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Remotely sensing potential climate change
tipping points across scales

Timothy M. Lenton 1 , Jesse F. Abrams 1, Annett Bartsch2,3,
Sebastian Bathiany 4,5, Chris A. Boulton 1, Joshua E. Buxton 1,
Alessandra Conversi6, Andrew M. Cunliffe 1, Sophie Hebden 7,8,
Thomas Lavergne 9, Benjamin Poulter 10, Andrew Shepherd11,
Taylor Smith 12, Didier Swingedouw 13, Ricarda Winkelmann5 &
Niklas Boers 1,4,5

Potential climate tipping points pose a growing risk for societies, and policy is
calling for improved anticipation of them. Satellite remote sensing can play a
unique role in identifying and anticipating tipping phenomena across scales.
Where satellite records are too short for temporal early warning of tipping
points, complementary spatial indicators can leverage the exceptional spatial-
temporal coverage of remotely sensed data to detect changing resilience of
vulnerable systems. Combining Earth observation with Earth system models
can improve process-based understanding of tipping points, their interac-
tions, and potential tipping cascades. Such fine-resolution sensing can support
climate tipping point risk management across scales.

Climate change could drive some critical parts of the Earth system
towards tipping points—triggering a ‘tipping event’ of abrupt and/or
irreversible change into a qualitativelydifferent state, self-propelled by
strong amplifying feedback1,2. Crossing tipping points—triggering
‘regime shifts’3 or ‘critical transitions’4—may occur in systems across a
range of spatial scales, from local ecosystems to sub-continental ‘tip-
ping elements’1,2. Here, we refer to these collectively as tipping systems.
The resulting magnitude, abruptness, and/or irreversibility of changes
in system functionmay beparticularly challenging for human societies
and other species to adapt to, worsening the risks that climate change
poses. Passing tipping points can feedback to climate change by e.g.,
triggering carbon release5, reducing surface albedo6, or altering ocean
heat uptake7. Tipping one system can alter the likelihood of tipping
another, with a currently poorly quantified risk that tipping can cas-
cade across systems3,8,9 (meaning here that tipping one system makes
tipping of another more likely10).

For all these reasons, an improved observational and modelling
framework to sense where and when climate tipping points can be
triggered, and how tipping systems interact, could have considerable
societal value. Remote sensing data can make a unique contribution
becauseof its global coverage atfine temporal and spatial resolution. It
has played an increasingly important role in tipping point science.
Early identification of tipping elements in the Earth’s climate system1

drew on remotely sensed evidence of accelerating loss of Arctic sea
ice11, Antarctic Peninsula ice shelves12, and the Greenland13,14 and
Antarctic13,15 ice sheets. Subsequently, remote sensing has provided
key evidence on the location and proximity of tipping points in the
polar ice sheets16,17, overturning classical assumptions on the pace of
their response to climate change, withmeasurements of ice speedup18,
thinning19, and grounding line retreat16,20, proving critical to identifying
destabilisation of the West Antarctic ice sheet21 (WAIS). Satellite data
has also been used to detect new candidate tipping elements including
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a strong shift in cloud feedbacks22, to reveal alternative stable states of
boreal23,24 and tropical25–27 vegetation, and to track how vegetation
resilience varies over space and time28,29.

Resilience is the ability of a system to recover from perturbations,
which can be measured as the recovery rate. Resilience declines when
approaching a tipping point30 providingpotential earlywarning signals
(EWS) due to critical slowing down4 (CSD) of system dynamics. How-
ever, resilience can also be lost in the absence of a tipping point31.
Hence it is essential to independently identify tipping systems, e.g.,
using theory and evidence of alternative stable states and/or abrupt
shifts in the past32, in spatial data, or in model simulations. Existing
work30 proposed a resilience monitoring system for terrestrial eco-
systems, irrespective of tipping, whereas here we focus on tipping
systems throughout the Earth system. Previously identified tipping
systems1,2,32 include the Greenland ice sheet33 (GrIS), the Atlantic Mer-
idional Overturning Circulation34,35 (AMOC), and the Amazon
rainforest25. Recently, empirical evidence of resilience loss has been
detected in all three29,36,37, which for the Amazon was based on remo-
tely sensed vegetation optical depth38 (VOD). In fast-responding tip-
ping systems, there is a clear opportunity to leverage remote sensing
data to lookmorewidely for resilience changes. For slower-responding
tipping systems, the relatively short satellite era of ~50 years is
insufficient39. However, space-for-time substitution25,26,40 and spatial
stability indicators41 can leverage the fine spatial resolution of satellite
records to help forewarn of approaching tipping points. Combining
Earthobservations andmodels can improvepredictions of, e.g., abrupt
droughts to avert food security crises42,43, or abrupt loss of ecosystem
function and services to inform regional policy-making and land-use
planning44.

Here we start by highlighting policy needs for improved and
sustained information on climate change tipping points and remote
sensing requirements to help address those needs. Then we delve
deeper into how remote sensing can help identify potential tipping
points, improve resilience monitoring and early warning of tipping
events, and assess the potential for tipping systems to interact and

possibly cascade. In the outlook, we suggest potential ways forward
and future research avenues.

Policy needs
There are strong societal and policy drivers for improved information
on potential climate tipping points because abrupt and/or irreversible,
large-scale changes pose considerable risks. The risk of crossing aWest
Antarctic ice sheet tipping point45 has been recognised since the 1970s,
and the IPCC’s ‘reasons for concern’ have included ‘large-scale dis-
continuities in the climate system’ since 2001. Over successive IPCC
Reports their likelihood has been repeatedly revised upwards, such
that there are now reasons for concern at present levels of global
warming46. Figure 1 summarises currently identified climate tipping
elements and their estimated sensitivity to global warming2, indicating
that several major systems are at risk of being tipped below 2 °C.
Considerable uncertainties remain and remote sensing data can help
constrain themby, e.g., comparingmodel results to empirical evidence
including identifying emergent constraints47, and estimating proximity
to tipping points using CSD applied to remotely sensed data. Overall,
interactions between tipping elements, including feedback to global
temperature, are assessed to further increase the likelihood of tipping
events9,48, although some specific interactions may decrease it48. The
desire to avoid crossing climate tipping points has already informed
mitigation policy targets including the 2015 Paris Agreement to limit
warming to “well below 2 °C” and subsequent ‘net zero’ emissions
pledges49. In our view, the risk of tipping was previously
underestimated2,46, and this gives a compelling reason to strengthen
such mitigation pledges and action to meet them.

At national-regional scales, climate tipping points could have
severe impacts, such as stronger and more frequent extreme events,
accelerated sea-level rise, and fundamental changes in climate
variability50. These impacts are often distinct in their pattern and/or
magnitude from those expected due to global warming alone, thus
posing distinct adaptation challenges. Whether or not tipping points
can be avoided by stronger mitigation policy, improved information

Fig. 1 | Climate tipping elements and their sensitivity to global warming based
on a recent assessment2. Tipping elements are categorised as cryosphere (blue),
biosphere (green), or circulation (purple). Colours of labels denote temperature
thresholds categorised into three levelsof globalwarming abovepre-industrial (key

on the right), with darker red indicating lower temperature thresholds (greater
urgency). Permafrost appears twice as some parts are prone to abrupt thaw (at
lower temperatures) and some (organic-rich Yedoma) to self-propelling collapse
(at higher temperatures).
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onwhere andwhen they couldoccur canhelp guide stronger andmore
targeted adaptation policy. This can be aimed at reducing impacts of
tipping points, exposure, and/or vulnerability to those impacts, and
therefore risk51. Where biosphere tipping systems are (at least partly)
within a national jurisdiction (e.g., boreal forests, Amazon rainforest,
tropical coral reefs), remotely sensed information on an approaching
tipping point could help inform national efforts to increase ecosystem
resilience30. At local scales, the risk of climate change triggering tip-
ping events, e.g., in ecosystems or glaciers, is a challenge for regional
policy and management, which again can benefit from improved risk
assessment and resilience monitoring30.

Remote sensing targets and requirements
Given these needs, how can remote sensing of tipping systems help
support policy-making and environmental management across scales?
Table 1 summarises the tipping systems discussed herein, their key
properties, the current utility of remote sensing for probing tipping
processes, pertinent variables sensed, and methods of remotely sen-
sing them. Figure 2 summarises the capacity of different remote sen-
sing methods to monitor tipping systems and pertinent variables in
different domains. Scientific targets for remote sensing of tipping
systems include: monitoring relevant feedback processes to improve
process understanding52; detecting alternative stable states and asso-
ciated abrupt changes53; establishing links from alternative states and
their stability to climate variables25,26,28; observing system dynamics
over time including changes in stability or resilience, and associated
early warning signals on regional16,29 and global54 scales, and; calibrat-
ing, constraining and evaluatingmodels of tipping systems to improve
predictions17,22.

Building on previous work42, we propose a minimum set of ideal
criteria for remotely sensed datasets to be useful in tipping point
applications: (1) Salient variables correlated with key processes
underlying tipping dynamics and their possible interactions. (2)
Accurate, analysis-ready data. (3) Spatial coverage of the tipping sys-
tems of interest. (4) Spatial resolution sufficient to resolve key feed-
backs involved in tipping dynamics. (5) Temporal resolution sufficient
to resolve timescales of tipping or recovery (Table 1). (6) Temporal
duration sufficient to estimate system resilience, and ideally to detect
changes in forcing and resilience. (7) Low data latency to support
timely detection and/or early warning of tipping points.

Box 1 expands on current remote sensing capabilities and limita-
tions in relation to these criteria.

Remote sensing opportunities
Having established these criteria, we now identify and elaborate key
opportunities for remote sensing to advance the understanding and
detection of different tipping phenomena, of changing resilience, and
of interactions between tipping systems.

Detecting different tipping phenomena
Remote sensing can advance the detection of different types of tipping
phenomena across scales (Table 1), which pose different remote sen-
sing challenges and opportunities.

Crossing scales. The most impactful tipping points can be divided
into four categories: Impacts can result from tipping inherently large-
scale tipping elements (macro tipping), or from localised tipping
points that interact to cause larger-scale change (propagating tipping)
or are crossed coherently across a large area (clustered tipping) or
initiate significant consequences in social systems (societal impact
tipping). Large-scale tipping elements have generally been identified1,2

from the ‘top down’, e.g., from conceptual models, understanding of
key feedbacks, and/or paleoclimate records of large-scale past abrupt
changes32. Meanwhile, localised tipping systems have principally been
identified from the ‘bottom up’ by direct observations55,56. Remote

sensing can simultaneously identify and monitor tipping systems,
phenomena, and their interactions across scales.

Macro tipping. For tipping elements involving atmospheric circulation
(e.g., monsoons), ocean circulation (e.g., AMOC, sub-polar gyre; SPG),
or ice sheets (e.g., GrIS, WAIS), the crucial reinforcing feedback
mechanisms that canpropel tipping operate across large spatial scales.
The global coverage of remote sensing uniquely enables comprehen-
sive observation at the large scale of those feedbacks. Even where a
system is only partially observable, remotely sensed data can reveal
underlying (in)stability. For example, remote sensing provides unique
opportunities to identify large-scale expressions of SPG and AMOC
circulation strength and associated stability changes in fingerprint
patterns in sea surface temperature (SST), salinity (SSS), or height
(SSH) in specific areas (e.g., Labrador Sea and Nordic Seas) where
models suggest a link between these observable fingerprints and
proximity to tipping points57. Remote sensing of deep ocean pressure
from gravity field changes also reveals below-surface characteristics
relating to AMOC strength58. Remote sensing of fine-scale properties
across large areas can be used to recalibrate process-based models to
improve assessments of large-scale tipping potential. For example,
assimilating remotely sensed rainfall data can improve short-term
monsoon forecasts59. Correcting modelled cloud ice particle content
has revealed the possibility of much higher long-term climate
sensitivity22. Furthermore, progress is being made assimilating remo-
tely sensed ice-surface velocity and elevation changes into high-
resolution models of Antarctica60.

Propagating tipping. Large-scale tipping elements can in some cases
(e.g., WAIS, Amazon rainforest), be considered as networks of smaller,
coupled componentswithin which propagating tippingmay occur due
to causal interactions. In rare cases, tipping of the most sensitive
components may ultimately destabilise the rest in a ‘domino
cascade’10. The comprehensive coverage of remote sensing at high
spatial and temporal resolution is uniquely able to detect propagating
tipping bymonitoring pertinent localised phenomena and larger-scale
responses. For example, several localised tipping points of the Pine
Island glacier are theoretically able to destabilise the Amundsen
basin61, in turn risking the whole West Antarctic ice sheet62. Satellite-
based radar altimetry has detected both the localised grounding line
retreat of glaciers16 and confirmed that ice dynamical imbalance has
spread to one-quarter of the WAIS since the 1990s19. Another example
is theAmazon rainforest, where if dieback starts in the northeast itmay
propagate southwest—along the prevailing low-level wind and moist-
ure transport direction—through the reduction of rainfall recycling by
the forest63. Alternatively, dieback or deforestation starting in the drier
southeast may propagate through drying the local climate and
enhancing fires. Continuous satellite-based drought42 and fire mon-
itoring arecrucial todetectwhere the forest is at risk of tipping and any
propagating tipping. Remote sensing canalso trackhuman activities of
deforestation, land-use change64, and associated forest
fragmentation65 that may trigger tipping. At ecosystem scales, remote
sensing can detect propagating tipping, e.g., in the form of propa-
gating ‘invasion fronts’ where one bi-stable ecosystem state replaces
another66. It can also monitor potential inhibition of propagating tip-
ping by damping feedback at larger scales, for example in patterned
vegetation systems67,68.

Clustered tipping. Where spatial coupling is less strong, localised
tipping may still occur in clusters near-synchronously across a large
area, due to a spatially coherent climate or anthropogenic forcing
reaching a common threshold, e.g., widespread coral bleaching, ther-
mokarst, and lake formation in degrading permafrost, or synchronous
forest disturbances69 and dieback. Remote sensing is key to detecting
clustered tipping and assessing its spatial scale, for example through
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Fig. 2 | The capacity of different remote sensing methods to monitor tipping systems and pertinent variables. Summarises information in Table 1 (grouping ocean
circulation and ocean biosphere together as the ‘ocean’ realm).

BOX 1

Remote sensingcapabilities and limitations in relation to tippingpoint
criteria
Current remote sensing has capabilities and limitations in relation to a
minimum set of ideal criteria for tipping point applications42:

Salient variables correlated with tipping processes. The increas-
ing diversity of geophysical parameters retrievable from satellites
widens capabilities, but established metrics (e.g., normalised vegeta-
tion difference index; NDVI) can be limited in their ability to probe
variables prone to tipping (e.g., biomass)30. Consistency between
remote sensing data records also needs to be more extensively
studied145 to reliably link tipping phenomena to climate variables.

Accurate, analysis-ready data. Several operational services make
pre-processed, calibrated, and validated datasets available to defined
standards, but accuracy andcoveragecan still be inconsistent in space
and time, biasing resilience estimates. Notably optical and thermal
infrared data require masking (e.g., for cloud) and correcting for
atmospheric attenuation, adding to retrieval uncertainty and making
inferences of resilience less reliable91. This is compounded by artefacts
introduced by merging and harmonising observations from multiple
sensors141 (see Box 2).

Spatial coverage of tipping systems. Polar-orbiting satellites help
provide global coverage, butmonitoring of below-surface ground and
water is limited, restricting sensing of e.g., permafrost or the AMOC.
Optical (passive shortwave) measurements are limited by sunlight
availability and cloud cover, seasonally restricting sensing of e.g., sea
ice, ice sheets, and tropical or boreal forest. Synthetic aperture radar
(SAR) data (active microwave) are illumination independent, unaf-
fected by cloud, and can monitor many tipping systems, but have
inconsistent coverage due to frequent switching of modes according
to user or security interests.

Spatial resolution is sufficient to resolve tipping dynamics. The
wide range of very fine resolution (<1m) and fine resolution (<10m)
satellite constellation missions and sensing types facilitate space-for-

time substitution, derivation of spatial stability indicators, and pattern
changedetection.However, lack of open access to veryfine-resolution
data, short collection timespans, and computational overheads of data
analysis pose challenges, whilst cross-calibration and co-registration
of pixels restrict suitable precision for ecological applications.

Temporal resolution is sufficient to resolve timescales of tipping
or recovery. Regular revisits (relative to system variability) allow the
detection of abrupt changes, and perturbations, and the calculation of
temporal resilience indicators (e.g., CSD indicators as proxies of
recovery rate). Upscaling techniques using data from geostationary
missions with sub-hourly observations and exploiting SAR or passive
microwave sensor data (e.g., VOD products), may help fill data gaps
due to cloud cover and insufficient revisits, particularly in the
tropics.

Temporal duration is sufficient to estimate system resilience.
Continuous time series of multi-decadal length for some variables are
valuable for identifying acceleration of processes (e.g., icemelt; forest
dieback), detectionof abrupt shifts, and analysis of changing variability
and resilience for potential early warning in fast (e.g., ecological) tip-
ping systems, but are insufficient in slow tipping systems (e.g., AMOC
or Greenland ice sheet).

Low data latency to support timely detection and early warning
of tipping points. Near-real-time data are now available for many
remote sensing products enabling resilience monitoring even for very
fast tipping systems42,43. However, latencies are still limited by revisit
frequency and the time of overpass, whichmay bias observations, e.g.,
to miss peaks in fire coverage, plant water stress, or meteorological
extremes.
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the application of abrupt change detection algorithms70—e.g., change
point analysis applied to dryland ecosystems53,71 or general trend
retrieval applied to thaw lakes across the Arctic72. Remote sensing
across environmental gradients is also key to assessing where clus-
tered tipping could occur, helping detect multiple attractors and thus
the potential for local tipping points, using e.g., tree coverwith respect
to rainfall. Early studies suggested widespread multi-stability of tree
cover along rainfall gradients in tropical25,26 and boreal23 regions.
However, other potential causal drivers of multimodality—notably
human activities—can shrink the areas of true bistability24,27,73. Remote
sensing of the Global Climate Observing System’s Essential Climate
Variables74 (GCOS ECV) can also provide evidence of pertinent feed-
backs, e.g., localised forest-cloud feedbacks75 or large-scale alteration
of carbon sinks76 (e.g., by permafrost thaw or forest dieback).

Societal impact tipping. Remote sensing can detect localised tipping
points in the provision of ecosystem services, which can have sub-
stantial impacts on societal systems,where tipping intersectswith high
human population density. For example, the abrupt loss of glaciers
that feed dry-season runoff can have severe impacts on agricultural
irrigation downstream77, and agricultural systems may exhibit their
own tipping points in the delivery of ecosystem services78. Another
example is the amplification of persistent heatwaves by land surface
drying and atmospheric heat storage79, with potentially severe impacts
—e.g., Europe 2003, Russia 2010, and North America 2021. Remote
sensing data are already an essential part of ensemble forecasting of
atmospheric blocking events and helped detect amplifying feedbacks
and resultant impacts on the biosphere80, including wildfires81, affect-
ing air pollution and human health82. Remote sensing is also used for

early warning of droughts and food security crises42,43. Impacts of
heatwaves and drought can further cascade through social systems,
e.g., when the 2010 drought in Russia harmed wheat production,
exports were restricted, contributing to an escalating global wheat
price, which is implicated in the ‘Arab Spring’83. However, empirical
research is needed to establish what is a social tipping point to avoid
misuse of the concept84,85.

Resilience monitoring and tipping point early warning
Relatively long remote sensing records, and new techniques to har-
monise continuous observations over time for Essential Climate and
Biodiversity Variables86,87, offer new opportunities for monitoring
resilience (Box 2) and providing early warning signals (EWS) of some
tipping points (Fig. 3).

Critical slowing down. Established early warning methods hinge on
the phenomenon of critical slowing down (CSD): relatively slow for-
cing towards a tipping point where a system’s state loses stability,
causing overall negative feedback to get weaker, slowing system
dynamics including the recovery rate from small perturbations—i.e.,
loss of resilience. Non-tipping systemsmay also lose resilience31, hence
additional, independent evidence of strongly amplifying feedback
and/or empirical or paleoclimate evidence of past tipping, should be
used to identify tipping systems. For candidate biosphere tipping
systems such as tropical rainforests, boreal forests, and possibly
drylands53, remote sensing provides unique opportunities to monitor
resilience changes that have only begun to be exploited. Vegetation
Optical Depth (VOD) data recently enabled the first global-scale
empirical confirmation of CSD theory, by comparing recovery rates

BOX 2

Improving remote sensing of resilience
Recent studies29,30,54,91–94 analysing vegetation resilience using remo-
tely sensed data have highlighted some limitations and opportunities
for improvement that are also relevant beyond the biosphere:

Data discontinuities. Even geostationary satellites do not con-
tinuously measure surface parameters. Temporal aggregation (e.g.,
MODIS vegetation data is provided as 8-day composites) can create
pseudo-continuous records from discontinuous data, but cannot reli-
ably fill long gaps e.g., due to cloud cover. Discontinuities in data
records can have strong impacts on inferred system resilience and
changes therein by biasing the variance and autocorrelation of a data
set91. Novel resilience estimates that account for these discontinuities
—or that do not require continuous data in the first place—are needed
to take full advantage of remote sensing data.

Uncertain data. Satellite missions have been flown with vastly
different design parameters and are often repurposed for novel
applications. For example, AVHRR data has been used in several long-
term studies of vegetation resilience29,54,93, despite being originally
designed for atmospheric monitoring. The value of its relatively long
sensing period (1979-) is limited by calibration problems, orbital drift,
and wide sensing bands; while long-term trends in the mean provide
valuable insight, changes in higher-order statistics throughout the
lifespan of a sensor can propagate into resiliencemetrics141, and hence
add uncertainty to any resilience analysis. Modern sensors provide
better data, with the constraint of a relatively short instrument record;
cross-referencing lower-quality data records with their modern
improvements helps bridge this temporal gap (e.g., ESA’s Climate
Change Initiative146).

Merging sensors. Composite data records combine multiple
satellitemissions into a single continuous record; VODCA is composed

of passive microwave data from seven satellites with similar spectral
properties38. While providing a single long-term record, this also
introduces potential biases when used29,54 to estimate resilience.
Changes in sensor fidelity and merging overlapping measurements
both alter data quality through time; all else being equal, this will drive
anti-correlation in AR(1) and variance141. This behaviour is opposite to
the positively correlated increases in both metrics experienced by a
system moving towards a tipping point, providing a means to distin-
guish their signals141. Nevertheless, single-sensor instrument records
should be preferred for the estimation of resilience, and special
attentionmust be paid to the construction of multi-instrument records
so that they do not bias the inferred resilience of a system.

Interpretation. How to interpret remotely sensed resilience esti-
mates remains a fundamental issue30. Most studies focus on NDVI
which relates a spectral ratio to vegetation properties, most notably
chlorophyll content and photosynthetic activity30,147. However, optical
data only sample the canopy surface—particularly when vegetation is
dense. Hence NDVI resilience is not whole-plant resilience30. VOD is
influenced by plant water content and structure, which in turn can be
correlated with biomass29, suggesting VOD resilience is closer to
whole-plant resilience30. However, passive microwave (e.g., VOD) can
also be influenced by surface water148, suggesting active microwave149

(radar) is slightly more robust for monitoring biomass resilience. In
general, translating spectral properties into in situ ecosystem changes
involves many simplifying assumptions, adding uncertainty to resi-
lience assessments. A systemic effort to deduce which remotely
sensed properties best reflect vegetation resilience is overdue.
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from perturbations with estimates based on the CSD indicators var-
iance and lag-1 autocorrelation54.

Temporal resilience indicators. Where repeated perturbations are
known to occur, changes in recovery rate can be directly
monitored54,88,89. However, in most cases, resilience can only be infer-
red from changes in temporal autocorrelation (e.g., at lag-1; AR(1)) and
variance90. These temporal EWS all require a separation of timescales: a
system should be forced slower than its intrinsic response timescale
for it to remain close to equilibrium. Furthermore, to detect CSD, a
systemmust be monitored over the forcing timescale, and at a higher
frequency than its response timescale. The intrinsic recovery time-
scales of different tipping systems range from the order of days
(atmospheric circulation) or months (vegetation) to millennia (ice
sheets). Climate forcing is occurring on multi-decadal to centennial
timescales hence some intrinsically ‘slow’ tipping systems may not
show CSD in practice. The longest ~50-year remote sensing records
(i.e., Landsat) manage to capture the forcing timescale, but only the

responses of relatively ‘fast’ tipping systems are monitorable with
temporal EWS (those in Table 1 with a timescale of change ~10 years).

Resilience sensing of vegetation. Ecosystems are highly complex and
only a subset are tipping systems, but they risk abrupt losses of
functionality, with the potential to find CSD in remotely sensed data.
The reliability of temporal resilience indicators, given measurement
noise and data gaps, has been carefully assessed for NDVI and similar
optical indices across major biomes91 and at the global scale92. The
predicted relationships between recovery rate and autocorrelation or
variance resilience indicators have also recently been confirmed for
vegetated ecosystems at a global scale54, based on VOD and NDVI.
Hence autocorrelation and variance can be used to measure vegeta-
tion resilience changes over time at high spatial resolution using
remotely sensed data (Fig. 3a, b). Globally, during the last twodecades,
the fraction of land surface exhibiting resilience losses has increased54

compared to the 1990s. Focusing on tipping systems: The Amazon
rainforest shows a large-scale loss of resilience29 over the past 20 years

a

b c

b

c

d

(i)

(ii)

(ii)(i)

d

Fig. 3 | Sensing the changing resilience of tipping systems directly from
observations. Examples over different time intervals using directly and remotely
sensed data: a Trends in lag-1 temporal autocorrelation (AR(1)) of global
vegetation30 from monthly MODIS NDVI for 2001-2020, and of global sea surface
temperatures (following the approach of ref. 166) frommonthly HadISST for 1982-
2021 (which includes AVHRR data). AR(1) trends aremeasured with Kendall’s τ rank
correlation coefficient, with darker green (vegetation) and darker purple (SST)
indicative of greater loss of resilience. Light grey areas correspond to pixels with
sea ice and dark grey areas to thosewith lowNDVI ( < 0.18) values.bTrends in AR(1)
in the Amazon rainforest (Kendall τ) from AVHRR NDVI for 2003-2016 (redrawn

from ref. 29). cChanges in SST in the Sub-Polar Gyre region fromHadISST for 1870-
2019 (upper panel) and associated upward trend in AR(1) (lower panel) suggesting
loss of resilience of the AMOC (redrawn from ref. 37). d Fluctuations in patterned
vegetation connectedness and rainfall at a site in the Sahel68 (11°37’12”N, 27°51’36”E)
from Sentinel-2 and ERA5 precipitation data for 2016–2019 (upper panel), between
seasonal extremes of (i) maximumand (ii)minimumconnectedness (lower panels).
Connectedness is quantified from feature vectors with an ‘Offset50’metric defined
in ref. 68. By measuring the decay rate of connectedness between maxima and
minima, averaged over years, and compared across sites, the resilience of these
dryland systems is found to decline with rainfall68.
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in VOD and NDVI (Fig. 3b), which peaked during two severe Amazon
drought events in 2005 and 2010 and is greatest in drier parts of the
forest and places closer to human activities (whereas during the 1990s
resilience was being gained29,54). For boreal forests, NDVI fluctuations
have a poor fit to an autoregressive model across large areas93, whilst
VOD fluctuations54 suggest slow recovery rates (low resilience), with a
heterogeneous pattern of resilience losses and gains across space.
Smaller scale, societal impact tipping systems (Table 1) include forest
regions subject to dieback, and analysis of Californian forests has
shown CSD in NDVI prior to forest dieback events94. Opportunities for
future progress depend crucially on improvements in remote sensing
datasets highlighted in Box 2.

Application to other tipping systems. Although some ocean and
cryosphere tipping elements are expected to be too slow to show
temporal EWS in current Earth observation records, changes in the
mean state, more localised tipping events, and some crucial feedbacks
may be faster, more detectable, and informative of resilience changes.
CSD has been detected in the analysis of ice-core-derived height var-
iations of the central-western Greenland ice sheet36 over the last ~170
years—although contrasting patterns of mass loss acceleration in dif-
ferent basins indicate a complexpicture95,96. As remote sensing records
get longer, they can play a key role in comprehensivelymonitoring the
dynamic state of the Greenland ice sheet. CSD has also been detected
in proxies of AMOC strength37 from Atlantic SST (Fig. 3c) and SSS
fluctuations observed over the last ~150 years and reconstructed over
the last millennium97. Remote sensing can offer additional process-
based monitoring of tipping processes in the Atlantic circulation. For
instance, a large change in the sub-polar gyre (SPG) should be
preceded98 by large and characteristic changes in SST and SSS, fol-
lowed by changes in SSH as regional circulation changes. The same
may be true for deep convection in the Nordic Seas, a key part of the
AMOC. Other relatively fast tipping systems with the potential for
remotely sensed temporal EWS include coral reefs99, monsoons, and
atmospheric blocking events100 (Table 1). Although highly uncertain,
the risks from very fast tipping in atmospheric circulation systems,
including monsoons, demand continuous monitoring that remote
sensing can provide59. Moreover, consistent increases in lag-1 auto-
correlation of soilmoisture have recently been foundprior to drought-
related changes in food security43, demonstrating EWS as an important
potential driver of societal impact tipping.

Noise-induced tipping. Where the resilience of a tipping system is low
and short-term variability in forcing (‘noise’) is sufficiently high, noise-
induced tippingmay occur without forewarning101. This includes cases
of fast forcing of slower tipping systems (where CSD is not expected or
detectable) and of increasing climate variability and extremes trig-
gering tipping102. Remote sensing can help assess the statistical like-
lihood of noise-induced tipping103 through monitoring both system
resilience and forcing variability (see ‘Deriving tipping prob-
abilities’, below).

Leveraging spatial data
The spatial coverage and fine resolution of remotely sensed data offer
additional underutilized opportunities for resilience sensing and
potential tipping point early warning, especially where the temporal
duration of data is limited.

Space-for-time substitution. Space-for-time substitution assumes
that changes in properties along spatial environmental gradients are
equivalent to the response of a system to temporal changes in the
same environmental driver(s). For example, where temporal remotely
sensed data is sufficient to estimate resilience indicators (e.g., AR(1)) at
each location, but not to detect changes in them, looking across gra-
dients in environmental drivers can reveal how resilience varies, e.g.,

how resilience of tropical forests is generally lower in regions with less
mean annual precipitation28. It is important to account (where possi-
ble) for other factors that also vary spatially and may influence resi-
lience, e.g., using a linear additive model28, recognising that data for
some of these factors may not be remotely sensed, e.g., soil fertility28.
Also, additional information should be used to determine whether
declining resilience may indicate an approach to a tipping point.

Deriving tipping probabilities. Using space-for-time substitution,
remotely sensed data can be used to derive probability density
functions for vegetation states, for different climate boundary
conditions, e.g., mean annual precipitation. Characterising how
weather variability drives vegetation variability, the resilience and
size of the basin of attraction (of a current stable state) can be
inferred, and from that, probabilities of leaving that state (through
noise-induced tipping). Applying this approach to remotely sensed
annual tree cover fraction reveals that the most resilient parts of the
Amazon rainforest are those that have experienced stronger inter-
annual rainfall variability in their long-term past40. In cases where
available time series show frequent transitions between alternative
attractors, tipping probabilities can be estimated directly103,104, e.g.,
using paleoclimate data and lake data103. Hence, remote sensing data
for systems that have undergone multiple abrupt shifts, such as
lakes105, could be used to estimate tipping probabilities.

Spatial early warning indicators. EWS in spatially extended systems
depends on the nature of spatial interactions, which remote sensing
can help resolve. For macro tipping, responses are expected to be
spatially homogeneous, whereas, for other tipping phenomena invol-
ving heterogeneous feedbacks and spatial interactions, these can
determine the scale of tipping106 and where EWS are expected107. For
example, reduced rainfall could lead to vegetation change at different
times in different places, but the locations may be causally linked via
moisture recycling feedbacks107–109. Spatial EWS can be expected as
increases in spatial variance or skewness4,110,111 and cross-correlations41.
The detection of spatial EWS requires that a tipping system is mon-
itored at least at the spatial resolution over which its reinforcing
feedbacks manifest spatially112. Fine-resolution remote sensing can
enable this, as demonstrated across rainfall gradients in the tropics
where spatial EWS have been found before the switch of savanna/
forest vegetation types113,114.

Spatially patterned systems. In systemswith regular spatial structure,
such as the patterned vegetation found in drylands68 (Fig. 3d), spatial
self-organisation (creating multiple stable patterns states at low rain-
fall) may enable ecosystems to evade a tipping point and associated
abrupt loss of ecosystem services67. Plant-soil feedback can be key to
spatial self-organisation and affect community assembly and resilience
above and below ground66. Fine spatial resolution remote sensing data
that are continuous in time across large areas has enabled quantifica-
tion of pattern connectedness andmonitoring of its temporal variation
as an aboveground resilience indicator68 (Fig. 3d). However, to fully
unravel ecosystem complexity also requires complementary approa-
ches, including on-site field studies.

Combining data and models
Combining remotely sensed data and Earth system models offers
opportunities to improve forecasting of tipping points, which is crucial
given persistent parametric and structural errors in the ability of
models to predict tipping points32.

Designing remote sensing strategies. Earth system models can
guide where spatially to look for temporal EWS, for example in
ocean circulation39 or ice sheets61. Model simulations could also help
identify which processes and where best to remotely monitor for

Perspective https://doi.org/10.1038/s41467-023-44609-w

Nature Communications |          (2024) 15:343 9



spatial EWS of a tipping point. For example, examining simulated
SSH, SST, and SSS data prior to modelled abrupt shifts in the sub-
polar gyre57,98, incorporating known uncertainties in remote sensing,
could determine which remotely sensed data are most informative
for EWS and where additional monitoring could add value.

Emergent constraints. Emergent constraints47 describe a semi-
empirical method whereby models identify observable targets that
can constrain future predictions115. Emergent constraints allow obser-
vational (including remotely sensed) data to constrain the distribution
of long-term projections from a large multi-model ensemble. Most
focus has been on linear responses, e.g., precipitation forecasts116, but
emergent constraints can be developed and applied to tipping
responses, as has been done for SPG instability57,98 and Amazon
dieback117. Theoretical progress is needed to build confidence in this
relatively sensitive and empirical approach.

Decadal predictions. Decadal climate predictions already highlight
the benefit of initialising climate models from observed states118,
assimilating the best available observations, including from remote
sensing for spatial-temporal coverage119. This approach greatly
improves the predictability of the North Atlantic Oscillation120.
There is a clear opportunity to apply it to tipping elements with a
decadal memory component. For instance, the SPG shows abrupt
changes in several CMIP5 and CMIP6 model simulations57,98, but it is
unclear how close this tipping point is or how it is mechanistically
related to the AMOC. Initialising those models with remotely sensed
data could provide an improved assessment of tipping event timing,
tipping system interactions, and, through large ensembles, a sta-
tistical assessment of likelihood. Decadal prediction systems are
now going beyond climate models to full Earth system models121,122,
opening further opportunities for the assimilation of remotely
sensed data to improve forecasting of ‘fast’ biogeochemical tipping
systems e.g., Sahel vegetation.

Assessing tipping interactions
Remote sensing can provide critical information to improve the
assessment of interactions between tipping systems, including the
potential for cascades10, by regularly and consistently observing mul-
tiple modelled variables across space and time.

Current understanding. Current assessments of tipping interactions
come from paleoclimate proxy data8, expert elicitation for a subset of
tipping elements123, model studies of specific tipping element
interactions124, or qualitative assessment across different scales of
tipping system3. Idealised models have been used to assess the
transient48 or eventual equilibrium9 response to the combined effects
of interactions amongst a subset of tipping elements—suggesting they
increase risk overall9,48, lowering tipping point thresholds48—but this is
based on a dated expert elicitation123. Large uncertainties remain over
whether particular interactions are net stabilising or destabilising123.

Detecting interactions. Remotely sensed data (Table 1) can provide
crucial information to detect or validate tipping system interactions
predicted by Earth system models and constrain their signs and
strengths. Taking a previously identified example of a key interaction
chain46, backed up by detailed model studies125: Rapid melting of the
GrIS is already well-observed by altimetry and gravimetry and is pre-
dicted to increase the likelihood of crossing tipping points in the sub-
polar gyre (SPG) circulation and the AMOC124—albeit dependent on
model and resolution126–128. Associated changes in North Atlantic SSS,
SST, and the SPG circulation should be observable through passive
microwave, thermal infrared, and altimetry, respectively. Effects on
AMOC strength should also become detectable in SST and SSS spatial
fingerprints. Models, paleo-data129,130 and the observational record

show that AMOC weakening shifts the intertropical convergence zone
(ITCZ) southwards, affecting tropical monsoon systems, but whether
this has a destabilising9,123 or stabilising131,132 effect on the Amazon
rainforest is currently unclear. Remotely sensed data can help resolve
this through detecting movements in the position of the ITCZ, varia-
tions in tropical Atlantic SSTs, and resulting changes in precipitation,
water level, and storage over the Amazon region in outgoing longwave
radiation, radar, radar altimetry, and gravimetry. Destabilisation of the
Amazon rainforest is already identifiable in VOD and NDVI29. Amazon
deforestation and/or climate change-induced dieback might trigger
monsoon shifts because the South American monsoon depends criti-
cally on evapotranspiration from the rainforest108, which can be pro-
bed with a combination of remote sensing and models.

Inferring causality. Applying methods of data-driven causality
detection133 to time series134 and across spatial135 remotely sensed data
can help establish causal relationships between tipping systems and
eliminate confounding factors in apparently coupled changes. Remo-
tely sensed data provide a promising basis to recover the network of
interactions between faster tipping systems, building on the successful
recovery of causal connections between geophysical variables136,
including ice cover in the Barents Sea tipping element2 and mid-
latitude circulation134 and Walker circulation couplings in the equa-
torial Pacific137. Remotely senseddata could alsobe used to infer causal
effects of climate on this network, building on success for
vegetation138,139. For fast tipping systems that have undergone abrupt
shifts, convergent cross-mapping140 could be attempted to establish
whether a deterministic nonlinear attractor can be recovered from
remotely sensed data.

Outlook
We have highlighted the unique value that satellite remote sensing,
with its global coverage, fine resolution, and increasing diversity of
variables, can bring to advancing the understanding, detection and
anticipation of climate change tipping points, and their interactions,
across scales. Given the risk that tipping points pose this should be
urgently informing both future missions and the extraction of infor-
mation from existing remotely sensed data. Here we recommend key
areas for advancing research to remotely sense climate change tipping
points across scales.

Sensing system
Establishing a tipping point sensing system would provide a unifying
research framework to bring together the Earth system and Earth
observation communities. It would combine data and models to
identify and anticipate potential tipping points, demanding advances
in data, methods, and analysis. This should start with a systematic scan
of existing remotely sensed data to detect abrupt shifts and regions of
multi-stability with the potential for future tipping, and a systematic
analysis of the potential for temporal and spatial EWS in faster tipping
systems, given current data or prospective missions. Models should
guide what and where to monitor tipping processes and temporal and
spatial EWS in remotely sensed data. Conversely, remote sensing data
should be used to constrain model projections of the location and
timing of tipping points under specific forcing scenarios. The resulting
tighter integration of observations, models, and theory would address
the urgent need for improved scientific information on tipping point
risks to inform policy.

Improving data
The veracity of a tipping point sensing system depends crucially on
improving the salience, accuracy, continuity, and consistency of
remotely sensed data. We recommend revising acquisition strategies
and exploiting special constellations (e.g., synchronised orbits, bistatic
or multi-static radar) toward smarter use of existing remotely sensed
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data. To make ecosystem monitoring more salient, calls for improved
vegetation indices that link to key properties such as biomass (e.g.,
utilising active microwave). Enhancing data accuracy calls for ongoing
utilisation of cloud-insensitive wavelengths (e.g., SAR) with improved
consistency of coverage. Temporal resilience sensing would benefit
from enhanced access to single-sensor data, and improved multi-
instrument records that minimise introducing artefacts141 (see Box 2).
Spatial resilience sensing would benefit fromopen access to very high-
resolution spatial data and computational power to analyse it.

Refining methods
The veracity of a tipping point sensing system also depends on
refining methods of analysing remotely sensed data. Recent
advances in training deep learning to detect and provide early
warning of tipping points142,143 should be applied to remotely sensed
data, including using segmentation algorithms to complement edge
detection in spatial data144. Methods of estimating resilience based
on spatial statistics should be applied to the high spatial but low
temporal resolution of some existing (e.g., Landsat) and new (e.g.,
GEDI) data, and duly refined. New data (e.g., GEDI, Sentinel-6,
EnMAP) demand resilience sensing methods that limit the impacts
of data discontinuities, of merging signals from different sensors,
and of low temporal resolution. The comparison of recovery rates
measured after perturbation and inferred from AR(1) and variance
should be extended beyond vegetation indexes54 to underpin the
wider application of temporal EWS. Multivariate Earth observations
should be used to help resolve different mechanistic explanations
for observed increases in autocorrelation and variance, e.g., com-
bining vegetation indexes (such as NDVI and VOD), rainfall statis-
tics, and deforestation data to understand signals of changing
Amazon rainforest resilience29.

Conclusion
The resulting fine-resolution spatial-temporal sensing of tipping sys-
tems can support policy-making and risk management at regional,
national, and international scales. It can actively help to protect
numerous human lives and livelihoods that are at risk from climate
change tipping points. Return on investment is also expected to be
good, as the framework for Earth observation technology is largely in
place and expanding rapidlywith commercial partnerships with public
agencies. Key opportunities lie in smarter use and combination of
existing remote sensing data to detect and forewarn of tipping points
across scales.

Data availability
All data used in Fig. 3 are freely available from the following sources:
MODIS data from NASA: https://modis.gsfc.nasa.gov/data/. HadISST
data from the Met Office: https://www.metoffice.gov.uk/hadobs/.
AVHRR NDVI data from USGS: https://www.usgs.gov/centers/eros/
science/usgs-eros-archive-avhrr-normalized-difference-vegetation-
index-ndvi-composites. Sentinel-2 data from Copernicus: https://
dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/
sentinel-2. ERA5 precipitation data from Copernicus: https://doi.org/
10.24381/cds.adbb2d47. The AMOC SST Index can be found as
‘SST_SG_GM’ in ref. 37.
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