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A variation in the environment of a system, such as the temperature, the concentration of a chemical solution,
or the appearance of a magnetic field, may lead to a drift in one of the parameters. If the parameter crosses a
bifurcation point, the system can tip from one attractor to another (bifurcation-induced tipping). Typically, this
stability exchange occurs at a parameter value beyond the bifurcation value. This is what we call, here, the shifted
stability exchange. We perform a systematic study on how the shift is affected by the initial parameter value and
its change rate. To that end, we present numerical simulations and partly analytical results for different types
of bifurcations and different paradigmatic systems. We show that the nonautonomous dynamics can be split
into two regimes. Depending on whether we exceed the numerical or experimental precision or not, the system
may enter the nondeterministic or the deterministic regime. This is determined solely by the conditions of the
drift. Finally, we deduce the scaling laws governing this phenomenon and we observe very similar behavior for
different systems and different bifurcations in both regimes.
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I. INTRODUCTION

The behavior of a dynamical system can be classified
depending on the value of its parameters. Usually, this is
represented by bifurcation diagrams, where the attractors are
depicted for each region of parameters. For a fixed set of
parameters and equations, the system remains in one of the
corresponding attractors, for example, a fixed point, a limit
cycle, a chaotic attractor, etc. However, in nature, this equi-
librium is usually perturbed by the system’s environment.
Real-world systems are open and external perturbations can
be modeled as a time variation of the parameters. A change in
the parameters can cause the system to tip from one attractor
to another, leading to a (sometimes drastic) regime shift. There
are many examples of this sudden transition in different fields
such as ecology [1] or climate dynamics [2]. Furthermore, this
phenomenon may be desirable and one can then design an
input that causes the system to tip. For instance, this is the
case of experiments that involve transitions through critical
temperatures and yield phase changes [3].

There are many different ways in which the variation of a
parameter can lead to a regime shift. Following Ref. [4], they
can be classified in three categories: noise-induced tipping
(N-tipping), rate-induced tipping (R-tipping), and bifurcation-
induced tipping (B-tipping). In the case of N-tipping, a
parameter suffers fluctuations that force the system to aban-
don the attractor and tip to another one. For R-tipping [5],
the rate at which a parameter drifts is sufficiently fast that the
system fails to track the current attractor. Finally, B-tipping
occurs when the parameter is slowly varying and crosses a

bifurcation, forcing the system to tip. This tipping occurs
because the attractor becomes a repeller past the bifurcation
value.

Here, we deal with parameter drifts that lead to B-
tipping, also called dynamic bifurcations [6,7] or slow
passage through a bifurcation [8,9] in previous literature. This
phenomenon has been studied from different perspectives,
exploring concepts such as tipping probability in multistable
systems, scenario-dependent basins, or early-warning indica-
tors [10–15]. We focus on describing in a systematic way the
process of tipping, specifically the shift phenomenon [16]. It
has been observed that in systems with a parameter drift the
tipping appears for a value of the parameter p different from
the bifurcation value pb. We call this value the critical value
pcr, which is pcr > pb (with increasing p). In systems with
a faster parameter drift and a parameter-dependent attractor,
R-tipping may appear for pcr < pb. However, we restrain our-
selves to the study of B-tipping. The shift phenomenon has
also been referred to as the delay phenomenon, emphasizing
the temporal delay in the tipping, tcr > tb, rather than the shift
in the parameter. Both terms are equivalent as the parameter
depends on time. In Ref. [17], the time between pcr and pb is
called borrowed time, to point out that in this time window the
attractor no longer exists, although the system is still tracking
an unstable object that appears at tb, and it is still possible to
avoid the tipping by reversing the drift.

The value of the shift pb − pcr is scenario dependent and
it may vary with the parameter change rate ε. We call this the
rate effect. This effect has been recently explored for complex
systems such as maps with chaotic attractors [18,19], flows
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with chaotic attractors [20], and time-delayed systems [21].
Another interesting variable that can affect the value of pcr

is the initial value of the parameter p0. This implies that the
system has memory and that the distance to the bifurcation
is relevant even in the case when the equilibrium that loses
stability is parameter independent. The memory effect has
been less studied in Refs. [8,22] and it usually does not take
into account the rate effects and their interplay.

In this paper, we aim at a systematic study of the shift phe-
nomenon that appears in B-tipping. We show that the system’s
dynamics is naturally split into two regimes: deterministic and
nondeterministic, depending on whether noise plays an essen-
tial role or not. The nondeterministic case implies that the
system’s trajectory reaches the neighborhood of an attractor
that is smaller than the threshold of the numerical noise. This
is a typical situation occurring for a small change rate ε, as
the local convergence to an attractor is exponential away from
the bifurcation. Also, realistic systems are always subject to
some level of noise, and experimental setups have a finite
precision. In the deterministic regime, the noise threshold is
not reached. This is usually related to faster drifts when the
system has no time to relax and come closer to an attractor.
We explore the rate and memory effects in the two regimes for
different paradigmatic systems and different bifurcations. We
obtain the analytical scaling laws that govern these processes
and compare them with the numerical results.

The article is organized as follows. In Sec. II, we introduce
the systems and bifurcations and the numerical techniques
used to analyze them. In Sec. IV, we present the results for
the deterministic regime, whereas in Sec. V we present the
ones dealing with the nondeterministic regime. The rate and
memory effects are explored in the two regimes, and both nu-
merical and analytical calculations are presented. We provide
concluding remarks at the end.

II. SYSTEMS AND BIFURCATIONS

We choose paradigmatic examples of dynamical systems
with different types of bifurcations as our aim is to study
common responses to a changing parameter that crosses a
bifurcation. To that end, we proceed in the same way for every
system and compare the behavior in each case. We choose one
of the parameters and we make it evolve linearly with time at
a small but non-negligible rate ε. Depending on the natural
timescale of the system, we take ε in the range of 10−5–10−2.
We change the parameter according to the following rule:

p(t) =
p0 for t < t1

p0 + ε · (t − t1) for t > t1

p0

t1

(1)
where t1 is the time for which the parameter drift starts. In
this way, we give the system some time to evolve before
the shift in the parameter begins. At some point after t1, the
parameter crosses a bifurcation and the tipping is expected to
be observed with some delay.

Specifically, we study the pitchfork and subcritical Hopf
bifurcations in the Lorenz system, the supercritical Hopf
bifurcation in the FitzHugh-Nagumo model, and the period-
doubling bifurcation in the Rössler system. By analyzing
these systems, we cover some common bifurcations, including
the period-doubling, which can lead to chaos. The follow-
ing ordinary differential equation solvers are used for the
numerical integration: ode78 [Runge-Kutta 8(7)] and ode15s
[variable-step, variable-order solver]. The latter method seems
to capture the repulsion from an unstable attractor in a better
way, but both of them yield quantitatively the same results.

A. Lorenz system

The Lorenz system [23] was proposed by Lorenz as a
simple model of convection dynamics in the atmosphere
(Rayleigh-Bénard convection). The equations read as follows:

ẋ = −σx + σy,

ẏ = rx − y − xz,

ż = −βz + xy,

(2)

where σ , β, and r are the system parameters. In the con-
text of convection dynamics, σ is the Prandtl number and
is characteristic of the fluid, β depends on the geometry of
the container, and r is the Rayleigh number that accounts
for the temperature gradient. In this context, x represents the
rotation frequency of convection rolls, while y and z corre-
spond to variables associated with the temperature field. We
fix the classical parameter values of σ = 10 and β = 8/3, and
we consider r as a time-dependent parameter r(t ), following
Eq. (1).

In the frozen-in system, where r is a fixed parameter,
we find successive bifurcations (see Ref. [20] for their brief
description). Here, we focus on the pitchfork and subcritical
Hopf bifurcations that occur at r = 1 and r = 24.74, respec-
tively. The rate effect for the heteroclinic bifurcation was
analyzed previously in Ref. [20]. In the pitchfork bifurcation,
the fixed point in the origin loses stability and two other fixed
points are created:

C± = [±
√

β(r − 1),±
√

β(r − 1), r − 1], (3)

while in the subcritical Hopf bifurcation, C± lose stability
and a chaotic attractor, born at r = 24.06, remains as the only
attractor.

Turning to the time-dependent parameter scenario, the time
series of a trajectory crossing these bifurcations can be seen in
Figs. 1(a) and 1(b). The time at which the parameter r reaches
the bifurcation and the critical value (tb and tcr) are marked.
We consider the condition for tipping to be a threshold of
ηcr = 10−2 for the distance from the equilibrium (the origin
in the case of the pitchfork bifurcation and C± in the case
of the subcritical Hopf bifurcation). When the threshold is
exceeded, the system is considered to change from one regime
to another. In both cases, the system tips to another attractor
some time after the equilibrium loses stability at tb.

B. FitzHugh-Nagumo system

The FitzHugh-Nagumo (FHN) model [24,25] is a reduc-
tion of the four-dimensional Hodgkin-Huxley model [26] to a
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FIG. 1. Time series showing the bifurcation-induced tipping. The parameter drift starts at (a) t1 = 100, (b) t1 = 1000, (c) t1 = 1000, and
(d) t1 = 300. It can be seen that the tipping does not occur at the bifurcation value tb, rather it occurs at a posterior value of tcr > tb. Thus, we
observe the shift phenomenon.

two-variable model. The latter was a very successful model of
the initiation and propagation of neural action potential using
a squid axon. The simplified version of the FitzHugh-Nagumo
model reads

v̇ = −v(v − a)(v − 1) − w + I,

ẇ = b(v − γw), (4)

where the membrane potential v is the main observable, while
w models a slow recovery current and I is the magnitude
of the stimulus current. The constants a, b, and γ are ki-
netic parameters. We fix a = 0.2, b = 0.05, and γ = 0.4,
and I is going to be the drifting variable, I (t ), following
Eq. (1).

For the frozen-in version of this system, where I is a fixed
parameter, we find a supercritical Hopf bifurcation at Ib =
0.273 [27]. For I < Ib, there is a fixed point P∗ = (v∗,w∗),
which satisfies

−v∗(v∗ − a)(v∗ − 1) − v∗/γ + I = 0, w∗ = v∗/γ , (5)

and depends on the value of I . A limit cycle appears for I > Ib.
If we let I vary with time at small but non-negligible rates

and we cross Ib, we observe the transition from the equilib-
rium given by Eq. (5) to a periodic solution [see Fig. 1(c)]. We
consider the threshold for the distance from the equilibrium P∗
to be ηcr = 10−2. Once this threshold is exceeded, the system
is considered to have tipped. As can be seen, the tipping
occurs at tcr > tb. This window of time is the borrowed time,

in which the equilibrium has lost stability, but the system is
still tracking it.

C. Rössler system

The last system we analyze was proposed by Rössler in
1976 [28] as a simple model for continuous chaos. The equa-
tions read

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c),

(6)

where a, b, and c are real parameters. In this case, we take a
as the parameter that depends on time, a(t ), following Eq. (1)
and we fix b = 2 and c = 4.

In the frozen-in version of Eq. (6), where a is fixed, the
Rössler system exhibits a transition to chaos through a period-
doubling bifurcation, similar to that of the logistic map. For
our parameter values, the first transition is found at ab =
0.333.

When we let a vary with time, we observe a transition like
the one in Fig. 1(d). As can be seen, the periodical trajectory
becomes chaotic after tcr. The reason for this is that our change
rate is too fast to observe all the doublings in between as they
are too close. For instance, to observe the next transition at
a = 0.374, the maximum rate is ε = 10−5. For later transi-
tions, the rate would decrease.
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In this case, the tipping condition is the loss of period-
icity. When the maxima of the time series do not appear
periodically, the system is considered to have tipped to the
chaotic attractor. To take into account that the period slightly
increases for t > t1 (as the period changes with the value of
the parameter), we take a tolerance of 10−1 beyond which the
trajectory is considered to have lost periodicity.

III. NONAUTONOMOUS DYNAMICS: DETERMINISTIC
AND NONDETERMINISTIC REGIMES

When we let the parameters evolve with time at small but
non-negligible rates in the previously presented systems, these
systems become nonautonomous. Furthermore, the parameter
p(t ) can be seen as a slow variable in contrast with the other
variables that are said to be fast. As a result, our nonau-
tonomous system presents a strong timescale separation. It
is the interaction between the fast and slow variables of the
system that causes the delayed or shifted tipping [29].

The nonautonomous dynamics presents two different sce-
narios depending on the characteristic of the drift. These
are what we called the deterministic and nondeterministic
regimes. Before the bifurcation value is reached, the trajecto-
ries approach the equilibrium x0. If this phase is long enough,
the trajectory may reach a distance from the equilibrium that
may be smaller than the numerical accuracy or the noise level
in an experiment. This can be achieved by setting a large value
of t1 and/or by setting a small value of ε. In both cases, the
system has the time to approach the equilibrium exceeding the
numerical or experimental precision. Beyond this threshold,
noise plays a part and the maximum deviation of the distance
from the equilibrium does not vary. This is the situation that
occurs in the nondeterministic regime. On the contrary, if
the threshold is not exceeded, we remain in the deterministic
regime.

After the bifurcation value pb is reached, the equilibrium
loses stability, but the tipping is not observed until a larger
value of the parameter (pcr > pb) due to the timescale sep-
aration. We show that the tipping phenomenon has different
characteristics in each regime.

A more complex situation is that in which the equilibrium
x0 depends on the parameter too. This makes it more difficult
for the system to track the equilibrium once the drift starts.
That is the case of the subcritical and supercritical Hopf bifur-
cations and the period-doubling bifurcation presented before.
In this situation, the nondeterministic regime requires smaller
values of ε to be able to approach the equilibrium past the
threshold. Also, increasing t1 is no longer beneficial to enter-
ing the nondeterministic regime.

In the following sections, we let the parameters evolve with
time for each regime and we study the shift phenomenon using
the described tipping conditions. We describe both numeri-
cally and partly analytically the memory effect (dependence
of pcr on p0) and the rate effect (dependence of pcr on ε).

IV. DETERMINISTIC REGIME

An autonomous dynamical system with constant param-
eters converges to an attractor after some transient time.
However, if the external conditions change, and one of the

parameters changes with time, we may observe a stability
exchange as the system tips from one attractor to another.

In this section, we analyze the phenomenon of shifted
stability exchange in the deterministic regime, that is, when
the precision threshold is not reached and noise does not affect
the system’s behavior. We analyze the memory and the rate
effect in this scenario and we approach this question from two
sides: analytical and numerical.

A. Shifted stability exchange: Analytical approach

We aim to obtain an expression for the shift phenomenon
that enables us to calculate the critical value of the parameter
pcr. Analytically, we deal with the simplest case of a fixed
point that loses stability due to the crossing of a bifurcation.
We start with the system

ẋ = f [x; p(t )], (7)

with a parameter-independent equilibrium, which we set to
zero without loss of generality: f (0; p) = 0. The parameter p
changes with time according to Eq. (1), that is: ṗ = εP (t ),
where P (t ) is the Heaviside function P (t ) = H (t − t1).

This nonautonomous system possesses an invariant set
(slow manifold), x = 0. The linear stability of the set x = 0
is governed by the linearization

ξ̇ = D f (0; p)ξ,

ṗ = εP (t ), (8)

where D f (0; p) = ∂
∂x f (0; p). Here, we use the property

∂
∂ p f (0; p) = 0. Now, we assume that this linearized system
has one leading (critical) eigendirection with the eigenvector
v(p) and the eigenvalue λ(p) so that

D f (0; p)v(p) = λ(p)v(p),

where λ(pb) = 0 and λ(p) < 0 for p < pb, and λ(p) > 0 for
p > pb.

This assumption holds true close to a generic pitchfork
or transcritical bifurcation. Thus, from the systems presented
above, these calculations are valid only for the pitchfork bi-
furcation in the Lorenz system. Despite this limitation, the
numerical approach will show that the system’s response is
very similar for more complex bifurcations. We also consider
the case that all other eigendirections are stable, and we can
restrict Eq. (8) to the critical direction, leading to the following
system:

η̇ = λ(p)η,

ṗ = εP (t ), (9)

where η measures the Euclidian distance from the equilib-
rium.

Notice that we consider the case where the equilibrium x0

does not depend on the parameter p. Otherwise, the simple
approach above needs to be modified [29–32]. In the case of
parameter-dependent equilibrium, not only B-tipping but also
R-tipping is possible. In this case, for certain rates, the tipping
can occur before, not after, the bifurcation value.

Since the parameter p is a function of time following
Eq. (1), during the time interval t ∈ [0, t1], the parameter is
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constant and the equation for η̇ has a constant coefficient
λ(p0). Hence,

η(t1) = η0eλ(p0 )t1 , (10)

where η(0) = η0. Further, for t � t1, the distance from the
equilibrium changes as

η̇ = λ[p0 + ε(t − t1)]η, (11)

which can be solved as follows:

η(t ) = η(t1) exp

{∫ t

t1

λ[p0 + ε(t − t1)]dt

}
(12)

or, equivalently

η(t ) = η(t1) exp

{
1

ε

∫ p0+ε(t−t1 )

p0

λ(p)d p

}

= η0 exp

{
λ(p0)t1 + 1

ε

∫ p0+ε(t−t1 )

p0

λ(p)d p

}
. (13)

As previously mentioned, we take the condition for the
escape from the equilibrium to be

ηcr = η(tcr ), (14)

where ηcr is a small threshold, after which the system is
considered to be away from the equilibrium, and tcr is the
escape time. Using Eqs. (13) and (14), we obtain

λ(p0)t1 + 1

ε

∫ pcr

p0

λ(p)d p = ln
ηcr

η0
, (15)

where pcr = p0 + ε(tcr − t1). Denoting the constant

C := ln
ηcr

η0
, (16)

we obtain the following condition for determining the critical
parameter value pcr:∫ pcr

p0

λ(p)d p = ε[C − λ(p0)t1]. (17)

As can be seen, the value of the shift (pcr − pb) depends
on the initial value of the parameter p0 leading to a memory
effect. Furthermore, it depends on the change rate ε; this is,
the rate effect is present as well.

As an example, we compute Eq. (17) for the pitchfork
bifurcation in the Lorenz system. Now our parameter p is the
Rayleigh number r. The eigenvalues for the equilibrium at the
origin are

λ1 = −β,

λ2,3 = 1
2 (−1 − σ ±

√
4rσ + σ 2 − 2σ + 1).

For r < 1, all the eigenvalues are negative. At r = 1, λ2

changes sign, so the equilibrium at the origin becomes un-
stable giving rise to the pitchfork bifurcation. Thus, rb = 1
and the critical eigenvalue in this case is λ2 =: λ. For our
parameter values, it reads

λ = 1
2 (−11 + √

81 + 40r). (18)

Now, integrating the eigenvalue as in Eq. (17), we get

1

2

∫ rcr

r0

(−11 + √
81 + 40r

)
dr

= −11(rcr − r0)

2

+ 1

120
[(40rcr + 81)3/2 − (40r0 + 81)3/2]. (19)

As we are interested in representing r1 = rcr − rb against
r2 = rb − r0, that is, the distances before and after the bifur-
cation, we apply a change of variables so that rcr = r1 + rb

and r0 = rb − r2. Finally, using Eq. (17), we obtain

−11(r1 + r2)

2
+ 1

120
{[40(r1 + rb) + 81]3/2

− [40(rb − r2) + 81]3/2}

= ε

[
C − −11

√
81 + 40(rb − r2)

2
t1

]
. (20)

To obtain the value of C, we take the initial distance to the
equilibrium η0 = 1 and the critical distance ηcr = 10−2, fol-
lowing the criterion presented in Sec. II. We also fix the time at
which the parameter starts drifting to t1 = 100. Equation (20)
can be numerically solved to obtain the curves in Fig. 2(a) for
different values of ε.

The memory effect is clear in the figure: for initial values
of the parameter closer to the bifurcation value, the tipping
occurs before. This relation is not linear in general. It is
linear only for the case of simple systems in which the eigen-
value λ is linearly dependent on the parameter: λ(p) = mp,
where m ∈ R. This is not the case for the Lorenz system [see
Eq. (18)]. The linearization of the eigenvalue was considered
in Ref. [27] taking a small value of ε, but here we obtain the
general expression.

The rate effect can also be seen in Fig. 2(a): for a fixed
value of r0, the shift increases with the change rate.

B. Shifted stability exchange: Numerical approach

Now, we analyze the shifted stability exchange numeri-
cally. However, we restrain to the case that the numerical
threshold is not reached and the dynamics are deterministic.
We integrate Eqs. (2), (4), and (6) with the parameter drift
starting at (a) t1 = 100, (b) t1 = 1000, (c) t1 = 1000, and (d)
t1 = 300, for different rates ε. These values are chosen to skip
the transient behavior before the drift starts. We show the shift
phenomenon for all the bifurcations in Fig. 2. The values of ε

and p0 are also different from one system to another, attending
to the natural timescale and the presence of other bifurcations
that limit the maximum value of pcr − p0.

Comparing the analytical and numerical data for the pitch-
fork bifurcation, it can be seen that both approaches match
for a certain region, but afterwards the numerical data yield a
plateau. This plateau, present in all the other bifurcations too,
corresponds to the nondeterministic regime. In that regime,
the system has time enough to relax and approach the attractor
beyond the numerical precision. This can be the case for slow
enough rates or values of r0 far enough from the bifurca-
tion. In these cases, the numerical noise plays the role of a
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FIG. 2. Memory and rate effects for different bifurcations and systems in the deterministic regime. The curves in panel (a) are analytically
calculated, while the points in panels (a), (b), (c), and (d) are numerically calculated. The difference in both approaches comes from the impact
of the numerical noise that causes the memory loss as we enter the nondeterministic regime. This can be seen in the form of plateaus. Before
that, in the deterministic regime, both approaches can be seen to match for the pitchfork bifurcation.

memory-loss agent. We explore the nondeterministic regime
in more detail in the following section.

Notice that in the deterministic regime all the systems’
responses are quite similar to what was predicted by Eq. (17).
The analytical calculation is valid for a system that has one
leading (critical) eigendirection and for equilibria that do not
depend on the parameter, which holds for such bifurcations
as the pitchfork. However, we can see that even for more
complex bifurcations such as the period-doubling, we obtain
a similar memory effect. In all cases, the shift increases with
ε and also increases with the initial distance to the bifurcation
before entering the nondeterministic regime.

Another parameter that may seemingly affect the shift
phenomenon is t1. It plays a role similar to that of ε. For
small values of t1, the system has no time to relax before
the parameter drift starts, while for large t1, we enter again
the nondeterministic regime and we observe a memory loss.
This can be seen in Fig. 3 for the pitchfork bifurcation and
ε = 10−2. In Fig. 3(a), we observe how the memory loss
appears even for small values of t1 when the initial value of
the parameter is far enough from the bifurcation, allowing
the system to relax once again. On the right side, we can
see how the different trajectories approach the equilibrium
at the origin for r0 = 0.9; that is, rb − r0 = 0.1. Notice the
different orders of magnitude in the y axis and the presence

of numerical noise for the largest value of t1. For t1 = 50 and
200, the trajectory is deterministic, while for t1 = 1000, we
enter the nondeterministic regime.

For the other bifurcations, changing t1 barely affects the
shift as the value of the equilibrium also depends on the value
of the parameter [see Eq. (3) or (5)]. Note that, on the contrary,
for the pitchfork bifurcation the equilibrium is fixed at the
origin for r < rb. This implies that for the other bifurcations
it is more difficult to track the equilibrium for t1 < t < tb.
Thus, in those cases getting closer to the equilibrium before
the parameter drift starts is not enough to observe the memory
loss. Only reducing the value of ε can maintain the system in
the nondeterministic regime.

Finally, for the case that the equilibrium depends on the
drifting parameter x0(p), it has been reported that in Hopf
bifurcations the shift does not depend on ε if ε is kept suffi-
ciently small [8,27]. This can be seen in Fig. 2(c) for the FHN
system as long as we are sufficiently close to the bifurcation.
The pink, green, and blue points come very close and the shift
can be said to be independent of ε in the first approximation.

V. NONDETERMINISTIC REGIME

In this section we explore the shifted stability exchange
when the system enters the nondeterministic regime. This
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FIG. 3. Memory effect for different values of t1. In panel (a), it can be seen that the shift is less pronounced for small values of t1. For values
of r0 far enough from the bifurcation, this effect disappears (rcr becomes independent of t1) as the three trajectories enter the nondeterministic
region. In panel (b), we show the time series for r0 = 0.9, that is, rb − r0 = 0.1. The vertical black lines correspond to t = tcr . Notice that, for
t1 = 1000, numerical noise is already present and causes the memory loss.

means that the system reaches the precision threshold and
noise affects the dynamics, causing a memory loss. We
present analytical and numerical results for the systems pre-
sented in Sec. II as well.

A. Shifted stability exchange: Analytical approach

We aim to obtain an analytical expression for pcr that takes
into account that the system reaches a threshold ηn = η(tn)
of the numerical precision within the observable time interval
tn < tcr. Depending on whether the threshold is reached before
or after the drift starts, we can classify the system’s behavior
in two cases, A and B.

(A) The system reaches the numerical precision threshold
before the parameter drift starts (t1 > tn). In this case, the
dynamics of the system can be divided into the following
steps:

(i) exponential convergence to the equilibrium with the
fixed rate λ(p0) until tn;

(ii) drifting phase within the numerical precision error
for t ∈ [tn, tb], tb > t1; and

(iii) nonautonomous deterministic dynamics according
to Eq. (11) on [tb, tcr], until the escape threshold ηcr =
η(tcr ) is reached.
(B) The threshold is not reached before the parameter drift

starts (t1 < tn). In this case, the dynamics is divided into the
following steps:

(i) exponential convergence to the equilibrium with the
fixed rate λ(p0) until t1;

(ii) nonautonomous deterministic dynamics according
to Eq. (11) on [t1, tn], until the numerical precision thresh-
old ηn = η(tn) is reached;

(iii) drifting phase within the numerical precision error
for t ∈ [tn, tb], tb > t1; and

(iv) nonautonomous deterministic dynamics according
to Eq. (11) on [tb, tcr], until the escape threshold ηcr =
η(tcr ) is reached.
In both cases, the system starts feeling the repulsion at the

bifurcation value, that is, when the equilibrium loses stabil-
ity. From this moment, the dynamics becomes deterministic
again.

Starting from the reduced equation for the distance from
the equilibrium, Eq. (11), and taking into account Eqs. (10)–
(13), we obtain the following expressions for the distance η(t )
for case A:
(A-i)

ηn = η0eλ(p0 )tn , (21)

(A-ii)

η(tb) = ηb = ηn = η0eλ(p0 )tn , (22)

(A-iii)

η(t ) = η(tb) exp

{∫ t

tb

λ[p0 + ε(t − t1)]dt

}
. (23)

During phase (A-ii), the maximum deviation does not vary,
and there are fast fluctuations related to the numerical noise
and particularities of the numerical integration scheme. We
neglect these fluctuations and only take into account that the
distance starts to grow exponentially after this phase from ηb.
Equivalently, the integral in Eq. (23) can be written in terms
of the parameter instead of time, leading to

η(t ) = η(tb) exp

{
1

ε

∫ p0+ε(t−t1 )

p0+ε(tb−t1 )
λ(p)d p

}

= ηn exp

{
1

ε

∫ pcr

pp

λ(p)d p

}
, (24)

with pcr = p0 + ε(tcr − t1) and pb = p0 + ε(tb − t1) � p0.
Now, for t = tcr, we apply the escape condition so that we
obtain ∫ pcr

pb

λ(p)d p = ε ln
ηcr

ηn
. (25)

From this expression we can obtain the value of pcr, which
does not depend on p0. Thus, we observe a memory loss due
to the presence of noise. This was already observed in Fig. 2
for the numerically calculated points: when the system entered
the nondeterministic regime the points reached a plateau, in-
dicating that the exchange of stability is independent of p0.

On the other hand, Eq. (25) does depend on the change
rate. Integrating this equation for the pitchfork bifurcation in
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FIG. 4. Rate effect on the shifted stability exchange for different bifurcations and systems. The plots are in logarithmic scale for a better
visualization. The red curve in panel (a) is analytically calculated from Eq. (25) and the points in panels (a), (b), (c), and (d) are numerically
calculated. The response is similar in all systems: for higher change rates, the shift is larger and it seems to follow approximately the power
law (pcr − pb) ∼ ε1/2 in all cases (dashed blue lines).

the Lorenz system and considering ηn = 10−19, we depict this
dependence in Fig. 4(a) as a red curve. It is represented in log-
arithmic scale for a better visualization. This corresponds to
representing the different heights of the plateaus from Fig. 2.
We observe that the shift increases with increasing change
rate.

Another clear implication of Eq. (25) is that pcr → pb as
ε → 0. This implies that, as the shift tends to zero, we recover
the frozen-in bifurcation diagram. This would be the case of a
quasistatic parameter variation. Furthermore, for sufficiently
small ε, the linearization λ(p) ≈ λ′

0(p − pb) can be used,
leading to

pcr = pb +
√

2ε

λ′
0

ln
ηcr

ηn
,

which implies the square root scaling (pcr − pb) ∼ ε1/2. This
power law has been drawn in Fig. 4 as dashed blue lines for
all the bifurcations. For the pitchfork bifurcation it is very
similar to the red curve calculated using Eq. (25). And for
the rest of the bifurcations, the numerically calculated points
seem to match this approximation too. All in all, we find sim-
ilar qualitative behavior for different bifurcations and systems
following the power law (pcr − pb) ∼ ε1/2.

For case B, we obtain analogously the following expression
for the phase (B-iv):

ηb = η(tb) = ηn, (26)

and

ηcr = ηn exp

{
1

ε

∫ pcr

pb

λ(p)d p

}
, (27)

leading to the same expression, Eq. (25), for the escape as in
case A. In case B, we find again that the memory is lost as in
case A.

B. Shifted stability exchange: Numerical approach

Now, we numerically calculate pb − pcr for the nondeter-
ministic regime. The values of t1 remain the same as in the
previous section and we fix p0 to the following values: (a)
r0 = 0.5, (b) r0 = 24.5, (c) I0 = 0.05, and (d) a0 = 0.2, which
belong to the beginning of the plateaus in Fig. 2, and thus
we make sure that we are in the nondeterministic regime. For
these values, in all cases we find that t1 < tn, which is case A
from Sec. V A.

As previously mentioned, we find a memory loss in this
regime, which can be seen in the form of plateaus in Fig. 2.
It was already suggested by Baer et al. [8] that adding a
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TABLE I. Summary of the memory (pcr dependence on p0) and
rate (pcr dependence on ε) effects for the deterministic and nondeter-
ministic regimes.

Deterministic regime Nondeterministic regime

Memory effect No memory effect
Rate effect Rate effect: (pcr − pb) ∼ ε1/2

white Gaussian noise may destroy memory effects. However,
we want to clarify here that we did not introduce noise in
our equations. Instead, noise has arisen naturally from the
precision restrictions of the numerical algorithms.

Regarding the rate effect, we present the results in Fig. 4.
The points are depicted in logarithmic scale for a better
visualization. As stated in the previous section, these numeri-
cally calculated points match the power law (pcr − pb) ∼ ε1/2

(dashed blue lines). This implies that, no matter the bifurca-
tion or the system, we observe a similar response to a variation
in the change rate.

These results are in agreement with previous work dealing
with complex bifurcations such as the heteroclinic bifurcation
in the Lorenz system [20] and the boundary crisis in the Duff-
ing oscillator with delay [21]. In both cases, chaotic attractors
that lose stability are involved; thus, they are not expected to
follow our analytical calculations (the exponent in the power
law differs from 1/2). However, qualitatively they present
similar rate effects.

In Table I we summarize the different effects depending on
the regime in which the system is found. For the deterministic
regime, the shift depends on the initial value of the parameter
p0 and on ε. In particular, we observe that as |pb − p0| → 0,
the dependence on ε is less pronounced. On the other hand, for
the nondeterministic regime memory loss occurs. Thus, the
shift is independent of p0 and we can approximate the shift as
(pcr − pb) ∼ ε1/2.

VI. CONCLUSIONS AND DISCUSSION

We have studied the shifted stability exchange that occurs
when a drifting parameter crosses a bifurcation point. This
phenomenon causes that the tipping from one attractor to
another appears for a parameter value beyond the bifurcation
point. To this end, we have analyzed some paradigmatic sys-
tems to find common features of this phenomenon. We found
that there are two regimes: deterministic and nondeterminis-

tic. For certain drift scenarios, when the rate of change of the
parameter is sufficiently low, the system comes very close to
an attractor so that the precision (numerical noise) does not
allow it to be attracted any further. In this case, noise plays
an important role and leads to the nondeterministic regime.
This is a very common scenario as all numerical algorithms
are subject to precision limits. Furthermore, this is also the
regime of an experimental setup that has precision limits when
approaching the attractor.

For the deterministic regime, we have derived the expres-
sion for the shift phenomenon, i.e., the value of pcr, which
depends on the initial value of the parameter (memory effect)
and on the change rate (rate effect). In this case, the rate effect
is more intense for initial values of the parameter further from
the bifurcation. This expression is valid for bifurcations such
as the pitchfork bifurcation, but the numerical calculations
show similar qualitative behavior for more complex bifurca-
tions such as the period-doubling bifurcation.

For the nondeterministic regime, we have observed that the
noise acts as a memory-loss agent no matter if the threshold
is reached before or after the drifting has started. We have
derived the analytical expression for the shift and proved
that it matches the numerical calculations too. For the rate
effect, the system obeys a power law scaling of the type
(pcr − pb) ∼ ε1/2 for all the systems and bifurcations. This
implies that, if ε → 0, then pcr → pb, thus recovering the
frozen-in bifurcation diagram.

Finally, we address the implications of our work. There is
a lot of research that aims to predict when a system is going to
tip [2,30,33,34], ending the so-called borrowed time between
the bifurcation and the tipping. Sometimes this transition is
undesirable as it might be the case of population extinction in
the context of ecology or climate change due to anthropogenic
causes. In other situations, the tipping might be desirable, but
the shift should be minimized as much as possible. This is the
case of some physical experiments, such as transitions through
critical temperatures, in which the sweep in a parameter is
costly. To this end, we consider that it is important to take into
account the memory and rate effects described here.
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