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ABSTRACT

Teleconnections refer to long-range climate system linkages occurring over typically thousands of kilometers. Generally speaking, most tele-
connections are attributed to the transmission of energy and propagation of waves although the physical complexity and characteristics behind
these waves are not fully understood. To address this knowledge gap, we develop a climate network-based approach to reveal their directions
and distribution patterns, evaluate the intensity of teleconnections, and identify sensitive regions using global daily surface air temperature
data. Our results reveal a stable average intensity distribution pattern for teleconnections across a substantial spatiotemporal scale from 1948
to 2021, with the extent and intensity of teleconnection impacts increasing more prominently in the Southern Hemisphere over the past
37 years. Furthermore, we pinpoint climate-sensitive regions, such as southeastern Australia, which are likely to face increasing impacts due
to global warming. Our proposed method offers new insights into the dynamics of global climate patterns and can inform strategies to address
climate change and extreme events.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0153677

Teleconnections have been associated with global climate change
and the occurrence of extreme events. However, accurately pre-
dicting their intensity remains a challenging task, necessitating a
comprehensive understanding of the underlying physical mecha-
nisms and complex interactions among various climate variables.
In this study, we introduce a novel approach for assessing the
intensity, distribution patterns, and propagation directions of
teleconnections based on daily mean near-surface air tempera-
ture data and a series of dynamical and physical climate net-
works with time delay. Our method allows for the identification
of sensitive regions and lays the groundwork for research and
decision-making related to global warming, tipping points, air
pollution, and extreme events linked to global climate change.
Consequently, this improves our comprehension of the Earth’s
climate system and can inform effective climate change mitigation
and adaptation strategies.

I. INTRODUCTION

The Earth is a complex system consisting of two main compo-
nents, the ecosphere and the human factor, which interact nonlin-
early, giving rise to feedback loops and emergent behaviors.1,2 The
complexity of the Earth’s system arises from the intricate and often
unpredictable interactions between these components.

Climate teleconnections play a crucial role in the Earth’s com-
plex climate system by describing persistent relationships between
climate anomalies in geographically separated regions within both
the atmosphere and ocean.3–9 Teleconnections exist in both the
atmosphere and the ocean and dominate climate change at dif-
ferent temporal and spatial scales.3,10–12 Teleconnections have gar-
nered significant attention due to their role in energy transport
and global-scale climate dynamics occurring over typically thou-
sands of kilometers. These patterns represent preferred modes of
large-scale variability, and various methods have been developed to
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capture them.4,13–15 However, the mechanisms of specific teleconnec-
tions are not yet well understood, and there is a lack of a general
method for determining their distribution patterns and intensity
characteristics.

Among these teleconnection patterns, Rossby waves are par-
ticularly important due to their significant influence on climate
phenomena, extreme weather events, air pollution, and the trans-
port and distribution of CO2.8,16–20 Rossby waves operate primarily at
mid-high latitudes and interact closely with numerous climate pat-
terns, such as the Arctic Oscillation, the North Atlantic Oscillation,
the El Niño-Southern Oscillation, and the North Pacific Oscillation-
West Pacific pattern,4,21–25 and have a relatively large dominant role
in climate teleconnections and can pose a substantial safety risk to
human life and property.3

There have been research13,14 that comprehensively analyze the
links between atmospheric rossby waves from different altitudes
and climate variables such as air temperature, sea level pressure,
geopotential height, and meridional velocity reanalysis fields. They
capture the waves’ properties also using other fields at various alti-
tudes, showing that the Rossby waves’ pattern is clearly seen at a
ground level (1000 hPa) temperature field, a more common and
reliable variable.13 Previous studies found the 300 hPa meridional
velocity field to be the most suitable for studying the characteris-
tics of Rossby waves,26–28 while the temperature field yields a clearer
pattern at the ground level of 1000 hPa.13 Meanwhile, the time delays
observed over these long distances align with the direction of energy
transport and the group velocity of atmospheric Rossby waves,
and the prominent length scales, Southern Hemisphere dominance,
and prevalence during Southern Hemisphere summer exhibited by
the climate network are all consistent with the properties of these
waves.13 All of these factors, thus, provide strong support for the
association of the majority of the climate network far links with
Rossby waves.13 The atmospheric temperature field is indeed influ-
enced by many other factors, such as adiabatic processes on land and
sea. But as mentioned above, there are plenty of reasons and confi-
dences that these results are caused by atmospheric Rossby waves
dominance, though perhaps indeed not entirely by them. There-
fore, studying teleconnections and intensity characteristic is crucial
to help us better understand Rossby waves and cope with the effects
of climate change.

In recent years, statistical physics and network science29–45 has
emerged as a powerful tool in climate science.38 Climate networks
represent a unique approach to analyze climate data by construct-
ing networks where the geographical locations of climate data points
are considered network nodes, and the level of similarity between
the data points determines the network links or edges.46–50 Indeed,
recurrence networks, as introduced by Donner et al.,51 represent a
distinctive approach where states are nodes, and edges are deter-
mined by similarities between states. This method can provide
significant insights into both the dynamical properties of a process
and the identification of teleconnection patterns, as demonstrated
by Mukhin.52 This approach has been successful in modeling and
predicting climate phenomena, including extreme weather events,
and can provide valuable insights into the underlying processes that
drive climate variability and change.8,18,33,38,40,48,53–66 As such, climate
networks offer a promising avenue for advancing our understanding
of Earth’s complex climate system.38,67

In this study, we conduct a climate network analysis to reveal
the distribution patterns and intensity characteristics of telecon-
nections. By exploring their complexity and potential impacts on
climate mode, we aim to gain a better understanding of Earth’s com-
plex climate system and provide insights into assessing the safety
risks associated with teleconnections.

II. DATA

Our climate network is based on the National Center for Envi-
ronmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis daily surface or near the surface (0.995
sigma level) air temperature datasets, which are available at https://
www.esrl .noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.
html. The data have a spatial (zonal and meridional) resolution of
2.5◦ × 2.5◦, resulting in 144 × 73 = 10 512 grid points. The dataset
covers a time period of 74 years, spanning from January 1948 to
December 2021. The 500 hPa temperature and geopotential height
data at the same spatiotemporal scale are also used, which are avail-
able at https://downloads.psl.noaa.gov/Datasets/ncep.reanalysis/
Dailies/pressure/.

III. METHOD

A. Data preprocessing

To mitigate the strong effect of seasonality, we subtract the cal-
endar day’s mean from the time series of each node (in leap years, we
exclude February 29; thus, all years have the same length). For each
node i, with the temperature time series Ti(d, y), d = 1, 2, . . . , 365,
y = 1, 2, . . . , 74, we obtain the last using data Ti(t), t = 1, 2, . . . ,
L = 74 × 365 by subtracting the mean value of each calendar’s day
and dividing by the standard deviation,

Ti(t) = RD

(
Ti,d(y) − Meani,d(y)

SDi,d(y)

)
, (1)

where Ti,d(y) is the temperature for a given selected point i, spe-

cific day d of the year y, Meani,d(y) =
∑y=74

y=1 Ti,d(y)/Y, and SDi,d(y)

=

√∑y=74
y=1 (Ti,d(y) − Meani,d(y))

2/Y. The step of dividing by the

standard deviation aims to accommodate the fact that temperature
fluctuations in the Northern and Southern Hemispheres differ and
exhibit distinct variations. By implementing this step, we normalize
the data from both hemispheres, enabling us to conduct our analysis
and make comparisons using a unified standard scale. This normal-
izing procedure ensures that our subsequent network construction
does not inadvertently favor one hemisphere over the other due to
inherent differences in their seasonal temperature fluctuations.

To simplify subsequent calculations, we utilize a dimensional-
ity reduction function, RD, to convert the two-dimensional year-day
data Ti(d, y) into one-dimensional day data Ti(t). In order to reduce
computational time complexity and address practical constraints,
we selected 6570 points using a distance function and mapped them
to the global network.68 We define the resolution (in degree lati-
tude) at the Equator as x0 and calculate the number of nodes at the
equator, n0 = 360/x0. For each latitude x0l, the number of nodes
is nl = n0cos(x0l), where l ∈ [−90/x0, 90/x0]. The total number of

nodes is N =
∑l=90/x0

l=0 2nl − n0. Here, we choose x0 to be 2.5◦, which
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yields N = 6570. This resulted in the selection of a two-dimensional
(L,6570) matrix to represent T̃i(t). In order to eliminate the influ-
ence of enhanced land warming compared to the ocean surface, we
have also removed long-term thermodynamic trends in our analy-
sis. By detrending the data, we aim to focus on the variations and
patterns that are not solely driven by long-term trends but are more
indicative of the specific atmospheric dynamics, including Rossby
wave teleconnections.

B. Climate network characteristics

To construct climate networks, we use the cross-correlation
function with time lags to capture the interactions between differ-
ent points. The detailed procedure is as follows: For each pair of
nodes (climate points) i and j, we calculate the cross-correlation
function Ci,j(τ ) between T̃i(t) and T̃j(t), where τ = −τmax, . . . , τmax

represents the time lag. Here, for τ ≥ 0, Ci,j(τ ) is defined as

Ci,j(τ ) =

〈(
T̃i(t − τ) − Ti

) (
T̃j(t) − Tj

)〉
√〈(

T̃i(t − τ) − Ti

)2
〉√〈(

T̃j(t) − Tj

)2
〉 , (2)

and for τ < 0,

Ci,j(τ ) =

〈(
T̃i(t) − Ti

) (
T̃j(t + τ) − Tj

)〉
√〈(

T̃i(t) − Ti

)2
〉√〈(

T̃j(t + τ) − Tj

)2
〉 , (3)

where Ti and Tj are the average of T̃i(t) and T̃j(t − τ) over the time
period t = τ + 1, . . . , L. Here, we chose τmax = 800 (days).14

We demonstrate an example in Fig. 1 by using cross-correlation
to analyze the relationship between two nodes in the climate net-
work. And given any two points such as i and j, we can calculate
the actual spatial distance Rij(km) between the two points on Earth.
The location of the two nodes is indicated in Fig. 1(a) using red
and dark orange lines, and their distance is approximately 6261 km.

Figures 1(b) and 1(c) show the two time series and the cross-
correlation function, respectively. The maximal correlation between
the two nodes is found to be about Ci,j ≈ 0.188 at a time lag of 2 days.

The positive link weight between nodes i and j can be defined as

W
pos
i,j =

Cmax
i,j − mean(Ci,j(τ ))

std(Ci,j(τ ))
, (4)

while the negative link weight is defined as

W
neg
i,j =

Cmin
i,j − mean(Ci,j(τ ))

std(Ci,j(τ ))
. (5)

Here, we identify the maximum and minimum of the cross-
correlation function and denote the corresponding time lag as
τ

pos
i,j and τ

neg
i,j , respectively, where Cmax

i,j = Ci,j

(
τ

pos
i,j

)
and Cmin

i,j =

Ci,j

(
τ

neg
i,j

)
, and the “mean” and “std” are the mean and SD of the

cross-correlation function, respectively. The sign of τi,j indicates the

direction of each link, i.e., if τ
pos

i,j > 0, the direction of the link is
from i to j; otherwise, it is from j to i.33 Note that links with τ = 0
are excluded. Then, we can construct networks based on Cmax

i,j , Cmin
i,j

and W
pos
i,j , W

neg
i,j .

The adjacency matrix of a climate network is defined as

A
pos
i,j =

{
1, W

pos
i,j ≥ w

pos
t

0, W
pos
i,j < w

pos
t

(6)

and

A
neg
i,j =

{
1, W

neg
i,j ≤ w

neg
t

0, W
neg
i,j > w

neg
t

, (7)

where w
pos
t and w

neg
t are two thresholds obtained by a shuffle pro-

cedure; see details in Sec. III C. Then, we can define degree (D),
correlation (C), and weight (W) of each node i to measure the

FIG. 1. Example of a link in the climate network. (a) The geographic locations of the two selected nodes, i(−42.5◦ S, 30◦ W) and j(−17.5◦S, 30◦E). (b) The temporal
evolutions of the temperature anomaly (in ◦C) at these two points. (c) The cross-correlation function between the two time series, with a maximum correlation value of
approximately 0.19 observed at a time lag of τ = 2 days.
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climate network characteristics,

Di =





IND
pos,neg
i =

∑

j6=i

A
pos,neg
i,j , if τ

pos,neg
i,j < 0,

OUTD
pos,neg
i =

∑

j6=i

A
pos,neg
i,j , if τ

pos,neg
i,j > 0,

(8)

Ci =





INC
pos,neg
i =

∑

j6=i

A
pos,neg
i,j · C

pos,neg
i,j , if τ

pos,neg
i,j < 0,

OUTC
pos,neg
i =

∑

j6=i

A
pos,neg
i,j · C

pos,neg
i,j , if τ

pos,neg
i,j > 0,

(9)

Wi =





INW
pos,neg
i =

∑

j6=i

A
pos,neg
i,j · W

pos,neg
i,j , if τ

pos,neg
i,j < 0,

OUTW
pos,neg
i =

∑

j6=i

A
pos,neg
i,j · W

pos,neg
i,j , if τ

pos,neg
i,j > 0,

(10)

where IND
pos,neg
i and OUTD

pos,neg
i represent the in and out degrees

of node i in positive and negative links, respectively. INC
pos,neg
i and

OUTC
pos,neg
i represent the input and output correlations of node i in

positive and negative links, respectively. INW
pos,neg
i and OUTW

pos,neg
i

represent the input and output weights of node i in positive and
negative links, respectively.

In the context of our climate network, the in-degree of a node
represents the number of other nodes (locations) that significantly
influence the climate of the node in question. Conversely, the out-
degree represents the number of nodes (locations) that the node in
question significantly influences. These degrees serve as fundamen-
tal measures in the network analysis, helping us to identify key areas
in the global climate system based on the extent of their influences
and their susceptibility to influences from others.

Then, we construct the climate network using the geographic
location of the actual space as nodes and significant weight W as
edges, and the direction of each edge depends on the respective time
delay τ . The same can be done for correlation C to construct the
climate network. In turn, we can calculate the indexes for each node
in the network using the above method.

C. Significance tests

In this study, we utilize a shuffling procedure to assess the
significance of link weights in the surrogate case. The procedure
involves randomly shuffling the two time series T̃i(t) and T̃j(t) for
each pair of nodes i and j, with t spanning 74 years. We calculate
a control threshold based on the shuffled network weights, and any
link weight in the original network that surpasses this threshold is
considered significant or reliable, whereas link weights below the
threshold are considered spurious. The explanation of this proce-
dure is shown in Figs. 2(a) and 2(b). The shuffling procedure plays
a crucial role in the analysis of climate networks as it allows us to
distinguish between meaningful and spurious correlations. By com-
paring the original link weights with those obtained from shuffled
data, we can assess the statistical significance of the relationships
within the network. This process helps to filter out random cor-
relations that may arise by chance, providing a more reliable and
accurate representation of the underlying climatic dynamics.

In addition, we also incorporate the yearly shuffling method,
which retains the original order of data within each year but ran-
domizes the order of the years themselves. This approach allows us
to maintain the annual-scale evolution patterns while disrupting the
correlations between different years.69 By comparing and analyzing
the results obtained from both daily shuffling and yearly shuffling
procedures, as shown in Figs. 2 and S1, we are able to assess the
impact of data noise and identify more significant weight thresholds.

IV. RESULTS AND DISCUSSION

A. Climate network properties analysis

It is essential to recognize that the statistical analysis of the
four variables (distance, cross-correlation, weight, and time delay)
is performed for both the original and shuffled data. This approach
enables the identification of significant links in the climate network
and assists in differentiating between real and spurious links. The
results of the analysis are presented in Figs. 2(a) and 2(b) as well as
in the SI Appendix, Figs. S2–S4. This analysis offers valuable insights
into the relationships among the variables and their influence on the
network structure. By examining the statistics of these variables, it
becomes possible to pinpoint key factors that affect the formation
and strength of links within the climate network.

Figure 2 showcases the statistical relation analysis between the
variables of distance (R) and weight (W) for both original and
shuffled data. Figure 2(a) reveals that geographic locations in close
proximity (R < 2000 km) tend to have a strong positive correla-
tion, attributed to adjacent spatial auto-correlation. However, for
the positive link weight (W pos), a peak is observed at R ∼ 7000 km,
corresponding to the physical distance of one wavelength of atmo-
spheric Rossby waves.13,14,19 Figure 2(b) illustrates that for the nega-
tive link weight (W neg), there are two peaks. The first peak occurs
at R ∼ 3500 km, and the second peak is found at R ∼ 10000 km,
corresponding to the 1/2 and 3/2 wavelength of the atmospheric
Rossby waves.13,14 These findings suggest that our climate correla-
tion networks can detect some imprints of atmospheric Rossby wave
patterns.13,14

Additional results can be found in the supplementary material.
Specifically, Fig. S2(a) in the supplementary material demonstrates
that Cmax

i,j declines gradually as R increases. This pattern is similar to

the one observed for W
pos
i,j with respect to R, where Cmax

i,j exhibits a

proximity effect at short distances. However, it does not display the
same convex hull at a distance of 7000 km. Meanwhile, Fig. S2(b) in
the supplementary material illustrates the relationship between Cmin

i,j

and R(km), indicating that Cmin
i,j is not highly sensitive to changes in

distance. Moreover, the relationship between Wi,j and τ is explored
in Figs. S3(a) and (b) in the supplementary material. These figures
reveal that most high-weight values have relatively short propaga-
tion times, peaking at 1̃5 days. The propagation time for high-weight
connections within short distances (less than 2000 km) does not
exceed 3̃ days. However, for Figs. S2(c) and (d) in the supplemen-
tary material, the relationship between Ci,j and τ does not exhibit a
clear pattern, except for a peak at τ = 0.

Further analysis of the scatter diagrams of Cmax
i,j —W

pos
i,j and

Cmin
i,j —W

neg
i,j reveals an obvious “V” shape and an inverted “V” shape,

respectively. When the absolute value of Wi,j is small (Wi,j < 5),
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FIG. 2. Mining of teleconnection links in the climate networks.13,14 (a) Positive link weights W pos as a function of geographical distances R for both observed (blue) and
shuffled (red) data. (b) Negative link weights W neg as a function of geographical distances R for both Original (blue) and shuffled (red) data. (c) The probability density
function (PDF) of positive link weights shown in (a). (d) Analogue to (c) but for negative links. The dashed horizontal or vertical lines in each panel indicate the strength of the
threshold (W

pos

t = 5.5 and W
neg

t = −5.5), i.e., more than the lower (higher) bound of the top (bottom) 5% links, which is also higher than the 95% confidence level of the
randomly shuffled links.

Ci,j can change greatly and even reach its absolute maximum value.
As the absolute value of Wi,j increases, Ci,j and Wi,j become more
strongly linearly related. These findings suggest that Wi,j is a more
suitable indicator for measuring the intensity of connection weights
than Ci,j. Please see the diagram of Fig. S4 in the supplementary
material for details.

In order to eliminate the noise influence of the data itself as
much as possible, we synthesized and analyzed the maximum top 5%
thresholds of the two shuffled methods (daily shuffling and yearly
shuffling), combined with the Wi,j—R graphs, and finally decided

to choose w
pos
t = 5.5 and w

neg
t = −5.5 as our thresholds, which can

be referred to Fig. S1 in the supplementary material. As can be
clearly found that w

pos
t = 5.5 and w

neg
t = −5.5 thresholds are both

significantly higher than the 95% confidence level.
In Figs. 2(c) and 2(d), we present the probability density func-

tion (PDF) of W
pos
i,j and W

neg
i,j , respectively, with respect to distance R.

We also calculate the results with limits of R > 5000 km for positive

weights and R > 7000 km for negative weights, as shown in Fig. S5
in the supplementary material. These links we called teleconnec-
tions. We find that the distribution results are robust.13,14,19

B. Intensity distribution characteristics of

teleconnections

In the following, we focus on the teleconnections with large
weights (R > 5000 km for positive and R > 7000 km for negative).
Figure 3 provides an illustration of the distribution and inten-
sity patterns of IN Weight (INW) and OUT Weight (OUTW)
for positive and negative global teleconnections, which agree well
with the regions affected by Rossby waves in middle and high
latitudes.13,27,28 In Figs. 3(a) and 3(c), the darker the color red/blue,
the greater the positive/negative impact on the area. Conversely for
Figs. 3(b) and 3(d), the darker the red/blue color, the greater the pos-
itive/negative influence of the area on the outside world. In view of
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FIG. 3. The intensity distribution of teleconnections in the climate network. (a) IN(W) of positive links; (b) OUT(W) of positive links; (c) IN(W) of negative links; and
(d) OUT(W) of negative links.

FIG. 4. The teleconnections structure in the climate network. Top 5% of positive
links for (a) nodes with in-degree pattern and (b) nodes with out-degree pat-
tern. Top 10% of negative (absolute) links for (c) nodes with in-degree pattern
and (d) nodes with out-degree pattern. Node size/color represents the value of
degrees. The top 5% and 10% thresholds were chosen for better visualization.

FIG. 5. The divergence of teleconnections intensity spatial pattern. (a) For the
positive links, INW

pos

i - OUTW
pos

i . (b) and (c) show the same information as
(a) but viewed from the perspective of the North and South Pole. (d) For the neg-
ative links, INW

neg

i - OUTW
neg

i . (e) and (f) show the same information as (d) but
viewed from the perspective of the North and South Pole.
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the degree differences between the Northern and Southern hemi-
spheres, a view of the Northern Hemisphere is supplemented in
Appendix Fig. S6 in the supplementary material.

Our analysis shows that the intensities of both INW and OUTW
are considerably higher in the Southern Hemisphere (SH) compared
to the Northern Hemisphere (NH), indicating that teleconnections
in the SH are more stable and prominent. This may be attributed to
the fact that the NH has more complex terrain, environmental pollu-
tion, forest fires caused by human activities, and the cascading Arctic
amplification effect, leading to the influence of teleconnections and
Rossby waves is more and more instability and rapid changes.70 Con-
versely, the majority of the SH consists of oceans, which contribute
to more stable teleconnections and Rossby waves’ formation.26–28,71,72

Furthermore, the distribution of both INW
pos
i,j and INW

neg
i,j

tends to be concentrated on land, particularly in Europe-Africa,
East Asia, and the United States in the NH as well as South Aus-
tralia, South Africa, and South America in the SH.13 In contrast, the
distribution of OUTW

pos
i,j and OUTW

neg
i,j tends to be concentrated

on oceans, particularly in the Northern Pacific Ocean, Southern

Greenland Ocean (North Atlantic) in the NH, and the ocean areas
in the southeast of Africa, southeast of Australia, and southeast of
America in the SH.13 These findings shed light on the role of land
and oceans in modulating teleconnections.

Figure S7 in the supplementary material presents the results
for IN degree (IND) and OUT degree (OUTD) fields, which have
similar distribution characteristics.13 In the context of this study, we
leverage the concept of “degree” in a network to indicate the number
of connections a node has. When dealing with a climate network,
where nodes represent geographical locations and edges represent
teleconnections, the degree of a node represents its connectivity or
influence with other nodes in the network. In terms of spatial propa-
gation, a high degree node would suggest that changes in the state of
that node have a wider influence. Hence, if we visualize the network
in a spatial context, such a node would be the “source” of a spatial
propagation of effects to other nodes (regions). So we can delimit
sub-regions and analyze the incoming and outgoing edges separately
to obtain the global teleconnections that influence the direction. By
applying this method, we are able to mine the propagation directions

FIG. 6. Cumulative weight strength Wsum of (a) positive and (b) negative teleconnections as a function of threshold W
pos
c /W

neg
c for the first 37 years 1948–1984 (blue) and

the last 37 years 1985–2021 (red). The probability density function (PDF) of link (c) positive and (d) negative weights.
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of global teleconnections, which are shown in Fig. 4, and are con-
sistent with the directions of planetary Rossby waves.13 The view of
the NH is supplemented in Appendix Fig. S8 in the supplementary
material.

Considering the intensity differences between the northern
and southern hemispheres, we also have built, calculated, and ana-
lyzed separate networks for the northern and southern hemispheres
as well as the equatorial region, and the results can be found in
Figs. S14–S16 in the supplementary material. We discover that the
results of building a separate network were consistent with the pre-
vious results, which mirrored the correctness of our previous results.
And the display of the results at the equatorial region shown in
Fig. S16 is insignificant. This is consistent with the understand-
ing that atmospheric Rossby waves primarily manifest in the mid-
latitudes rather than near the equator. The limited impact observed
at the equatorial region aligns with the characteristic behavior of
Rossby waves, further supporting our findings.

We then analyze the global teleconnections by examining the
divergence of INW and OUTW for both positive and negative cases,
as depicted in Fig. 5, and the divergence for degree is shown in
Fig. S9 in the supplementary material. The alternating pattern of
teleconnections, propagating mainly from west to east, high latitude
to mid-latitude, is clearly displayed in red and blue patterns and very
similar to Rossby waves.13,14,16 Specifically, three alternating red–blue
phase distribution patterns correspond to six half-wavelengths or
three to four full wavelengths. Considering that our results are aver-
aged over a substantial spatial and temporal scale of 74 years, the
patterns and intensity characteristics of teleconnections they display
are indeed stable and robust. It is noteworthy that these charac-
teristics observed in our analysis are distinct from those of waves
that operate on shorter time scales. These short-term waves tend
to change rapidly within a span of hours and exhibit recurrent
movement around the Earth’s atmospheric cycle, resulting in their
inherent instability. In contrast, the teleconnection patterns associ-
ated with Rossby waves, as identified in our study, operate on longer
time scales and display more persistent and stable behavior. These
differences highlight the unique nature of Rossby waves and their
impact on global climate dynamics.

Similarly, considering the influence of other effects such as
sea–land adiabatic processes, we also apply the method to the
500hpa temperature field and obtain the same similar results, see
Figs. S17–S22 in the supplementary material. It shows that indeed
atmospheric Rossby waves play a very important dominant role
for teleconnections, and our analysis and results are reliable. And
results for 500 hpa geopotential height are shown in Figs. S23–S24
in the supplementary material. And we also calculate the similar
and robust results for different thresholds by top 5% shuffled. Our
findings provide valuable insights into the stable and reliable fea-
tures of teleconnections, contributing to a better understanding of
atmospheric dynamics.

C. The spatiotemporal evolutions of teleconnections

To analyze the evolutions of strength patterns over time, we
apply the aforementioned method to calculate the strength pat-
terns for two different periods: the first 37 years (1948–1984) and
the last 37 years (1985–2021). The resulting Wi,j—Di,j values and

their probability density functions (PDFs) are presented in Figs. S10
and S11 in the supplementary material, respectively. We examine
the teleconnections in the climate network with the thresholds of
R > 5000 km and R > 7000 km as well as W

pos
i,j ≥ 5.5 and W

neg
i,j

≤ −5.5. We then calculate the number of links and weight sum of
edges for W

pos
i,j and W

neg
i,j , respectively. Figure 6 displays the results

of the difference in weight sum between the first 37 years and last
37 years. Moreover, we compute the increasing rate by subtracting
the number or weight sum of the last 37 years from that of the first
37 years and dividing the first 37 years, as demonstrated in Fig. S12
in the supplementary material.

We find that as the selected threshold Wt increases, the telecon-
nections sum-weight of the last 37 years consistently exceeds that of
the first 37 years for W

pos
i,j , and the increasing rate continues to rise

for W
pos
t above 6.5, as shown in Fig. S12(a) in the supplementary

material. On the other hand, for W
neg
i,j as shown in Fig. S12(b) in

the supplementary material, although the quantity and sum-weight
of teleconnections show a persistent decrease, the increasing rate
becomes much higher. When W

neg
t ≤ −6.5, the significant weight of

teleconnections added is more than half of that in the first 37 years.
These results suggest that for both positive and negative tele-

connections with significant weight, the quantity of teleconnections
is increasing over a large spatiotemporal scale, with the intensity of
teleconnections showing an increasing trend over time. Although
the spatial distance R remains constant for any teleconnection, the
weight has increased. We further explore the specific regions that
are influenced by teleconnections, and the results are presented in
Figs. 7 and 8.

Figure 8 displays the spatiotemporal evolutions of the inten-
sity transform pattern of teleconnections from 1948 to 2021, with
threshold W

pos
t = 5.5 and W

neg
t = −5.5. The changes in the SH are

notable, as evident from Fig. 8. For instance, the southern Indian
Ocean is divided into two parts, where the positive output has

FIG. 7. The diagram of increased teleconnections in the global climate network.
For positive and negative teleconnections, we separately select the top 50% of
weight max for NH and SH. (a)W

pos

i,j indegree. (b)W
pos

i,j outdegree. (c)W
neg

i,j inde-

gree. (d)W
neg

i,j outdegree. The node size and color represent the size of the node

degree. The top 50% thresholds were chosen for better visualization.
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FIG. 8. The quantitative change ofWi,j for positive and negative teleconnections between 1948–1984 and 1985–2021. (a) The divergence of INW
pos

i,j . (b) The divergence of

INW
neg

i,j . (c) The divergence of OUTW
pos

i,j . (d) The divergence of OUTW
neg

i,j . The red colored nodes indicate the region with an increase in weight, and the blue area indicates

a decrease. The results for Di,j are shown in Fig. S13.

increased substantially in one part (the southwestern oceans of Aus-
tralia, near the South Pole), while the negative output has also
increased considerably in the other part (the oceans in the south-
east of Africa). This could suggest that the impact of teleconnections
of the southern Indian Ocean on Australia and the surrounding
ocean is intensifying. Regarding southeast Australia, the positive
in-links are increasing, out-links are decreasing, negative in-links
are increasing, and negative out-links are decreasing. These changes
align with those observed in the South Indian Ocean. As a result,
we hypothesize that this area will become progressively influenced
by teleconnections in the future and may serve as a “hotspot” due
to the reduction in both positive and negative outputs. This could
contribute to the triggering of a tipping point event in the whiten-
ing of coral reefs in the Australian region.73,74 Another noteworthy
point in the SH is the symmetry and complementary in-links and
out-links changes of the land and ocean in southern South America
and southern Africa under large-scale interannual changes.

Regarding the NH, we find three relatively significant regions
where the intensity of the teleconnection effect is weakening: the
central part of the North Pacific and the northeastern part of the
United States, the eastern part of the Asia and the western coast
of the United States, and the junction of the northeastern part
of the United States and the Eurasian continent. However, Fig. 8
also reveals that the positive impact of the North Atlantic on the

Caspian Sea and the Qinghai-Tibet Plateau is enhanced, although
the increased intensity is limited. Thus, the variation in telecon-
nection influence intensity in the NH is relatively stable and not
apparent at a spatiotemporal scale spanning 74 years. We suspect
that this stability is due to the combined effects of the changeable
jet stream and complex geographical environment in the NH.

V. CONCLUSION

In this study, we examined the teleconnections mainly dom-
inated by atmospheric Rossby waves using a climate network
approach. Our framework enabled us to identify the direction and
distribution characteristics of teleconnections on a global scale,
revealing that “in-links” are concentrated on land (e.g., Europe,
Africa, East Asia, and America in the NH, and South Africa, Aus-
tralia, and South America in the SH), while “out-links” predomi-
nantly originate from the oceans.13 We also quantitatively evaluated
the intensity of teleconnections and found that it is significantly
stronger and more stable in the SH than in the NH. This may be due
to the complex geographical environment of the Northern Hemi-
sphere, jet stream, human activities, and the cascading effects of
climate tipping points over time.26–28,71–73

Our analysis of the divergence of the degree and weight of
teleconnections reveals stable average intensity characteristics and
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distribution patterns of teleconnections (waves 3–4) on large spa-
tiotemporal scales spanning 74 years in mid-high latitudes. We
established two layers of the global climate network on the tem-
poral scale, based on the first 37 years (1948-1984) and the last
37 years (1985-2021), respectively, and comparatively analyzed the
distribution pattern and intensity characteristics of teleconnections
on these layers. We found that most of the teleconnections’ inten-
sities in the NH are slightly weakening, while the influence of the
ocean in the SH on land is significantly increasing, forming sev-
eral “hot spot” climate-sensitive areas (e.g., Southeastern Australia,
Southern South America, and South Africa) between 1948–1984 and
1985–2021.74 Furthermore, our analysis indicated that the intensity
of teleconnections is increasing over time, which may be related to
climate change, global warming, human activities, and the activation
of climate tipping points.73,74

SUPPLEMENTARY MATERIAL

See the supplementary material for additional sources of data
and data analysis that support the findings in the paper.
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