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Abstract. Probabilistic models to inform landslide early
warning systems often rely on rainfall totals observed dur-
ing past events with landslides. However, these models are
generally developed for broad regions using large catalogs,
with dozens, hundreds, or even thousands of landslide oc-
currences. This study evaluates strategies for training land-
slide forecasting models with a scanty record of landslide-
triggering events, which is a typical limitation in remote,
sparsely populated regions. We evaluate 136 statistical mod-
els trained on a precipitation dataset with five landslide-
triggering precipitation events recorded near Sitka, Alaska,
USA, as well as > 6000 d of non-triggering rainfall (2002–
2020). We also conduct extensive statistical evaluation for
three primary purposes: (1) to select the best-fitting mod-
els, (2) to evaluate performance of the preferred models, and
(3) to select and evaluate warning thresholds. We use Akaike,
Bayesian, and leave-one-out information criteria to compare
the 136 models, which are trained on different cumulative
precipitation variables at time intervals ranging from 1 h to
2 weeks, using both frequentist and Bayesian methods to es-
timate the daily probability and intensity of potential land-
slide occurrence (logistic regression and Poisson regression).
We evaluate the best-fit models using leave-one-out valida-
tion as well as by testing a subset of the data. Despite this
sparse landslide inventory, we find that probabilistic models
can effectively distinguish days with landslides from days
without slide activity. Our statistical analyses show that 3 h

precipitation totals are the best predictor of elevated land-
slide hazard, and adding antecedent precipitation (days to
weeks) did not improve model performance. This relatively
short timescale of precipitation combined with the limited
role of antecedent conditions likely reflects the rapid draining
of porous colluvial soils on the very steep hillslopes around
Sitka. Although frequentist and Bayesian inferences produce
similar estimates of landslide hazard, they do have differ-
ent implications for use and interpretation: frequentist mod-
els are familiar and easy to implement, but Bayesian models
capture the rare-events problem more explicitly and allow
for better understanding of parameter uncertainty given the
available data. We use the resulting estimates of daily land-
slide probability to establish two decision boundaries that
define three levels of warning. With these decision bound-
aries, the frequentist logistic regression model incorporates
National Weather Service quantitative precipitation forecasts
into a real-time landslide early warning “dashboard” sys-
tem (https://sitkalandslide.org/, last access: 9 October 2023).
This dashboard provides accessible and data-driven situa-
tional awareness for community members and emergency
managers.
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1 Introduction

On 18 August 2015, an extreme rain event initiated more
than 40 landslides on the islands near Sitka, Alaska, USA,
including a debris flow that resulted in three fatalities (Busch
et al., 2021). Over a 6 h period, the Sitka area received 64–
83 mm (2.5–3.25 in.) of rain, and the 3 h storm totals had
an estimated 45-year return period. Following this event, the
community convened the GeoTask Force to identify priority
questions related to landslide risk and hazard (Busch et al.,
2016). Community leaders and technical experts determined
the need for a landslide early warning system. This study re-
sults from the actions of the community to seek support to
reduce landslide risks.

Landslide early warning has the potential to save lives by
providing actionable information in advance of an imminent
landslide event (e.g., Guzzetti et al., 2020). Landslide early
warning systems consist of a prediction (“nowcast” or “fore-
cast”) of landslide occurrence, one or more thresholds for
action, and a method for disseminating warning information.
In this paper, we use the term “landslide prediction” to refer
to estimates of elevated landslide hazard in the future based
on forecasted precipitation and “landslide early warning sys-
tem” to refer to the warning level dissemination. Notably,
the landslide early warning system described in this work is
a public-facing web dashboard that operates automatically
and does not send notifications or operationalize decision-
making about emergency response.

Decades of investigation around the world have demon-
strated the value of using precipitation and hydrologic condi-
tions to predict landslides (e.g., Chae et al., 2017; Guzzetti et
al., 2020), but prediction strategies vary. Most studies deter-
mine decision thresholds that aim to separate periods when
landslides are likely from periods when they are not. These
thresholds may be based on precipitation intensity and du-
ration, consider cumulative precipitation over different time
periods (Guzzetti et al., 2008; Mirus et al., 2018a; Bogaard
and Greco, 2018), and/or incorporate in situ hydrologic data
or estimates of antecedent hillslope hydrological conditions
(Thomas et al., 2018; Marino et al., 2020; Mirus et al., 2018b;
Wicki et al., 2020). Thresholds may indicate the minimum
accumulation of precipitation needed to initiate landslides or
attempt to optimally separate triggering from non-triggering
precipitation events (Segoni et al., 2018).

Accurately predicting rare events like landslides remains
challenging because the complex and spatially heteroge-
neous processes that drive landslide initiation are difficult to
characterize at sufficiently high resolution across broad re-
gions (Stanley and Kirschbaum, 2017; Reichenbach et al.,
2018; Guzzetti, 2021, etc.). In this study, instead of trying
to predict the spatial occurrence, we focus on predicting the
temporal occurrence of landslides (when and how many fail-
ures) within a given study area.

Both empirically and physically based hazard assessments
and warning systems require sufficient in situ data to be de-

veloped, calibrated, and validated. For example, lack of high-
resolution imagery and in situ measurements of parameters
such as soil bulk density, thickness, and hydraulic proper-
ties hinders the development of physically based models. De-
tailed precipitation and hydrologic records with high tempo-
ral resolution (hourly or finer) rarely cover long timescales
(years to decades). Additionally, remote, sparsely popu-
lated areas typically lack inventories of landslide occurrence.
These limited datasets of landslide occurrence and associated
triggering conditions make it challenging to develop empiri-
cal models for landslide initiation, which may have large un-
certainties, are often difficult to validate, and cause detrimen-
tal false positives in early warning systems. Yet, vulnerability
to landslides is often high in remote and data-sparse regions
due to limited infrastructure and access to external aid (Cut-
ter and Finch, 2008). Improving prediction of landslide haz-
ards in remote regions is a critical step to supporting resilient
communities.

In this study, we developed a landslide early warning
system for the remote community of Sitka, Alaska, USA
(Fig. 1), which had a population of 8382 in 2022 (US Cen-
sus Bureau, 2022). We trained statistical models with limited
landslide inventory data to estimate landslide probability and
the number of landslides in the study area based on observed
and forecasted precipitation, and then we used these mod-
els to establish thresholds for landslide early warning. Our
approach continuously estimates landslide risk based on Na-
tional Weather Service forecasts and disseminates this infor-
mation using a public-facing dashboard that was designed
with extensive community input. In this sense, our research
highlights the importance of linking the key aspects of sta-
tistical analyses with readily digestible thresholds to inform
communities.

1.1 Study area: Sitka, southeast Alaska

Landslides in southeast Alaska pose persistent hazards to the
small, isolated communities that are on the flanks of hill-
slopes over-steepened by glaciers. The majority of failures
are debris flows initiated by shallow landslides (Swanston
and Marion, 1991; Johnson et al., 2000). Steep hillslopes
with thin volcanic soils overlying till are especially suscepti-
ble to shallow-seated landslides (Sidle and Swanston, 1981;
Swanston, 1970; Patton et al., 2022). Following the fatal de-
bris flow event in Sitka on 18 August 2015 (Busch et al.,
2021), community organizers identified the need to better un-
derstand both where and when landslides are likely to occur
in Sitka.

The landscape surrounding Sitka (Fig. 1) is geomorphi-
cally complex (Patton et al., 2022), having been sculpted by
tectonic activity (White et al., 2016; Elliott and Freymueller,
2020), Pleistocene glaciation (Mann, 1986; Hamilton, 1986),
volcanic eruptions (Riehle et al., 1992b, a), and a long history
of human settlement (Lesnek et al., 2018; Sandberg, 2013).
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Figure 1. Study area. (a) Google Earth image of Sitka (Sheet’ka), Alaska (© Google Earth, 2021). The town lies below over-steepened
postglacial hillslopes susceptible to landslides. Some of the existing residential and municipal areas are built in landslide initiation or runout
zones. (b) Map of recent rain-triggered landslides evaluated in this study shown on a shaded relief map from the US Geological Survey 5 m
digital data, 2014. Higher contrast delineates areas within 2 km of the Sitka road network (dark lines). (c) Photo of the South Kramer Debris
Flow, which was initiated on 18 August 2015 and resulted in three fatalities. Photograph courtesy of the authors.

The mid-latitude maritime climate in Sitka is characterized
by high annual precipitation. During the last climatic nor-
mal (1981–2010), mean annual precipitation at sea level was
2205 mm (Wendler et al., 2016), but steep orographic gra-
dients and complex topography result in spatially heteroge-
nous climate and weather patterns. Mean monthly tempera-
tures stay above freezing all year. Variable snowpacks accu-
mulate in winter months, particularly at high elevations, but
most precipitation occurs as non-freezing rain in coastal and
low-elevation areas. Rainfall occurs year-round in southeast
Alaska, but August–November are the wettest months.

In particular, atmospheric rivers (ARs) account for 90 % of
extreme precipitation in southeast Alaska, where “extreme”
precipitation was statistically defined using the block max-
ima approach by identifying one extreme event per year and
per season (Sharma and Déry, 2019, 2020). The AR contri-

bution to extreme precipitation is particularly high (> 90 %)
from September to December. Across southeast Alaska, as
well as much of western North America, ARs initiate the vast
majority of shallow precipitation-related landslides, although
a minority of those ARs actually trigger widespread landslid-
ing (Oakley et al., 2017; Cordeira et al., 2019; Jacobs et al.,
2016).

Given this geographic setting, the community of Sitka is
exposed to persistent, although largely unquantified, land-
slide hazards (Miller, 2019; Busch et al., 2021; Patton et al.,
2022). Although it is difficult or impossible to reduce land-
slide hazards across broad hillslopes, landslide early warning
systems can greatly reduce landslide risk to life and safety in
these areas. With sufficient warning, residents can voluntar-
ily evacuate high-hazard neighborhoods.
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1.2 Developing precipitation thresholds for landslide
warning

Landslide hazard estimates and precipitation thresholds ex-
ist at the global (Guzzetti et al., 2008; Khan et al., 2021;
Kirschbaum and Stanley, 2018), regional (Piciullo et al.,
2018; Segoni et al., 2018; Staley et al., 2017), and local
scales (e.g., Mirus et al., 2018a) and even for individual
landslides (Kristensen et al., 2021). Developing and apply-
ing new thresholds for landslide warning requires determin-
ing the most relevant variables and timescales to model land-
slide hazard in a particular region, considering data avail-
ability and taking the risk tolerance of the targeted commu-
nity into account. Almost every investigation of antecedent-
triggering precipitation thresholds uses different observation
timescales. These differences reflect different landslide types
of interest (shallow versus deep-seated), hydrogeomorphic
controls, climate, and the type and length of records avail-
able.

Hydrometeorological thresholds for landslide initiation
have been proposed for nearby remote areas of British
Columbia (Jakob et al., 2006) and suburban Vancouver
(Jakob et al., 2012) in Canada, but no systematic landslide
warning threshold currently exists at either local scales for
towns within southeast Alaska or the regional scale for south-
east Alaska as a whole, despite its high susceptibility to slope
failures (e.g., Darrow et al., 2022; Patton et al., 2022). Gener-
ations of knowledge in southeast Alaska and close observa-
tion of the natural environment provide rich understanding of
landslides and other natural processes, but southeast Alaska
lacks extensive written records of landslide occurrence with
daily timestamps and sub-daily, spatially distributed precip-
itation records. This contrasts with many well-established
landslide prediction models developed in the European Alps,
Japan, and other data-rich regions that can draw on tens
to thousands of observations of landslide-triggering precip-
itation and gridded precipitation datasets with high spatial
and temporal resolution (e.g., Osanai et al., 2010; Saito et
al., 2010; Berti et al., 2012; Lee et al., 2015; Leonarduzzi
et al., 2017; Piciullo et al., 2017). Although previous esti-
mates of rainfall thresholds have included only precipitation
events that triggered landslides (Peruccacci et al., 2017), re-
cent research has shown that including records of precipita-
tion that did not trigger landslides can help sparse landslide
datasets perform well (Peres and Cancelliere, 2021). Warn-
ing systems developed from hundreds to thousands of ob-
served landslides are generally considered more trustworthy
than those with few landslide-inducing events.

In southeast Alaska, the United States National Weather
Service (NWS) forecasting products provide the best avail-
able warning information through weather and hydrologic
watches, warnings, and advisories, but both communities and
NWS forecasters have expressed a need for systematic anal-
ysis of landslide potential under different storm conditions
(Busch et al., 2021). Recent investigations in Sitka, Alaska

(Chu et al., 2021; Booth et al., 2020; Vascik et al., 2021),
and the community’s desire for real-time landslide hazard as-
sessments make this an ideal region to identify new precip-
itation thresholds and expand on established landslide pre-
diction techniques for use in data-sparse regions. Our re-
search objective is to provide the community of Sitka with
a landslide early warning system that provides real-time and
forecasted assessments of landslide hazard to support indi-
vidual and community-wide decision-making. We estimate
two metrics of daily landslide hazard in Sitka using statisti-
cal models trained with landslide inventory data and precip-
itation records. As described in detail in the “Methods and
data” section, our approach relies on models developed us-
ing hourly precipitation data from both landslide-triggering
days (5) and all non-triggering days (> 6000) within the pe-
riod of record between 2002 and 2020.

2 Methods and data

To develop daily estimates of landslide hazard, we trained
and evaluated probabilistic models for landslide prediction
with precipitation data as the predictor. Due to limited
landslide observations during the period with precipitation
records (only five landslide events in the recent record), train-
ing and validating these models is inherently difficult. We
therefore used several evaluation strategies after training the
models to build a thorough understanding of model strengths
and weaknesses. These evaluation approaches serve three
primary purposes: to select models, to evaluate performance
of the preferred models, and to select and evaluate thresholds
(Steps 3–5 below). In summary, our workflow included the
following steps:

1. Data. We compiled information about landslide oc-
currences with known timing near Sitka, Alaska, and
weather-station precipitation data for a period of record
with hourly precipitation data (2002–2020). Timing of
each landslide was known within 12 h or at finer resolu-
tion.

2. Model training. We trained frequentist and Bayesian
models (136 total) with historical records of precipita-
tion and landslides to predict the daily probability of
landslides (logistic regression) and the number of land-
slides (Poisson regression) that could occur based on
cumulative precipitation. Logistic regression and Pois-
son regression are generalized linear models that can in-
corporate any number of predictor variables, including
precipitation at different timescales and groundwater or
hydrologic data.

3. Model selection. We compared the 136 models (Table 1)
using a range of cumulative precipitation timescales to
select the most appropriate model for the warning sys-
tem. We considered models with a single predictor (cu-
mulative “triggering” precipitation) and models with
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two predictors (cumulative “antecedent” precipitation
and cumulative “triggering” precipitation).

4. Model evaluation. We checked the most appropriate
model’s sensitivity (and thus robustness) by remov-
ing individual landslide events (leave-one-out/jackknife
validation). We evaluated its skill against historical
daily landslide frequency.

5. Threshold selection. Using input from Sitka community
members, we established heuristic decision thresholds
for multiple landslide warning levels based on the esti-
mated probability of landsliding and expert judgment.

6. Threshold evaluation. We assessed how well a model
trained on an earlier section of the time series was able
to predict landslides in a later portion of the time se-
ries based on these thresholds and evaluated how often
landslide warnings would have been issued in the past.

The naming scheme we used for all models (frequentist
versus Bayesian, logistic regression versus Poisson regres-
sion, precipitation timescales) is summarized in Table 1.

2.1 Data sources

To investigate landslide conditions in Sitka, we used exist-
ing hourly precipitation records from the nearby weather sta-
tion (NWS station code PASI) operated by the Federal Avia-
tion Administration (FAA) at Sitka Rocky Gutierrez Airport
(University of Utah, Department of Atmospheric Sciences,
2023). Climate records in Sitka go back to the early 19th cen-
tury (Wendler et al., 2016), and hourly precipitation data (or
sub-hourly) have been recorded at the airport weather station
since 2002; we included all days with observations between
12 November 2002 and 13 December 2020. A nearby US Cli-
mate Reference Network (USCRN) meteorological station
(NWS station code SIKA2) has also documented sub-hourly
precipitation since 2005 (Diamond et al., 2013). Some vari-
ation in precipitation is observed at these two locations, but
for the purposes of simplicity we train the statistical models
using a single precipitation gauge, the PASI gauge at Sitka
Rocky Gutierrez Airport.

Through a combination of air photo interpretation and
field mapping, the US Forest Service has curated an inven-
tory of more than 12 000 landslides in southeast Alaska, with
records dating back to the early 20th century, known as the
Tongass National Forest Landslide Areas inventory (US For-
est Service, 2019). To focus only on landslides likely to im-
pact human safety and infrastructure, we create a subset of
the Tongass inventory of landslides within 2 km of the road
network in Sitka, thus obtaining 5 d with recorded landslides
out of 6606 d with reported precipitation. We collected and
synthesized information about the landslides near Sitka, in-
cluding their timing and impacts.

2.2 Logistic and Poisson regression for estimating
landslide hazard

Many previous works have used probabilistic techniques to
predict landslide hazard (Berti et al., 2012; Brunetti et al.,
2010; Tufano et al., 2019). In keeping with this practice, we
used logistic regression to estimate the daily probability of
landsliding as a function of precipitation. We also used Pois-
son regression to estimate intensity (number of landslides
per day in the study region) as a proxy for the magnitude
of the event. The outputs of logistic and Poisson regressions
are useful because they provide a nuanced understanding of
relative landslide hazard that allows practitioners to identify
multiple working thresholds that lead to different levels of
community response.

Logistic and Poisson regression are generalized linear
models that can include any number of predictor variables
(McCullagh and Nelder, 1989). To determine the most ef-
fective precipitation timescale for estimating daily landslide
hazard in Sitka, we tested a series of models with predic-
tors at a range of timescales that include (a) triggering or
(b) triggering with antecedent precipitation. We considered
two model setups: the first (trigger-only) estimates daily
landslide hazard (probability or intensity on day d) as a func-
tion of cumulative precipitation during a specified time pe-
riod t , which is either a sub-daily interval of day d or a time
period leading up to and including day d . We investigated
time periods t of 1, 3, 6, 12, and 24 h and 2, 3, 7, and 14 d.
The second model setup (trigger-antecedent) introduces an
additional predictor to describe cumulative precipitation dur-
ing an antecedent time period a preceding day d and uses
only sub-daily time periods for t . We considered antecedent
periods of 1, 2, 3, 7, and 14 d.

For each day of recorded precipitation between 2002 and
2020 d (6606 d), we used a series of moving windows to ex-
tract the maximum cumulative precipitation in each sub-daily
time period t on that day and cumulative precipitation for all
other time periods t and a leading up to and including that
day. This applies for both days with landslides and days with-
out. For example, on a day with a landslide, 3 h triggering
precipitation (Pt ) represents the highest cumulative 3 h pe-
riod between midnight and 23:59 local time. A 1 d antecedent
precipitation (Pa) period is the 24 h period before midnight
on the day of the landslide. The precipitation timescales we
considered are designed to integrate with existing NWS pre-
cipitation forecasting products, which provide precipitation
estimates for 3 h intervals for the upcoming ∼ 48 and 6 h in-
tervals for the following∼ 48 h. This method relies on the as-
sumption that triggering rainfall is well represented by daily
peak rainfall totals.
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Table 1. Model naming system. We evaluated 136 models fit to the complete landslide inventory data and precipitation records. We also
evaluated one frequentist logistic regression model fit to a subset of these data, reserving some data for validation (training–test), and one
simpler alternative model based on historical landslide frequency. Bold letters in the “Example” column show the described component.

Component Type Naming convention Example

Inference Frequentist Model name begins
with “F”

FL-1H1D

Bayesian Model name begins
with “B”

BL-1H1D

Model type Logistic regression Second letter is “L” FL-1H1D

Poisson regression Second letter is “P” FP-1H1D

Precipitation predictor 1 Triggering precipitation (h) Number of hours is in-
dicated as “nH” with
n= 1, 3, 6, 12, or
24

FL-3H

Triggering precipitation (d) Number of days is indi-
cated as nD with n= 1,
2, 3, 7, or 14; no hours
indicated

FL-1D

Precipitation predictor 2 Antecedent precipitation Number of days is indi-
cated as “nD” with n=
1, 2, 3, 7, or 14

FL-1H2D

No antecedent precipitation
variable

No days indicated FL-1H

Training–test split (preferred model only) FL-TT-3H
(frequentist logistic regression)

The logistic regression models have the following form:

yd ∼ Bernoulli(pd) ,

logit(pd)= β0+β1Pt +β2Pa, (1)

where yd is a binary indicator of whether a landslide was ob-
served on day d, pd is the probability of having a landslide
on day d, and ∼ indicates that yd is modeled as a Bernoulli
distributed random variable. β0 is the intercept of the gener-
alized linear model; β1 is the coefficient of cumulative pre-
cipitation (Pt ) during time period t ; and β2 is the coefficient
of antecedent precipitation (Pa) during time period a, which
is excluded in the single-predictor models. Logistic regres-
sion models are indicated with an L in their name (Table 1).

The Poisson regression models have a similar form:

zd ∼ Poisson(λd) ,

ln(λd)= α0+α1Pt +α2Pa, (2)

where zd is the number of landslides observed on day d;
λd is the average intensity of landsliding (landslides per day
per area) on day d; α0 is the intercept; α1 is the coefficient
of cumulative precipitation; and α2 is the coefficient of an-
tecedent precipitation, again excluded in the single-predictor
models. Poisson regression models are indicated with a P in
their name (Table 1).

We applied both frequentist (F, Table 1) and Bayesian (B,
Table 1) approaches to fitting the logistic and Poisson regres-
sions. Frequentist inference assumes that there is a true, un-
known set of parameters and that the observed data result
from an infinitely repeatable sampling experiment. Frequen-
tist 95 % confidence intervals around the point estimate for a
parameter have a 95 % probability of including the true pa-
rameter value if the experiment is repeated a large number
of times. Bayesian inference, in contrast, provides posterior
parameter estimates, which are probability distributions of
all possible parameter estimates that are compatible with the
observed landslide data and our prior knowledge, which is
specified in the form of a probability distribution. This is a
useful property for estimating hazard from landslide invento-
ries with few reported landslides because the posterior prob-
ability distribution quantifies how certain we can be of the
parameter estimates, given few data points, and incorporates
previous knowledge of landslide processes. A Bayesian 95 %
credibility interval contains 95 % of the posterior probability,
providing an arguably more intuitive estimate of uncertainty
than frequentist confidence intervals.

Both frequentist and Bayesian approaches have been ap-
plied in landslide research (e.g., Berti et al., 2012; Segoni et
al., 2018). Frequentist approaches may be familiar to a wider
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range of users and are typically easy to apply out of the box in
popular programming languages. Bayesian approaches offer
potential advantages for small datasets, particularly because
they quantify parameter uncertainty given the available data
but are less commonly known and require sufficient expertise
to select prior distributions. Here, we explore both inferences
and compare their output and application.

For the Bayesian regressions, we chose weakly informa-
tive Student-t prior distributions that reflect our expectations
about landslide activity in Sitka, specifically that (1) land-
slide probability and the number of landslides should in-
crease with increasing precipitation, (2) the probability of
landsliding should be less than 50 % at the mean precip-
itation in Sitka, and (3) the average number of landslides
should be below 1 at the mean precipitation. Weakly informa-
tive Student-t priors are recommended defaults for Bayesian
logistic regression (Gelman et al., 2008) that encode prior
knowledge without overly influencing regression results. Ad-
ditionally, when faced with an imbalanced dataset, as is the
case here, such priors have been shown to produce stable re-
gression coefficients, even in the case where there is near-
perfect separation between landslide and non-landslide days
(Gelman et al., 2008). Specifically, we chose the following:

β0 ∼ Student t (3,−3,2.5) ,

β1,β2 ∼ Student t (3,3,2.5) ,
α0 ∼ Student t (3,0.5,1) ,
α1,α2 ∼ Student t (3,−5,1) . (3)

In the Bayesian regressions, precipitation values were stan-
dardized by subtracting the mean across all days and dividing
by the standard deviation, also known as a z score. These pri-
ors refer to standardized data, where the intercepts β0 and α0
indicate the expected values for probability and intensity at
the mean precipitation value.

We fit the frequentist models using the R glm software
package, which relies on iterative weighted least squares
to estimate parameters (R Core Team, 2019). We fit the
Bayesian models using the R brms software package ver-
sion 2.17.0 (Bürkner, 2017), which uses Hamiltonian Monte
Carlo to estimate posterior parameter distributions as imple-
mented in the Stan programming language (Stan Develop-
ment Team, 2022). We ran four Markov chains for 2000 itera-
tions, discarding the first 500 draws as warm-up. We checked
the chains visually for convergence of parameter estimates;
Gelman–Rubin convergence diagnostic (R̂) values were in
all cases 1, indicating convergence.

2.3 Model comparison and evaluation

We used several information criteria to compare models with
different timescales of precipitation (1 h to 14 d) to iden-
tify the best-performing model for use in a warning sys-
tem. For the frequentist models, we calculated the Akaike
information criterion (AIC) and Bayesian information cri-

terion (BIC), which estimate out-of-sample prediction er-
ror (Akaike, 1992; Schwarz, 1978; Kuha, 2004). For the
Bayesian models, we used approximate leave-one-out cross-
validation as implemented in the R package loo version 2.5.1
(Vehtari et al., 2017) to estimate out-of-sample predictive
accuracy (leave-one-out information criterion, LOOIC). We
then chose the respective logistic regression and Poisson re-
gression models with the lowest prediction error for further
validation:

– FL-3H (frequentist, logistic regression, 3 h model),

– BL-3H (Bayesian, logistic regression, 3 h model),

– FP-3H (frequentist, Poisson, 3 h model), and

– BP-3H (Bayesian, Poisson, 3 h model).

Because the number of days with reported landslides is
small compared to the number of days with no reported land-
slides, we evaluated the sensitivity of these four selected
models (FL-3H, BL-3H, FP-3H, and BP-3H) to individual
landslide events using leave-one-out cross-validation. We re-
moved each landslide event from the dataset and fit the mod-
els to the remaining data. We then evaluated the difference
in parameter estimates between the complete dataset and the
leave-one-out dataset.

Next, we assessed the predictive skill of the best-fit fre-
quentist and Bayesian logistic regression models (FL-3H,
BL-3H) by using the Brier skill score (BSS) to compare their
predicted probabilities to historical daily landslide frequency
over the period of record. This approach is analogous to a
common strategy for evaluating weather forecasting models,
in which the forecast’s skill is compared to climatology: av-
erage weather conditions over long time periods (e.g., Wilks,
2011). It also indicates whether the model is more skillful
than randomly guessing the outcome based on historical fre-
quency. The Brier score (BS) is the mean squared error of the
predicted probabilities compared to the actual outcome and
is calculated as

BS=
∑n
d=1(pd − yd)

2

n
, (4)

where lower scores (closer to zero) indicate better skill
(Brier, 1950).

The BSS then compares the logistic regression model
(BSlogistic) to historical frequency, which serves as a refer-
ence model in which pd is approximated by the number of
days with reported landslides divided by the number of days
without between 2002 and 2020 (BSHF):

BSS= 1−
BSlogistic

BSHF
. (5)

A BSS of 0 indicates that the models have the same skill,
a BSS > 0 indicates that the logistic regression model out-
performs the reference historical daily frequency model (bet-
ter than random), and a BSS< 0 indicates that the logistic
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regression model performs worse than historical daily fre-
quency (worse than random).

2.4 Selecting and evaluating multiple decision
thresholds for different hazard levels

Although landslide probability and intensity can be estimated
for any precipitation over a specified period using the fitted
logistic and Poisson regression models, decision thresholds
must be chosen to specify when to issue warnings. Exten-
sive conversations with emergency responders and commu-
nity leaders revealed a variety of perspectives and priorities
for Sitka’s landslide warning system and different levels of
risk tolerance (Busch et al., 2021). For example, emergency
responders who are concerned about the considerable cost
of false alarms preferred a higher hazard threshold in favor
of fewer false alarms. Other citizens were comfortable with
some false alarms, preferring to be alerted whenever there
was an elevated chance of landslides. These previous find-
ings informed our selection of multiple warning levels be-
cause each threshold must compromise between missed and
false alarms, and dual thresholds can inform different types
of decision-making with different alert levels (e.g., Mirus et
al., 2018b).

We used confusion matrices and metrics derived from
them to select thresholds. A confusion matrix illustrates the
trade-off between missed alarms and false alarms. A confu-
sion matrix for a single threshold is a 2×2 matrix that shows
the number of true alarms, false alarms, missed alarms, and
true no alarms by comparing the predicted outcome based
on the probabilistic model and threshold with the true out-
come. Metrics calculated from the confusion matrix can re-
veal optimal thresholds based on the user’s tolerance for false
alarms or missed alarms. In imbalanced datasets with few
landslide days and many no-landslide days, typically applied
metrics for logistic regression thresholding like accuracy are
less informative because they over-emphasize the importance
of true no alarms while masking the threshold’s performance
for true alarms and false alarms. For rare events, considering
precision (ability to issue true alarms while avoiding false
alarms) and recall (ability to issue true alarms while avoiding
missed alarms) is preferable (Saito and Rehmsmeier, 2015).

Precision is defined as

precision=
truealarms

truealarms+ falsealarms
. (6)

Recall is defined as

recall=
truealarms

truealarms+missedalarms
. (7)

To satisfy varying levels of risk tolerance within the commu-
nity, we set two warning thresholds based on landslide prob-
ability estimated by the best-performing frequentist logistic
regression model (FL-3H). The lower threshold is set such
that the system would have missed no landslide in the past

(recall= 1), and the upper threshold is set such that every
day with a landslide probability above the threshold has been
associated with landslides in the past (precision= 1). Given
the limited number of landslide days, a range of thresholds
can achieve these results, calling for a heuristic approach in
choosing final warning thresholds. We built a confusion ma-
trix to illustrate how often warnings based on these thresh-
olds would have been issued in the past and document the
outcome of the event.

To assess how well these thresholds can be expected to
correctly predict days with and without landslides in the fu-
ture, we split the precipitation time series into a training
and testing dataset. The training dataset is composed of the
precipitation and landslide records from November 2002–
November 2019. The test dataset is from December 2019–
November 2020. We trained the logistic regression model on
the training data and then predicted the probability of land-
slides for all days between December 2019–November 2020
based on observed precipitation data. We also used a confu-
sion matrix to evaluate the number of warnings at each level
that would have been issued between December 2019 and
2020 using the model. Although this “testing” window rep-
resents a relatively small portion of total days in the dataset,
it does include 365 d and 2 of 5 (40 %) landslide days. To test
the sensitivity of our results of the length of the training and
test periods, we also flipped the training and test periods (i.e.,
trained on the year 2020 and tested on the previous 17 years)
and performed a similar evaluation.

Ideal practice would include models tested with historical
precipitation forecasts (rather than observed precipitation),
but archived forecast data are not readily available. Instead,
we set preliminary thresholds using observed precipitation
totals and necessarily assume that forecasts are accurate. This
introduces additional uncertainty into the landslide warning
system, which relies on weather forecasts. Detailed analy-
sis of the uncertainty in precipitation forecasts is beyond the
scope of this paper, but validation and evaluation of the warn-
ing system could be used to refine warning thresholds.

3 Results

3.1 Landslide events

Over the 18 years with hourly precipitation records, five rain
events in Sitka resulted in one or more landslides (Fig. 2;
Table 2). In most cases, landslide timing is known within
the hour or can be estimated based on eyewitness constraints
and the precipitation record. More detailed timing informa-
tion is provided in the Supplement, Table S2. This precise
timing information is useful for qualitative evaluation of the
association of landslide initiation with peak rainfall (Fig. 2)
but is not necessary for training the statistical models, which
use maximum daily rainfall metrics. All five landslide events
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Figure 2. Hourly precipitation before, during, and after landslide-
initiating storms in Sitka. Landslide prediction models in this pa-
per were trained on the longer record of hourly precipitation at the
weather station at Sitka Rocky Gutierrez Airport (darker-blue bars).
Recorded precipitation from a nearby weather station at the US Cli-
mate Reference Network (USCRN) site in Sitka is also displayed
for comparison. Landslide timing is indicated by a solid red line for
events where timing is constrained to ∼ 30 min and a dashed line
where timing is constrained within ∼ 12 h. Photo courtesy of James
Poulson, Daily Sitka Sentinel. The date format is month/day/year.

were characterized by a few hours of intense precipitation
(Fig. 2).

Other landslides have occurred near Sitka but are
> 2 km from the road network and sensitive infrastruc-
ture. For example, the Starrigavan Landslide occurred sev-
eral kilometers from town in 2014 and impacted a popular
recreation area. Local accounts indicate that precipitation at
the initiation site was much higher than precipitation ob-
served at Sitka Rocky Gutierrez Airport. Pronounced spa-
tial heterogeneity in precipitation and weather is typical of
southeast Alaska (Hennon et al., 2010; Shanley et al., 2015;
Roth et al., 2018), which emphasizes the value of considering
only very local (< 2 km from the road network) landslides for
training prediction models using station-based precipitation
data.

While antecedent precipitation conditions varied during
these landslide events, the short-term (several hour) precipi-
tation totals were high. For example, four of the events had
peak 1 h precipitation with> 2-year return intervals as calcu-
lated by the NWS (Perica et al., 2012). Peak 3 h precipitation
during landslide events had between 2- and 25-year return
intervals. Precise timing from eyewitness accounts and news
records is available for the S Kramer, Halibut Point, Med-
vejie, and Sand Dollar Drive landslides, which all occurred
within a few hours of peak precipitation recorded at Sitka
Rocky Gutierrez Airport.
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When compared to the record of all precipitation that did
not initiate landslides over the last 18 years, the events that
produce landslides occur at the extreme high end of the dis-
tribution of cumulative precipitation (Fig. 3).

3.2 Landslide hazard prediction

We present results from both frequentist and Bayesian logis-
tic regression and Poisson regression that predict landslide
hazard (probability or intensity) based on precipitation totals
over timescales ranging from 1 h to 14 d (Figs. 3–6). Differ-
ences in model performance indicated by information crite-
ria (Sect. 3.3) show which timescales of precipitation pro-
vide the most useful prediction tools. For example, logistic
regression based on 2-week precipitation totals is ineffective
at separating landslide days from no-landslide days. Logistic
regression based on 3 h precipitation, however, does separate
landslide days with some overlap (Figs. 3, 4).

3.3 Model comparison and evaluation

Models that incorporated short-term precipitation (3 h)
demonstrated the best fit to the data and lowest estimated
out-of-sample prediction errors (Figs. 7–8). All models that
incorporate a metric of precipitation on the day of the land-
slide show lower AIC, BIC, and LOOIC values than models
based on accumulated precipitation over multiple days.

We note that for many of the Bayesian models with longer
precipitation timescales (> 1 d), Pareto-k values for some of
the landslide days were > 0.7, indicating that these models
would be very unlikely to predict a landslide at that precipi-
tation value. In contrast, Pareto-k values for all landslide days
in the 3 h logistic regression model are< 0.7, confirming that
this model is not overly sensitive to the individual landslide
points. (Pareto-k values are 0.28, 0.23, 0.47, 0.20, and 0.34
for model BL-3H.)

We also qualitatively evaluated the model fit by compar-
ing the estimated landslide probability of the best-fit two-
variable models that incorporate 3 h triggering precipitation
with 1 d (FL-3H1D) and 2 d (FL-3H2D) antecedent precip-
itation, respectively, and the model FL-3H, the best-fit one-
variable model that considers only 3 h triggering precipita-
tion (Fig. 9). Using either the 24 or the 48 h antecedent pre-
cipitation as another predictor does modify the probability
contours in Fig. 9b and d, but the trade-off between false and
failed alarms is largely unchanged across all threshold val-
ues. Most observed landslides cluster at high to extreme trig-
gering precipitation values and low or moderate antecedent
precipitation totals. Increased model complexity does not
significantly improve the model fit for the available database
of landslide occurrence (Figs. 7–8).

Given the small number of observed landslide events in the
dataset, we evaluated the sensitivity of the 3 h models to indi-
vidual landslide events using leave-one-out cross-validation
(Figs. 10 and S1 in the Supplement). Parameter estimates and

their 95 % confidence intervals for the leave-one-out mod-
els and the full dataset logistic regression models (FL-3H)
overlap, indicating no relevant difference (Fig. 10). That we
cannot distinguish these model parameters demonstrates that
the model is not particularly sensitive to individual landslide
points. The confidence intervals of the parameter estimates
for the Poisson models also overlap with each other, with
very high similarity in most cases, but we observe that the
model is particularly sensitive to the single landslide day
with six individual landslides. Further evaluations focus on
the frequentist model (for ease of implementation) with the
lowest prediction error: the frequentist model FL-3H.

Comparing FL-3H to a reference model based on histori-
cal daily frequency, we found a BSS of 0.54, indicating that
logistic regression is more skillful than the reference.

3.4 Thresholds and predictive performance

Based on predicted daily landslide probability from the pre-
ferred logistic regression models (FL-3H, BL-3H), we estab-
lished two decision thresholds for a landslide warning sys-
tem (Fig. 11). A lower threshold was set at a probability of
0.01; in the past, this threshold would have resulted in no
missed alarms (recall= 1). Any threshold below a probabil-
ity of 0.023, based on model FL-3H estimates, results in a re-
call of 1; the threshold that maximizes precision at a recall of
1 would be 0.023, resulting in a precision of 0.22. We took a
conservative approach and set the threshold lower, at 0.01. At
0.01, precision= 0.15, indicating that 28 false alarms would
have occurred between 2002 and 2020 if this threshold had
been used in the past.

Frequentist logistic regression indicates that a probabil-
ity of 0.01 corresponds to a precipitation total of 21.3 mm
in 3 h (0.84 in.). Bayesian logistic regression indicates that
a probability of 0.01 could correspond to precipitation val-
ues between 17.4 and 24.0 mm (95 % highest density inter-
val, HDI) (0.685 to 0.945 in.). An upper threshold that would
have resulted in no false alarms (precision= 1) was set at
0.70. Based on model FL-3H estimates, any threshold above
a probability of 0.31 results in a precision of 1, and thresh-
olds that maximize recall for a precision of 1 range from 0.31
to 0.74 (Fig. 11). This wide range results from both few re-
ported landslides and few reported precipitation values at the
tail end of the precipitation distribution. At 0.70, recall= 0.6,
indicating that two of the five reported landslide events oc-
curred below this threshold. At this probability, frequentist
logistic regression corresponds to precipitation of 34.0 mm in
3 h (1.34 in.) and Bayesian logistic regression indicates pre-
cipitation between 31.0 and 39.2 mm (95 % HDI) (1.22 to
1.54 in.).

At a precipitation total of 21.3 mm in 3 h, the 3 h Poisson
models predict the occurrence of 0.015 landslides per day
on average in the study area (FP-3H) or between 0.0034 and
0.031 landslides (95 % HDI, BP-3H). At 34.0 mm of precip-
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Figure 3. Estimated daily landslide probability pd (red curve) from frequentist logistic regression based on different durations of precipitation
from 1 h to 2 weeks. Confidence intervals (CIs) were estimated based on standard error. Event outcomes (red circles) of 1 indicate at least
one landslide occurred, while 0 indicates no landslide occurred. The 3 h precipitation produces the model with the best fit (lowest estimated
out-of-sample prediction error based on Akaike information criterion (AIC) and Bayesian information criterion (BIC) fit parameters; Fig. 7).
Kernel density distribution of all observed precipitation values are shown in gray, scaled for visual clarity.

itation in 3 h, Poisson regression predicts 0.56 (FP-3H) or
between 0.25 and 0.86 landslides (95 % HDI, BP-3H).

Decision thresholds for the landslide early warning sys-
tem in Sitka were based on consideration of these ranges and
our judgment. Using the frequentist logistic regression (FL-
3H) model, probabilities < 0.01 were considered “low” haz-
ard, those in the range of 0.01–0.70 were considered “mod-
erate” hazard, and those > 0.70 were considered “high” haz-
ard. The confusion matrix in Table 3 shows the warning lev-
els that would have been generated by observed precipitation
in 2002–2020 and the actual outcome. The probabilities of
landslides exceeding our two alerts are consistent with other
areas where dual or multiple thresholds are used (e.g., Chleb-
orad et al., 2006).

At these thresholds, a moderate warning level would have
been issued 28 times on different days between 2002 and
2020; two of those dates actually resulted in landslides
(Fig. 12a). A high warning level would have been issued
three times, with all three dates actually resulting in land-
slides. No landslide warning would have been issued on 6573
of the days, and no landslides would have occurred on a day
without a landslide warning. This is useful for estimating the
impact on a community based on the frequency of warnings.
For example, the moderate warning level would have been
issued one to two times per year (on average) in the histori-

Table 3. Warning levels that would have been generated between
2002 and 2020 by model FL-3H and the selected decision thresh-
olds, showing the number of times each warning level would have
been reached and the actual outcome. For example, a high warning
would have been reached three times, and landslides occurred all
three times; similarly, zero landslides occurred during times when
low probability of landslides would have been predicted by the
model.

Low Moderate High
warning warning warning

Landslide 0 2 3
No landslide 6573 28 0

cal record. However, while the confusion matrix summarizes
how the model would have behaved in the past, it is not an
indicator of how well the model can predict landslides be-
cause it uses the same dataset for validation as was used for
training.

In the frequentist logistic regression model FL-TT-3H, we
split the precipitation time series into training (12 Novem-
ber 2002–30 November 2019) and test data (1 Decem-
ber 2019–30 November 2020). Model FL-TT-3H is trained
using only 3 landslide days and 6225 non-landslide days,

https://doi.org/10.5194/nhess-23-3261-2023 Nat. Hazards Earth Syst. Sci., 23, 3261–3284, 2023



3272 A. I. Patton et al.: Landslide initiation thresholds in data-sparse regions

Figure 4. Estimated daily landslide probability pd from Bayesian logistic regression, showing the posterior median (red curve) with 85 %
(darker orange) and 95 % (lighter orange) highest density intervals (HDIs). The 95 % HDI is the posterior estimate of parameter uncertainty
and contains 95 % of the distribution of all parameter values compatible with the data and our prior knowledge. At a single precipitation value,
the 95 % HDI contains the true landslide probability with 95 % probability, conditional on the data, the model, and our prior knowledge. The
3 h precipitation gives the best out-of-sample predictive accuracy as measured by the leave-one-out information criterion (LOOIC) (Fig. 8).

and with thresholds at 0.01 and 0.70. This version of the
model predicts elevated landslide probabilities on the days
when landslides occurred in October and November of 2020
(Fig. 12b). It also outperforms historical frequency dur-
ing the training period for December 2019–November 2020
(BSS= 0.44). Table 4 presents a confusion matrix for pre-
dicted warning levels for all days in the test dataset. A mod-
erate warning would have been issued on two dates, and both
of those days did see landslides. No high warnings would
have been issued. A low warning level would have been
present on the 363 remaining days, with no landslides oc-
curring. When we flip the training and testing periods and
apply the same thresholds (probability= 0.01 and 0.7), the
model would have issued warnings for all three testing land-
slide events, corresponding to a recall of 1 and no missed
alarms (Fig. S3, Table S2).

4 Discussion

In this study, we applied logistic regression and Poisson re-
gression to develop probabilistic daily estimates of land-
slide hazard in Sitka, Alaska, using limited landslide in-

Table 4. Confusion matrix for 2020 predictions, based on model
FL-TT-3H trained on 2002–2019 and with thresholds at probabili-
ties of 0.01 and 0.7, showing the number of times each warning level
would have been reached and the actual outcome. For example, a
moderate warning would have been reached twice, and landslides
occurred both times.

Low Moderate High

Landslide 0 2 0
No landslide 363 0 0

ventory data and nearly 20 years of hourly precipitation
records (2002–2020). Based on these hazard estimates, we
established two decision thresholds for landslide warning for
implementation in a public-facing online dashboard that is
driven with NWS forecast data and is automatically updated
in real time.
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Figure 5. Estimated daily average landslide count (red curve) from frequentist Poisson regression (λd ) based on different durations of
precipitation from 1 h to 2 weeks. Event outcomes (red circles) of ≥ 1 indicate the number of landslides that were reported, while 0 indicates
no landslide reported. Confidence intervals (CIs) were estimated based on standard error. The 3 h precipitation produces the model with the
best fit (lowest estimated out-of-sample prediction error based on Akaike information criterion (AIC) and Bayesian information criterion
(BIC) fit parameters; Fig. 7). Kernel density distribution of all observed precipitation values are shown in gray, scaled for visual clarity.

4.1 Probability-based decision thresholds for landslide
warning

The most commonly applied approaches to determining
thresholds for landslide initiation seek to distinguish between
precipitation and/or hydrological conditions that lead to land-
sliding from those that do not or to determine a boundary be-
low which landslides have not been previously observed. A
disadvantage to such thresholds is that they (by design) pro-
vide only a binary outcome and no estimate of relative haz-
ard. Probabilistic models, in contrast, estimate hazard and its
uncertainty at every value of a predictor variable (e.g., max-
imum daily 3 h precipitation), providing richer information
than a binary threshold.

Identifying the most appropriate timescales for triggering
and antecedent precipitation data influences the accuracy of
landslide prediction tools (Gariano et al., 2020). By explor-
ing the fit and predictive performance of selected precipita-
tion timescales, including both triggering and antecedent pre-
cipitation, our models also provide insight into the physical
processes that govern landslide initiation near Sitka.

We found that the 3 h precipitation predictors best fit the
data (e.g., models FL-3H, FP-3H, BL-3H, BP-3H), with neg-
ligible improvement in models that further incorporate 24

or 48 h antecedent precipitation (e.g., models FL-3H1D, FL-
3H2D, BL-3H1D). Including antecedent precipitation over
timescales > 48 h reduced the model fit. Compared to some
examples of cumulative precipitation thresholds in Seattle,
Washington, which incorporate 3 and 15 d antecedent precip-
itation totals (Chleborad et al., 2006; Scheevel et al., 2017),
these timescales in Sitka are short. Similarly, intensity–
duration thresholds in Seattle rely on additional information
on antecedent wetness for accurate performance (Chleborad
et al., 2006).

These short timescales and lack of improvement with an-
tecedent information for Sitka may result from multiple fac-
tors, including the steep topography, thin and locally per-
meable colluvial soils (Swanston and Marion, 1991), pref-
erential flow and fracture-driven hydrology, unconstrained
meso-scale storm patterns associated with landslide initia-
tion in Sitka, and the small number of observed landslides in
the dataset. We hypothesize that the importance of relatively
short periods of intense precipitation in Sitka reflects the
rapid hydrologic response of shallow, porous soils on frac-
tured bedrock that commonly are near saturation at critical
failure depths. Antecedent information may be less predic-
tive in this environment than in regions with thick or imper-
meable soils. Conversely, the lower performance of models
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Figure 6. Posterior Bayesian Poisson regression results, showing the posterior median for the daily average estimated number of landslides
λd (red curve) with 85 % (darker orange) and 95 % (lighter orange) highest density intervals (HDIs). The 3 h precipitation gives the best
out-of-sample predictive accuracy as measured by the leave-one-out information criterion (LOOIC) (Fig. 8).

Figure 7. Information criteria for a suite of frequentist models that estimate landslide probability (logistic regression) or the number of
landslides (Poisson regression) for a given precipitation characteristic. Each cell corresponds to a model with one or two precipitation
parameters, including daily maximum cumulative precipitation measured over 1–24 h (triggering) and antecedent precipitation measured
over 1–14 d. Lower Akaike information criterion (AIC) and Bayesian information criterion (BIC) values (blue) correspond to a better model
fit (lower estimated prediction error), and higher AIC and BIC values (red) correspond to a worse model fit. BIC more heavily penalizes
complex models with multiple predictor variables. AIC and BIC scores are specific to a regression type and should not be compared between
the logistic regression (probability output) and the Poisson regression (count output).

Nat. Hazards Earth Syst. Sci., 23, 3261–3284, 2023 https://doi.org/10.5194/nhess-23-3261-2023



A. I. Patton et al.: Landslide initiation thresholds in data-sparse regions 3275

Figure 8. Model comparison based on the leave-one-out information criterion (LOOIC) for a suite of Bayesian models that estimate land-
slide probability and average count for a given precipitation characteristic. Each cell corresponds to a model with one or two precipitation
parameters, including daily maximum cumulative precipitation measured over 1–24 h (triggering) and antecedent precipitation measured over
1–14 d. Lower LOOIC values (blue) correspond to higher out-of-sample predictive accuracy, and higher LOOIC values (red) correspond to
lower accuracy.

Figure 9. Estimated landslide probability at varying precipitation values from the preferred “trigger-only” frequentist logistic regression
model (FL-3H, panels a and c) compared to models that include antecedent precipitation (panels b and d, models FL-3H1D and FL-3H2D,
respectively). The color gradient and black contours show estimated landslide probability with reported data shown as black points (no-
landslide day) or red points (one or more landslides). The 3 h annual exceedance probabilities (EPs) reported by the NWS (Perica et al.,
2012) are also plotted for the precipitation totals that generate the associated landslide probability (LP) contours from frequentist logistic
regression in panels (a) and (c).

using the 1 h timescale indicates that shorter-duration bursts
of intense rainfall are not necessarily sufficient to trigger
landslides and that some degree of sustained infiltration of
rainfall is still needed.

Previous investigations on Chichagof Island, north of
Sitka, demonstrate a rapid hydrologic response, with peaks
in shallow pore pressure occurring within a few hours of ob-
served precipitation and dissipating within several hours (Si-

dle, 1984); one investigation found that a shallow debris slide
was most likely associated with maximum short-term inten-
sity (2–6 h) of precipitation, rather than storm totals (Sidle
and Swanston, 1981).

Although the probabilistic outputs of logistic regression
and Poisson regression are useful for understanding the rela-
tive magnitude of landslide hazard, it was necessary to es-
tablish decision boundaries for warning levels to commu-
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Figure 10. Leave-one-out cross-validation for the preferred frequentist logistic regression model FL-3H (left column) and Poisson 3 h model
FP-3H (right column). Similarly to Figs. 3 and 5, solid red points are landslide events; black points are non-landslide events; red lines show
model estimates; and the dark- and light-shaded regions show 85 % and 95 % confidence intervals, respectively. Hollow red circles and
dashed black lines show the landslide event that was omitted from each run. Model coefficient estimates are shown in the bottom panel with
95 % confidence intervals based on the standard error. Model output and coefficient estimates remain largely unchanged when an individual
landslide event is “missed” in the inventory, but the uncertainty bounds of the logistic regression and Poisson regression are sensitive to
“missing” the landslide events with the lowest and highest precipitation, respectively.

nicate hazard to the public. As described in Sect. 3.5, we
selected two decision boundaries where frequentist logistic
regression of maximum 3 h precipitation (FL-3H) estimates
a daily landslide probability of 0.01 and 0.70 for moderate
and high warning levels, respectively. Based on the histor-
ical record, moderate warnings would have been generated
31 times since 2002 and correctly predicted landslides only

3 times (Fig. 12). This means that there are many false alarms
at the moderate warning level but, by design, no missed
alarms for this lower threshold. In comparison, the higher
threshold was only crossed three times since 2002, all of
which resulted in> 1 landslide. These outcomes demonstrate
the utility of having a tiered warning system, which pro-
vides more nuanced information about landslide hazard dur-
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Figure 11. Precision–recall curve based the preferred frequentist lo-
gistic regression 3 h model (FL-3H) (Eqs. 7–8). The upper threshold
(red diamond) was heuristically set at a daily landslide probability
of 0.7 to result in no false alarms (precision= 1). The lower thresh-
old (orange diamond) was set at a probability of 0.1 to result in no
missed alarms (recall= 1).

ing a forecasted storm. As described below, these estimates
do not account for unquantified error in precipitation fore-
casts or meso-scale atmospheric processes, which can gen-
erate above-threshold precipitation that may not be captured
with traditional rain gauge networks (Collins et al., 2020).

The statistical models presented here are designed to be
adaptable as additional data and observation allow us to
further validate and refine the models. Bayesian reasoning
in particular acknowledges such updates by evaluating how
much has been learned in the revised posterior. Hydrologic
monitoring (soil moisture, groundwater level, and soil wa-
ter potential) has recently been implemented in Sitka, but the
available data record is relatively short (records begin in 2019
and 2021 but only capture one landslide event). Further eval-
uation of this hydrologic time series could improve under-
standing of the hydrologic conditions that trigger landslides.
For example, the preferred statistical models could be up-
dated for seamless integration of additional hydrologic data
or other predictor variables into the models if they improve
prediction accuracy.

4.2 Few landslide observations and many no-landslide
observations: strengths

While the overall dataset of precipitation observations is
large (> 6600 d of hourly precipitation record), the number
of landslide-inducing events in this highly localized dataset
is small (five landslide events< 2 km from the road network).
This imbalanced dataset results in large model uncertainty
for extremely high precipitation values that have been rarely
observed.

Our work confirms that useful precipitation thresholds
may be defined with very few landslide events by includ-
ing the distribution of non-triggering events, as demonstrated

in recent investigations (Peres and Cancelliere, 2021). This
is possible because high data availability for non-triggering
events does constrain the relatively low probability of land-
slides at low precipitation values. In other words, predic-
tion models built with non-triggering events provide larger
datasets than those that consider only landslide-triggering
events and can be robust when considered alone or in com-
bination with known landslide occurrence. The values of low
precipitation totals and non-triggering events are often over-
looked in landslide prediction studies, but the large number
of observations results in statistically robust models. This is
reflected in our leave-one-out cross-validation results, where
we show that logistic regression parameter estimates are in-
sensitive to individual landslide events, and our training–test
thresholding results, where we show that a model trained
with only three landslide events is able to issue warnings dur-
ing two test events. Poisson regression results are more sensi-
tive to the largest landslide event, but a model trained without
the largest landslide event would have predicted the occur-
rence of multiple landslides. We find that our preferred lo-
gistic regression models are more skillful in estimating land-
slide hazard than a reference model in which daily landslide
probability is estimated by historical daily frequency, anal-
ogous to randomly guessing whether a landslide will occur
based on how often they have occurred in the past.

Based on previous surveys, conversations, and feedback
with the community in Sitka (Busch et al., 2021; Izenberg et
al., 2022), one particularly valuable result of our modeling
is a well-constrained low probability of landsliding, which
is possible due to the extensive non-triggering events in the
precipitation record. In addition to identifying days with el-
evated landslide hazard based on precipitation information,
our statistical models can also identify days when the proba-
bility of landsliding is much lower than the background rate
based on the historical daily probability (Fig. 12b). Iden-
tifying the times when landslide occurrence is not likely
(i.e., < 1 % daily probability) allows residents to manage
anxiety while living in a potentially hazardous landscape
with frequent and sustained rainfall throughout the year.

4.3 Few landslide observations and many no-landslide
observations: challenges

Although few landslide events combined with many non-
landslide days resulted in robust statistical models, setting
and validating decision thresholds based on only five land-
slide days presented additional challenges. For example, al-
though receiver-operating-characteristic (ROC) curves are
commonly used to select optimal decision thresholds based
on logistic regression (Giannecchini et al., 2016), this ap-
proach is not as informative for highly imbalanced datasets
as a precision–recall curve (Saito and Rehmsmeier, 2015) be-
cause a wide range of thresholds give a low false alarm rate.
We therefore opted to consider the precision–recall curve
(Fig. 11), which provides more information about how well
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Figure 12. (a) Timing of moderate-hazard storm events (probability> 0.01 in the 3 h frequentist logistic regression model, FL-3H) within the
full period of record. All five landslide events in Sitka occurred within the last several years of record. Landslide probability is abbreviated
as LP. (b) “Test” data for a model FL-TT-3H trained on the time series from 2002–2019. The black line indicates the point estimate, and
the gray field shows the 95 % standard error. The model correctly predicts elevated hazard during the two landslide-initiating storms in
2020. The historical daily probability is also shown for comparison of estimated probabilities against the background landslide rate. The
thresholds where probability (p)= 0.01 and p = 0.70 are similar but not exactly the same in the two models (FL-3H and FL-TT-3H), such
that one of the 2020 storms would have been predicted as high hazard (p>0.70) in model FL-3H trained on the full dataset (a) but moderate
(0.01<p< 0.70) hazard in model FL-TT-3H trained on a subset of the dataset (b). The date format is year-month-day.

a threshold can distinguish between true alarms and false
alarms.

However, even when using the more appropriate
precision–recall curve, three sources of uncertainty make the
choice of threshold challenging: (1) because there are only
five landslide events, a range of decision thresholds result in
identical levels of precision and recall. For the upper thresh-
old, for example, threshold values with the same precision
and recall range from daily landslide probabilities of 0.31 to
0.74 based on the frequentist 3 h logistic regression model
(FL-3H); (2) at any of these potential threshold levels, the
given probability could be associated with a range of precip-
itation values – for an upper threshold of 0.70, for example,
these range from 31.0 to 39.2 mm with 95 % posterior prob-
ability, based on the Bayesian 3 h logistic regression model
(BL-3H); and (3) without further correction, logistic regres-
sion based on imbalanced datasets can underestimate land-
slide probability (King and Zeng, 2003). A conservative yet
easy-to-implement approach is to reduce the lower threshold
to below an optimal balance of precision and recall (thresh-
old tuning), particularly if the primary goal of the (lower)
decision threshold is to reduce risk of missed alarms.

Despite these uncertainties, two decision thresholds cor-
responding to specific precipitation values were required

for implementation in the warning system to integrate with
weather forecasts. We therefore chose a heuristic approach
based on expert judgment to select precipitation values
within the range of thresholds that lead to the desired pre-
cision and recall. We set the lower threshold to a probability
of 0.01 in model FL-3H, which is generated by 21.3 mm in
3 h (0.84 in.). We set the upper threshold to a probability of
0.70 in model FL-3H, which is generated by 34.0 mm in 3 h
(1.34 in.).

We also found challenges associated with the timing
of landslides over the 18-year record: although the hourly
precipitation record in Sitka starts in 2002, no landslides
with well-constrained timing were reported until 2015. This
presents an additional challenge when validating the selected
thresholds for future predictive performance. An ideal ap-
proach would be to iteratively split the dataset into multiple
training and test groups (k-fold cross-validation), each time
fitting statistical models to the training set and testing perfor-
mance with the test set. Because landslides in this dataset
only occur in the final third of the dataset, k-fold cross-
validation results in many training sets with no reported land-
slides, which are then unable to predict elevated landslide
hazard and are not useful estimates of performance because
the models applied in the warning system do include re-
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ported landslides in the training data. We emphasize that in
the training–test split presented here (FL-TT-3H), a model
trained on only three landslide points with our selected prob-
ability thresholds is able to issue moderate warnings during
both testing landslide events. Although no false alarms oc-
curred during the testing period, some false alarms can be
expected in the future, as the low warning threshold has been
exceeded in the past without triggering landslides (Table 3).
More reported landslides in the Sitka area in the future would
allow for more extensive validation of the thresholds. We
consider several potential explanations for this inconsistent
frequency within the study period.

First, it is possible that small, isolated slope failures may
have occurred prior to the major event in 2015 but were not
well documented. We consider it unlikely, however, that large
or extensive landslides occurred and were not observed be-
tween 2002 and 2015 in Sitka. A second potential explana-
tion is that, although moderate-hazard rain events have oc-
curred throughout the period of record (Fig. 12), the only
high-hazard events on record occurred after 2015. Global
warming is predicted to result in increased frequency of ex-
treme precipitation in upcoming years and decades, but fur-
ther study is needed to evaluate the links between changing
precipitation patterns and landslide occurrence in southeast
Alaska. A third potential explanation is increased human al-
teration of hillslopes. At least one recent landslide occurred
in human-made fill material, which may have increased sus-
ceptibility to landslide failure compared to a natural slope by
altering hydrologic characteristics and slope strength through
vegetation removal, slope cutting, and addition of fill mate-
rial (e.g., BeVille et al., 2010; Bozzolan et al., 2020; John-
ston et al., 2021). If intense precipitation events are becoming
more frequent or if slope modification increases through ex-
panded urban development (or both), landslides in the study
area are likely to become more frequent in the future.

4.4 Experience with frequentist and Bayesian inference
for estimating landslide hazard

We explored both frequentist and Bayesian approaches to fit-
ting logistic regression and Poisson regression models for
estimating landslide hazard. By design, both of these ap-
proaches produced similar results; however, they do have dif-
ferent implications for use and interpretation. Frequentist in-
ference remains more commonly used in landslide research
(Melillo et al., 2018; Segoni et al., 2018), indicating famil-
iarity, and frequentist approaches tend to be straightforward
to implement in commonly used statistical modeling soft-
ware, like R glm applied here. However, when considering
imbalanced datasets with rare events, frequentist logistic re-
gression may underestimate landslide probability (King and
Zeng, 2003), and parameter estimates may be unstable when
near-perfect separation between landslide and no-landslide
days occurs, as is the case in this dataset. We note that statis-
tical strategies exist to correct for underestimation (King and

Zeng, 2003) and to obtain stable parameter estimates (Kos-
midis and Firth, 2021), which could be applied if Bayesian
inference were unavailable as a cross-check. Additionally,
frequentist confidence intervals must be estimated in an ad-
ditional step, and their interpretation is arguably less intu-
itive than Bayesian credibility intervals. However, in this case
we found frequentist inference to still be useful for defining
heuristic decision thresholds.

Bayesian inference remains less common in landslide re-
search, and although additional expertise is required to set
prior distributions and interpret the results (e.g., McElreath,
2020; Bürkner, 2017), Bayesian inference allows for incor-
poration of prior knowledge, which is advantageous when
few landslide events are reported. Here, we encoded our prior
knowledge that landslide activity is likely to increase with
increasing precipitation in a weakly informative prior, which
by design has only a small influence on the posterior distri-
bution. When few data are available, more informative priors
based on other studies could be used to, for example, tell the
model about a distribution of outcomes that are known to
be possible from nearby areas but were not observed in the
small dataset at hand. Weakly informative priors have also
been shown to lead to stable parameter estimates in the case
of imbalanced datasets with rare events, which overcomes
the problem of unstable parameter estimates that frequentist
logistic regression can show without an additional correc-
tion, making these Bayesian models better suited to estimat-
ing hazard from imbalanced datasets (Gelman et al., 2008).
Posterior distributions of parameter estimates provide intrin-
sic estimates of uncertainty learned from the data, which in-
formed our understanding of the range of precipitation values
that could be associated with a given decision threshold.

Overall, we conclude that frequentist models are familiar
and easy to implement, but Bayesian models capture the rare-
events problem more explicitly and allow for better under-
standing of uncertainty. Either model can be effectively used
for probabilistic landslide models and to determine mean-
ingful decision thresholds. Here we present thresholds for
the easy-to-implement frequentist model, but consideration
of the best-fit Bayesian model and parameter uncertainty
improved our understanding of both models’ strengths and
weaknesses. Furthermore, either workflow is transferrable to
other regions, but they would need to be trained on local data.

4.5 Landslide prediction and uncertainty based on
weather forecasts

Accurate precipitation and landslide timing data facilitated
the development of robust thresholds for low, moderate, and
high landslide potential. Implementation of these thresh-
olds into actionable information to provide advance warn-
ing of landslide potential hinges upon accurate precipita-
tion forecasts. Uncertainty in the forecasted precipitation
is added to uncertainty in the model and decision thresh-
old. As storms approach and precipitation forecasts become
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more constrained, the precipitation uncertainty will be re-
duced (Fabry and Seed, 2009; Ashok and Pekkat, 2022).
Thus, landslide predictions for the future (days in advance)
become more accurate as the storm approaches (hours in ad-
vance). Effective warning education can encourage residents
to stay alert for updated landslide predictions. Further stud-
ies would be useful to better quantify the magnitude of error
expected in dynamic storm forecasting and the relationship
between forecast uncertainty and time into the future.

Models trained on and applied to precipitation data from
a single monitoring station (Sitka Rocky Gutierrez Airport)
cannot account for spatial variability in precipitation totals.
Although the geographically small study area described here
is intended to minimize these impacts, mountainous areas
(like Sitka) are characterized by spatially variable climate
and weather patterns (Johnson and Hanson, 1994; Tullos et
al., 2016; Napoli et al., 2019). Meso-scale atmospheric pro-
cesses linked to spatial distribution of landslide initiation are
difficult to model (Collins et al., 2020) and are not typically
incorporated into kilometer-scale precipitation forecasts.

Predicted landslide hazard could also be complemented by
applying the model to recent precipitation observations as an
estimate of current hazard. “Nowcasting” by looking at ob-
served precipitation (e.g., Kirschbaum and Stanley, 2018) in-
corporates instrument and model error but not weather fore-
cast error, and it can alert residents to hazardous conditions
that exceeded previous predictions. This type of information
provides indicators of immediate hazard but is less useful
for developing emergency response plans or informing op-
erational decisions, which require sufficient lead time to take
suitable action. In Sitka, for example, the observed landslides
with high-resolution timing data occurred 1–3 h following
peak precipitation, which may still provide valuable time for
emergency responders and risk-averse individuals to take ac-
tions that reduce risk if precipitation totals exceed forecasts.

4.6 Application to landslide early warning system in
Sitka, Alaska

In Sitka, our best-fit frequentist model FL-3H (based on 3 h
precipitation) with the three warning levels (low, moderate,
high) described in Sect. 3.5 has been applied to a public-
facing dashboard for situational awareness. This dashboard
provides residents, emergency planners, and NWS forecast-
ers with near-real-time updates of current and predicted land-
slide hazard (referred to as “risk” in the dashboard for ease
of use by a non-technical audience) and suggests actions to
mitigate risk. In Sitka, individual differences in risk toler-
ance create a need for contextualized risk information to be
available to everyone in the community (Busch et al., 2021).
To provide this service, project members worked with the
community, web developers, and NWS forecasters to con-
struct a series of warning levels that indicate the three lev-
els of landslide hazard developed and tested in this work.
The beta version of this dashboard is accessible at https:

//sitkalandslide.org/, which, at the time of writing, is func-
tionally serving as a landslide early warning system used by
the public to inform individual decision-making and by NWS
forecasters to guide special weather watch, warning, and ad-
visory products.

5 Conclusions

In this study we developed and evaluated probabilistic mod-
els for landslide hazard estimation built with a small land-
slide inventory. The best-fit models used 3 h triggering pre-
cipitation only. Including antecedent precipitation in addition
to triggering rainfall did not improve the model fit for the
available database of landslide occurrence relative to using
only the triggering precipitation conditions.

Despite the small number of landslide events (five dates
with landslides), a large dataset of non-triggering events pro-
duces robust model results, albeit with higher uncertainty
at high precipitation values. Validation through leave-one-
out analysis demonstrates that the model is robust even if
we assume that we missed a landslide event. Furthermore,
training the model on only three of five landslide events
and thousands of no-landslide events would still have re-
sulted in a model that could correctly predict the subse-
quent two landslide events. This model outperforms a ref-
erence model based on historical landslide frequency. Com-
bined with probabilistic models, the small number of land-
slide events allowed for the development of usable decision
thresholds for landslide warning.

Although frequentist inference and Bayesian inference
produce similar estimates of landslide hazard by design, they
do have different implications for use and interpretation:
frequentist models are familiar and easy to implement, but
Bayesian models capture the rare-events problem more ex-
plicitly and allow for better understanding of uncertainty.

Developing precipitation thresholds based on time inter-
vals (e.g., 3 h) that match NWS forecasting products al-
lows for application to landslide predictions within the NWS
operational framework. This landslide early warning sys-
tem was developed in partnership with the community and
prioritized community needs identified in previous studies
(Busch et al., 2021). A publicly accessible web dashboard,
https://sitkalandslide.org/, uses our preferred frequentist lo-
gistic regression model (FL-3H) and precipitation thresholds
to display current landslide hazard (based on recent precip-
itation) and “forecasted” landslide hazard (based on NWS
forecasts) in real time.

Data availability. Raw weather data from Sitka Rocky Gutier-
rez Airport are curated by the University of Utah’s MesoW-
est climate data service through collaborative agreements with
several agencies (https://mesowest.utah.edu, University of Utah,
Department of Atmospheric Sciences, 2023). Full records
for station PASI are available from Synoptic Data (https://
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download.synopticdata.com/#a/PASI, Synoptic, 2023). The full
Tongass National Forest Landslide Areas inventory (initiation
points and landslide areas) is available from the US For-
est Service data portal (https://gis.data.alaska.gov/datasets/usfs::
tongass-national-forest-landslide-areas/about, US Forest Service,
2019). Processed data are available through GitHub (https://github.
com/pattonai/sitka-lews, last access: 5 January 2023) with a release
on 5 January 2023 (https://doi.org/10.5281/zenodo.7508537, Patton
and Luna, 2023).
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