criterion. The EOT
reconstruction inevitably leads to a loss of information, and to greater
smoothing when data is scarce.

There are two uncertainty products provided for ERSSTv5: an
ensemble that samples the parametric uncertainty, and a climatolo-
gical reconstruction uncertainty. The former is calculated by sampling
1000 combinations of the 28 most important parameters of the data
processing method, and repeating the whole data processing proce-
dure with the different parameter combinations. The reconstruction
uncertainty is calculated by applying the reconstruction method to
pseudo-observations and calculating the difference of the resulting
dataset from the original. The reconstruction uncertainty is only a
climatology, and is thus constant throughout the dataset time period.
This means that it is not informative for our purposes, since we are
interested in data processing effects that change over time. In fact,
the time-varying uncertainty of the reconstruction is included in the
parametric uncertainty ensemble, as many of the parameters varied
are associated with the reconstruction method. We thus opt to use
only the parametric uncertainty ensemble in this study.
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EN4.2.2
The statistical properties of the EN4.2.2 dataset are affected by the data
analysis method in a much clearer way than the other datasets. EN4.2.2
includes both global quality-controlled ocean temperature and salinity
profiles and monthly objective analyses29. The profiles are direct
observations fromvarious sources, suchas theWorldOceanDatabase49.
They are used to obtain the globally complete analysis by calculating an
optimal fit to the good profiles and profile levels in eachmonth, given a
background (prior constraint). Good profiles and levels are those which
do not fail any quality-control check. The resulting optimal interpola-
tion equations are solved using a numerical scheme. The background
used for this calculation is a damped persistence-based forecast:

xf
i =x

c
i +αðxa

i�1 � xc
i�1Þ, ð1Þ

where xf
i denotes the damped persistence forecast for month i, xc

i is
the climatological mean for that month, and α = 0.9. As we are con-
cerned here with the statistical properties of the data, the influence of
using such a persistence-based forecast as the background needs to be
addressed. If there are no observations for long periods of time, the
analysis will relax to the climatology for that given location. If we then
have a single observation, this causes a spike in the data, which relaxes
back to the climatology with a monthly lag-1 autocorrelation of 0.9. In
most of the Atlantic Ocean there are very few observations before the
1950s (see Supplementary Fig. 5), and so the monthly autocorrelation
is artificially forced to about 0.9 at the start of the time series, which
also affects the yearly autocorrelation. Depending on the true
autocorrelation function of the underlying time series and depending
on how much of the forecast is used, this analysis method causes a
biased estimate. In particular, it could cause a false indication of CSD if
the true monthly autocorrelation for the more recent decades is
systematically above 0.9.

Gaps in the data
Both HadSST4 and HadCRUT5 have gaps in their time series. When
averaging this data for different regions, we take a conservative
approach: We first spatially average the monthly resolution data and
then take the yearly average of the resulting time series. When taking
the yearly average we only consider a year if there is data for all
12 months, otherwise it is set to NaN. However because we make the
monthly-resolution spatial average first, this approach does not ensure
that each grid cell in the region has data for each month of the year.
Thus the value for a given yearmight havemore grid cells contributing
to one month than another, which could affect variability. For Had-
CRUT5 we also calculate CSD indicators at each grid cell where there
are less than 30 missing years out of 172.

Critical slowing down indicators
The restoring rate λ, the variance and the autocorrelation are calcu-
lated in the samemanner as in B21. Each time series is first nonlinearly
detrended using a runningmeanwith a 50-yearwindow. The edges are
not removed, so the detrending method is less certain at the first and
last 25 years of the time series. The CSD indicators are then calculated
in 60-year running windows. The variance and autocorellation are
calculated in the standard way. The restoring rate is calculated by
regressing Δxi against xi using the GLSAR function from the python
module statsmodel. Note that as in B21 the λ plotted in this study is the
numerical result of the regression of Δxi against xi, and so is related to
the analytical λ0 defined in the text by λ= eλ

0 � 1 (when the timestep
Δt = 1). As themagnitude of λ is immaterial in this study andwe are only
concerned with its increase or decrease, both definitions behave
similarly and are thus interchangeable for our purposes.

AMOC indices
The SST-based AMOC index is calculated as the mean SST in the sub-
polar gyre minus the mean global SST, following Caesar et al.12. The
subpolar gyre in this work is taken as the area between 41° and 60° N
and 20° and 55° E (following50 for ease of calculation). This is a slightly
different area than that used by B21, but makes little difference at the
low 5° resolution of HadSST4 and HadCRUT. We also take the full year
insteadof thewintermonths, as the lattermethod causes no substantial
difference for the change in statistical properties. The index is thus the
averageannual SST in thedefined rectangular SPGareaminus theglobal
mean annual SST. Note that we only calculate the index for HadCRUT5,
HadSST4 and ERSSTv5, and since these datasets have their own meth-
ods of dealing with sea ice cells we do not impose any sea ice masking.

All salinity time series and global plots in this work are for the
thickness-weighted mean of the upper 19 ocean layers, corresponding
to the average salinity in the top 300m of the salinity profiles. The
observational weights are similarly averaged in the top 19 layers. The
uncertainty is calculated by simple uncertainty propagation:

Δs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

Δs2i

q

, where {Δsi} are the uncertainties of each individual level.

This incorrectly assumes the layer uncertainties are independent, but
is acceptable here as the uncertainty is not used for any quantitative
analysis, but only to display an uncertainty range in Supplemen-
tary Fig. 5.

Surrogates
Surrogates are created from thedetrended SSTand salinity time series.
Fourier surrogates are calculated by taking the discrete Fourier
transform of the time series, multiplying by random phases and then
taking the inverse Fourier transform. By theWiener-Khinchin theorem,
the variance and autocorrelation function of wide-sense-stationary
random processes are specified by the squared amplitudes of the
(discrete) Fourier transform. Thus the Fourier surrogates preserve the
variance and autocorrelation function of the original time series.

However, in this workwe know the time series we are dealing with
have been modified by the analysis process and lack of observations.
When the analysis method modifies the autocorrelation, as in the
case of the salinity data, the Fourier surrogates of the full time series
are not a correct null hypothesis for CSD analysis, because the auto-
correlation functionwill include information from the earlier,modified
times. In addition, Fourier surrogates can only be calculated for time
series with no missing values, and thus cannot be used for the Had-
CRUT5 global analysis. Thus, in these cases, we do not use Fourier
surrogates.

AR(2) surrogates
For the cases where Fourier surrogates cannot be computed, we
choose to use AR(2) surrogates on a monthly resolution:

xt =a1xt�1 +a2xt�2 + ϵt , ð2Þ

where the time series value at time t, xt, is determined by the value at
times t − 1, t − 2 with autocorrelation coefficients a1, a2, and ϵt is white
noise. Even though themonthly time series in the datasets are close to
being AR(1) processes, the higher coefficient is needed to get the
correct lag-one autocorrelation coefficient for the yearly averaged
time series. Since the yearly average is taken before calculating CSD
indicators, using an AR(2) process instead of AR(3)-AR(12) does not
make a big difference as long as the annual lag-one autocorrelation is
correct. If the estimate of monthly lag-one autocorrelation is Am, the
coefficients are related by:

a1 =Amð1� a2Þ ð3Þ
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We get the values of a1, a2 for each time series by calculating the true
lag-one autocorrelation estimate for the last 40 years of the annual and
monthly time series, Ay,Am, and then calculating the a2 value that
minimizes the difference of the estimated A0

y,A
0
m of the AR(2) time

series from the true values.

Modification for salinity surrogates
It is only possible toproduceperfect surrogates for the salinity analysis
data by repeating the complete analysis used to create the dataset.
This is not feasible for this study. We can, however, replicate the effect
of the analysis method that would potentially cause spurious CSD
detection, namely the relaxation back to the climatology that occurs
when there is a lack of observational data. For this we utilize the
observational weights provided as part of the EN4.2.2 dataset. We start
with an AR(2)-based surrogate dataset of the global monthly data
averaged over the levels in the top 300m. For each grid cell, we take
the months that have an observational weight that is below some limit
w0 and replace the surrogate valuewith the persistence-based forecast
(see Eq. (1)). As we did not have access to the climatology used in the
EN4.2.2 analysis, we took the first year of analysis data in each grid cell
as the climatology. This will in most cases be the true climatology, as
very few cells have observational influence in the first year. An example
of this replacement process forw0 = 0.5 can be seen in Supplementary
Fig. 7. Supplementary Fig. 15 shows how this modification shifts the
global distribution of autocorrelation to higher values.

Data availability
The HadISST1, HadSST4, HadCRUT5 and EN4.2.2 datasets used in this
study are all available at https://www.metoffice.gov.uk/hadobs/. The
ERSSTv5 operational dataset used in this study is available at https://
psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html, and the ERSSTv5
uncertainties are available at https://www.ncei.noaa.gov/pub/data/
cmb/ersst/v5/ensemble.1854-2017/. No new data has been produced.

Code availability
All code used to analyse the data and generate figures can be accessed
at https://github.com/mayaby/AMOC_EWS_uncertainties51.
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