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Emergence of rigidity percolation in flowing
granular systems
Hor Dashti1,2*, Abbas Ali Saberi3,4*, S. H. E. Rahbari2, J€urgen Kurths5,6*

Jammed granular media and glasses exhibit spatial long-range correlations as a result of mechanical equilibri-
um. However, the existence of such correlations in the flowing matter, where the mechanical equilibrium is un-
attainable, has remained elusive. Here, we investigate this problem in the context of the percolation of
interparticle forces in flowing granular media. We find that the flow rate introduces an effective long-range cor-
relation, which plays the role of a relevant perturbation giving rise to a spectrum of varying exponents on a
critical line as a function of the flow rate. Our numerical simulations along with analytical arguments predict
a crossover flow rate _γc ≃ 10� 5 below which the effect of induced disorder is weak and the universality of the
force chain structure is shown to be given by the standard rigidity percolation. We also find a power-law behav-
ior for the critical exponents with the flow rate _γ . _γc.
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INTRODUCTION
One of the principal characteristics of particulate matter, such as
granular media and emulsions, is the loss of energy upon every col-
lision, which makes particulate matter an intrinsically nonequilib-
rium system. However, amorphous particulate materials exhibit
many equilibrium-like features, such as the long-range spatial cor-
relations, a ubiquitous property of equilibrium systems at their crit-
ical point. These correlations have been mainly discussed in the
context of (i) interparticle forces and (ii) stress components.
However, understanding how these long-range correlations influ-
ence static and dynamic properties of amorphous materials is in
its infancy; nonetheless, it promises a fascinating avenue of research.
This is a subject of fundamental interest for solid mechanics and
rheology (1), with applications in resource industries (2), seismicity
(3), material processing, tissue mechanics (4), health care, soft ro-
botics, and topological metamaterials (5).

In a dense flow regime, unlike its dilute counterpart, grains ex-
perience multiple and enduring contacts at all times without the
possibility of free flights during an induced shear deformation.
This leads the kinematic field of dense granular flows to exhibit
complex spatiotemporal correlations and spontaneous formation
of quasi-rigid clusters in the flow (6, 7). The key to understanding
the origins of such correlations is the characterization of interparti-
cle force networks as the backbone of the stability and rigidity of
amorphous materials. Percolation theory (8), which describes the
connectivity behavior of a network when nodes or links are
added, has been widely used for this purpose.

In a seminal work, using photoelastic disks, Majmudar and Beh-
ringer (9) found long-range spatial interparticle force correlations
for systems subjected to pure shearing and short-range correlations
for systems under isotropic compression. This work has been

ensued by many experimental and numerical studies using percola-
tion theory for the network of interparticle forces, in which a bond
is attributed between two adjacent particles if their interparticle
force exceeds a threshold, i.e., f ≥ ft. These studies can be divided
into two main categories: (i) Ostojic et al. (10) found long-range
correlations of interparticle forces; Kovalcinova et al. (11) also
found long-range correlations but with critical exponents not con-
sistent with the previous study in (10). Tong et al. (12) investigated
percolation of background forces contributing to mechanical equi-
librium in a glass model and found scaling exponents other than the
random percolation universality class. In stark contrast to these
studies, in category (ii), Pathak et al. (13) performed a similar nu-
merical analysis on isotropically compressed spheres in two and
three dimensions and found short range correlations consistent
with the random percolation universality class. Accordingly, a
long-range correlation with debated exponents is found in category
(i), and a short-range correlation consistent with the standard
random percolation universality class is reported in category (ii).

There is a large body of studies devoted for percolation of con-
tacts between particles (14, 15); the contact network is the asymp-
totic limit of the interparticle force network when ft → 0. For
instance, Shen et al. (16) found that 2d systems under isotropic
compression undergo a connectivity percolation at a density ϕP
≪ ϕJ with a correlation exponent different from that of random per-
colation. More recent studies have applied techniques of complex
networks, such as centrality measures, to investigate the interplay
between various types of centralities and local elastic proper-
ties (17).

Whereas the connectivity percolation examines the possibility of
a spanning cluster, a more stringent condition is required for rigid-
ity percolation (RP): The spanning cluster must be mechanically
rigid. The RP was originally proposed to describe the emergence
of solidity of covalent network glasses (18). In athermal systems, ri-
gidity is commonly explored by Hessian, in which the absence of
system-spanning zero-cost modes infers rigidity (19). Recently,
the RP has found many modern applications in phase transitions
associated with rigidity in, as diverse systems as, mechanical topo-
logical metamaterials (5), protein folding (20), jamming by com-
pression (21), gelation via attractive interactions (22), and a
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generalized RP for frictional particles (23, 24). The universality class
of RP is determined by a graph theoretic technique known as the
pebble game (18). RP is a second-ordered phase transition for the
bond-diluted generic triangular lattice, and the exponents νRP =
1.21 ± 0.06 and βRP = 0.18 ± 0.02 can be obtained by using the
cluster moment definitions (18). Providing the correctness of the
hyperscaling relations γ = dν − 2β and η = 2(1 + β/ν) − d (25),
one can calculate the two other important exponents γRP = 2.06 ±
0.08 and ηRP = 0.30 ± 0.02. To the best of our knowledge, scaling
properties given by the standard RP have never been retrieved in
off-lattice simulations of frictionless spheres. Moreover, many
studies have investigated a possible connection between jamming
in sphere packings and RP; however, it is shown that RP and
jamming are distinct (21).

Here, we report that, at the low limit of the flow (shear) rate
below a certain crossover value _γc, the scaling properties of the per-
colation network of interparticle forces in particulate matter comply
with those of standard RP universality class. We argue that the flow
rate acts as a relevant perturbation, resulting in a spectrum of
varying exponents on a critical line. These results shed light on
the controversy of the nature of percolation in isotropically com-
pressed packings, because the compression rate may similarly act
as a relevant perturbation, and this would explain the range of dif-
ferent exponents reported for the percolation transition in isotropi-
cally jammed packings (10–12, 14, 15). Above _γc, the induced
disorder by the flow rate is long range enough to drive the univer-
sality class of the system with continuously varying critical expo-
nents with _γ. However, the critical exponents, including the one
describing force-force correlation and the fractal dimension of the
spanning force cluster, remain unaffected in the whole range of the
considered flow rates. Our results should pave the way to improve
elastoplastic models, vastly used in material science and engineer-
ing, to include the interplay between the flow rate and force-force
correlations as ingredients of the elastoplastic models. Our study
can be suitably extended for the understanding of the transitions
between different inherent structures and constraint networks in
disordered solids (26) when the flow rate is considered as the
control parameter. This establishes further analogies between
glass and granular physics and their response to external
deformations.

RESULTS
We perform molecular dynamics simulations of two-dimensional
athermal frictionless bidisperse disks in a simple shear flow using
the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) (27). Details on the simulations are given in
Methods. We build a network of interparticle forces by diluting
weak interactions: Each particle is considered as a node, and a
contact is regarded as a link if the interparticle force f exceeds a pu-
tative threshold, i.e., f ≥ ft. In a jammed state when ft is small, this
network connects most of the particles. By increasing ft, as a result
of bond dilution, the largest cluster undergoes a percolation transi-
tion at ft = fc. In Fig. 1 (A to C), we display three snapshots for ft < fc,
ft = fc, and ft > fc, respectively. The width of each link is proportional
to the magnitude of the interparticle force. The gray color corre-
sponds to diluted weak forces, f < ft. Non-gray colors correspond
to existing bonds where f ≥ ft. The largest cluster is marked by

the yellow color. In Fig. 1B, the largest cluster at the percolation
transition contains most of strong forces in the system. One can
see that the network consists of various types of polygons; triangles
seem to have the largest population, in accordance with (15). In
some cases, these triangles act as hinges connecting neighboring
polygons. When the threshold is large (Fig. 1C), most of the poly-
gons in the largest cluster are washed out, and chiefly linear struc-
tures remain. This emphasizes that the force network consists of two
subnetworks: filamentary linear structures carrying most of the
stress and polygonal structures playing the role of stabilizer and
hinges for the strong filamentary chains. This is consistent with pre-
vious studies (15) and predictions by Radjai et al. (28). An earlier
prediction by Radjai et al. (28) stated that the interparticle force
network of static jammed materials consists of a subnetwork of
strong interactions embedded in another subnetwork of weak inter-
actions. Further investigations have shown that strong forces form
linear filamentary chains that are stabilized by weak interactions
(15). One can see in Fig. 1A that the largest cluster consists of poly-
gons, and neighboring polygons are hinged by triangular structures.
The formation of such closed loops, which resemble various types of
polygons, for frictionless systems is quite unexpected, because fric-
tional forces are required to stabilize arches. For this case, an arch is
balanced by embedding weak clusters. This is in accord with
Arevalo et al. (15). At the critical transition point (Fig. 1B), the
yellow cluster contains most of the strong interactions, and, when
most of the weak interactions are diluted in (Fig. 1C), the largest
cluster contains mostly filamentary chains. Regardless of the value
of ft, triangles seem to have the largest population, which is consis-
tent with previous studies (15): The number of triangles only
changes as a function of the coordination number that does not
change when ft is varied. One can see that these topological proper-
ties, which were mostly identified for static jammed matter, are
rather universal, and they govern the structure of flowing matter
as well.

Exponents of percolation at _γ � _γc
We now characterize the nature of the percolation transition of in-
terparticle forces using scaling analysis of the divergence of corre-
lation length, ξ ∼ ∣ft − fc∣−ν; the scaling of the percolation strength,
P∞ ∼ ∣ft − fc∣β as the order parameter; and the mean cluster size, χ ∼
∣ft − fc∣−γ, which acts as the susceptibility in the percolation transi-
tion. ν, β, and γ are three critical exponents characterizing the uni-
versality class of transition. These exponents can be computed by
direct fitting of these functions to the corresponding data.
However, in doing so, these exponents will be system size depen-
dent. The universality class of the transition can only be deter-
mined, when the values of these exponents are unaffected by the
system size. Finite-size scaling is a powerful tool for this purpose,
which enables one to extrapolate the exponents corresponding to
a system with infinite size. We perform systematic finite-size
scaling analyses of the percolation probability Ps, defined as the frac-
tion of configurations that contain a spanning cluster along the x or
y direction; the percolation strength P∞, defined as the probability
that a site belongs to the spanning cluster; and susceptibility χ,
defined as the mean cluster size excluding the largest cluster. We
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assume the following scaling laws

Ps ¼ G1 N
1
dνðf t � f cÞ

h i
ð1Þ

P1 ¼ N
� β
dνG2 N

1
dνðf t � f cÞ

h i
ð2Þ

χ ¼ N
γ
dνG3 N

1
dνðf t � f cÞ

h i
ð3Þ

where Gi,i = 1, 2, and 3 are scaling functions; d is the dimension of
the space (d = 2 in our case); andN is the number of particles. These
equations convey the fact that Ps approaches a step function as N→

∞, P∞ converges according to N−β/dν, and χ diverges according to
Nγ/dν at ft = fc. In Fig. 2 (A to C), we show Ps, P∞, and χ, respectively,
as a function of a varying force threshold ft for various system sizes
displayed by different colors. The flow rate is _γ ¼ 10� 6 for all these
panels. One can see that Ps approaches a Heaviside function as N→
∞, and all curves corresponding to different system sizes cross at fc.
This demonstrates that Ps becomes scale invariant at ft = fc signaling
the critical nature of the underlying percolation transition. In
Fig. 2A (inset), we obtain an excellent collapse of our data into a
master curve after rescaling the horizontal axis according to Eq. 1
with N1/dν( ft − fc), where ν = 1.21 ± 0.01. The best collapse of P∞
according to Eq. 2 in Fig. 2B (inset) suggests β = 0.20 ± 0.04, and,
similarly, we get γ = 2.15 ± 0.03 from an excellent collapse of our
data according to Eq. 3 in Fig. 2C (inset).

Fig. 1. Snapshots of network of interparticle forces. Each particle is regarded as a node, and the corresponding interparticle force must be larger than a threshold
force, f > ft, to grant a link. By increasing the threshold force, ft, weak interactions are diluted, and the largest cluster in the system undergoes a percolation transition at ft =
fc. We identify clusters using a union-find clustering algorithm (60), adopted for off-lattice simulations. In these snapshots, the width of a link is proportional to the
strength of the interparticle force. The color coding is performed according to the following rules: Diluted weak interactions, for f < ft, are depicted by gray color, the
largest cluster is yellow, and the rest of clusters are marked by various other colors. Three different snapshots are shown for (A) ft < fc, (B) the network is shown at the onset
of the percolation transition ft = fc, and (C) ft > fc. In these snapshots, the number of particles is N = 2048; the packing fraction is ϕ = 0.86 and _γ ¼ 10� 6; the threshold force
in (A) to (C) is ft = 0.00976, 0.01084, and 0.01193, respectively.

Fig. 2. Exponents of the RP transition at vanishing rate. Finite-size scaling is performed at the vanishing limit of flow rate at _γ ¼ 10� 6, and the packing fraction is ϕ =
0.86. (A) The percolation probability Ps along either side of the system for various sizes is depicted. All curves cross at a common point at fc signaling the critical nature of
the system at the transition point. It is expected that, at the infinite system size, Ps becomes a step function. As the number of particles is increased, Ps approaches a step
function. According to Eq. 1, by a rescaling according to N1/2ν( f − fc), all curves must collapse into a master function. We obtain an excellent collapse in the inset for ν =
1.21 ± 0.01. (B) The percolation strength P∞ is depicted for different sizes. A rescaling according to Eq. 2 results to a data collapse at the inset where β = 0.20 ± 0.04. (C)
Mean cluster size, where the largest cluster is excluded, is depicted for various system sizes. Using Eq. 3, a scaling collapse is achieved for γ = 2.15 ± 0.03 at the inset. A
comparison of these exponents with those of the central force RP (18) reveals that the universality class obeys the standard RP. Each data point is an average over an
ensemble of at least 1.5 × 104 configurations. Figures S1 to S6 present the details of finite-size scaling and data collapse for various _γ.
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A comparison of our ν and β exponents with those by the central
force RP (18) unequivocally establishes that the universality class is
the standard RP. To the best of our knowledge, this is the first ver-
ification of standard RP in an off-lattice molecular dynamics simu-
lation. This paves the way to examine RP in other model glass
formers and experiments. An ensuing important question is that
does the flow rate acts as a relevant parameter in a sense that its var-
iation could drive the universality of the system along a continuous
line of classes? In a recent study, it was found that the spatial cor-
relation between bonds in a lattice model for gelation acted as an
irrelevant perturbation (22).

Exponents of percolation at _γ . _γc
To address whether the flow rate acts as a relevant parameter, we
vary the flow rate in a range of three orders of magnitude from _γ ¼
10� 6 to 10−3, and, for each flow rate, we perform a systematic finite-
size scaling analysis similar to the aforementioned procedure, to
compute critical exponents as a function of the flow rate. Owing
to the very large system sizes simulated here, this is a very demand-
ing task, which requires huge processing power and memory
storage. We display ν, β, and γ as a function of the flow rate in
Fig. 3 (A to C), respectively, which are estimated in the thermody-
namic limitN→ ∞. One can see that the flow rate manifests itself as
a relevant perturbation and that gives rise to a spectrum of expo-
nents. The horizontal dashed lines in Fig. 3 (A and B) display RP,
and the gray bands show the corresponding uncertainty for RP ex-
ponents reported in the existing literature. Note that for
_γ � _γc ≃ 10� 5, all data points remain within the RP band. As a
result, for small flow rates, the universality class of the percolation
transition remains within RP, but a departure from RP happens at
larger flow rates. However, the vanishing limit of the flow rate is
firmly RP. The correlation exponent ν increases markedly for
_γ . _γc ≃ 10� 5. Similar observations have been reported for
plastic events in sheared amorphous materials, in which, at low
flow rates, plastic events are correlated, yet, at large rates, these
events become uncorrelated and random (29, 30).

Force-force correlations
Stress/force correlations have been found in both athermal jammed
systems (31–33), inherent state of supercooled liquids and glasses
(12, 34–39), sheared granular media (33, 40), and quiescent
liquids (38). A typical stress correlator scales with the distance r
as 1/rd, where d is the dimension of the space. It is now generally
believed that the origin of stress correlation in amorphous materials
is the mechanical equilibrium, Newton’s law of force and torque
balance. This has been elaborated in recent field theoretic treat-
ments of amorphous materials (31, 41, 42). However, for flowing
amorphous material, in which the condition of mechanical equilib-
rium is broken, the nature of correlations remains elusive. Our per-
colation framework provides an explicit calculation of some sort of
force-force correlations via the scaling of the pair-site correlation
function. According to percolation theory (8), two particles separat-
ed by a distance r are likely to belong to the same cluster of force
chains of strength f ≥ fc, by a probability proportional to g(r) ∼
r−(d−2+η). In Fig. 4, we show η as a function of the flow rate (see
fig. S7 for details of our computations for the correlation function
and estimation of the exponent η in the infinite size limitN→ ∞ for
various _γ). η Does not show a systematic dependence in awide range
of flow rates. Moreover, independent of the flow rate, the correlation
exponent is given by that of RP (complete results are presented in
figs. S1 to S8).

Theoretical framework
Our findings suggest that the flow rate _γ, as the only parameter in
our problem, plays the role of a relevant operator that introduces
long-range correlated disorder in our model and can alter the uni-
versality of the pure system at _γ! 0. To elucidate our proposition,
we draw upon the theoretical framework articulated by the Harris
criterion (43). According to this criterion, short-range correlations
with a falloff faster than r−d are relevant if dν − 2 < 0, where ν is the
correlation length exponent of the pure model, i.e., that of the RP at
_γ � _γc in our system with ν ≃ 1.21 in two dimensions. Because we
have dν − 2 > 0, so the effective correlations induced by the flow rate
in our system cannot be short range but essentially long range. For
the induced long-range correlations of the power-law form C(r) ∼
r−2H with 2H < d, the extended Harris criterion (44) then predicts

Fig. 3. Exponents of the percolation transition at finite rates.We vary the flow rate and compute the exponents of percolation transition via finite size scaling for ν, β,
and γ exponents in (A) to (C), respectively. The horizontal dashed line in (A) to (C) shows the RP exponents, and the shaded area is the corresponding error bar of the
exponent. Most of the exponents for _γ , 10� 5 more or less lie in the standard RPwithin the error bar. For _γ . 10� 5, all exponents depart from RP. The packing fraction isϕ
= 0.86, and each data point is an average over an ensemble of at least 1.5 × 104 configurations. In the Supplementary Materials, details of the estimation of error bars of
exponents are given. Figures S1 to S6 depict finite-size scaling of the abovementioned critical exponents for various shear rates, _γ, which result in the true estimation of
the critical exponents in the infinite size limit N → ∞.
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that the correlations are relevant if Hν − 1 < 0. This gives the new
correlation length exponent by the scaling relation νH = 1/H. This
relation has been extensively verified numerically in various studies
in the past (45–49). In the context of self-affine surfaces (related to
our discussion here after we make an analogy with our model for a
realization of force profile), it is shown (50) that, for H < 0, the per-
colation is not critical even in the thermodynamic limit and the self-
averaging breaks down. For long-range correlated force configura-
tions with 0 ≤H < 1 (d = 2), in contrast, the transition is critical, and
the self-averaging is recovered, which is in agreement with our ob-
servation for various flow rates in this study. The correlation length
exponent in the latter case is then shown to be given as follows in
terms of the value of H

νH ¼
1=H if 0 , H , 1=ν
ν if H � 1=ν

�

ð4Þ

Although this was originally shown for the random percolation
model, we note that the same scenario is running here too. Accord-
ing to our results for the exponents presented in Fig. 3A, for small
flow rates of roughly _γ � 10� 5, we find the same correlation expo-
nent νH ≃ 1.21 as for the standard RP, for which the decay of force-
force correlations is governed by the value H ≥ 0.825 ± 0.01. In the
limiting case _γ� _γc (where H → 1), the correlations will be given
by the marginal case proportional to ∝r−d in d = 2. As the flow rate
increases beyond the value _γc ≃ 10� 5, the correlations induced by
the flow rate become long range enough to change the correlation
length exponent toward higher values. In particular, we find that,
for _γ ≃ 10� 4, the critical exponents are in agreement with the
random percolation universality class with ν = 4/3, thus giving a
proper suggestion H = 3/4 for the decay of the correlation function,
which is in agreement with the previous results in (51). In the infi-
nite flow rate limit _γ! 1, our theoretical arguments suggest thatH
→ 0, i.e., logarithmic correlation functions appear, which are the

characteristic feature of turbulence as a strongly fluctuating
systems in two dimensions (52). The best fit to our data for the crit-
ical exponent ν provides the following relation with the flow rate,
consistent with our above arguments

ν � νRP ¼
a~_γb if _γ . _γc
0 if _γ � _γc

(

ð5Þ

where ~_γ ¼ ð _γ � _γcÞ= _γc, νRP = 1.21 denotes the exponent for the RP,
a = 0.027(4), and b = 0.73(4) (Fig. 5). The crossover flow rate _γc ≃

10� 5 is roughly the point where the system crosses over from a rigid
state to the rapid flow regime.

To further evaluate the geometric response of the force chain
structure to the flow rate, we have also measured the fractal dimen-
sion df of the largest force cluster at f = fc as a function of _γ. The
fractal dimension can be estimated from the scaling relation M ∼
Ndf/2, with M being the average number of nodes that belong to
the percolating force cluster. Our results are presented in Fig. 4 in
the form 2(2 − df ) to further test whether it fulfills the hyperscaling
relation η = 2 + d − 2df (see fig. S8 for more details). As shown in
Fig. 4, this scaling relation seems to be valid within the error bars,
with an additional observation that the exponents in Fig. 4 show a
weak dependence over the whole range of considered _γ. To assess
the validity of this observation, we take advantage of the scaling re-
lation η = 2 − γ/ν, according to which, in order for η to be indepen-
dent of _γ, the dependence of γ and ν must be canceled out.
According to Eq. 5, this requires γ � γRP ¼ a0~_γ

b0 with b0 = b =
0.73. Figure 5 shows our best fit a0~_γ0:73 to the data for γ − γRP as
a function of ~_γ for _γ . _γc, which gives a0 = 0.046(5). This gives
back η = 2 − a0/a ≃ 0.30, which is in perfect agreement with our
observation shown in Fig. 4. It must basically be possible to check

Fig. 4. Exponent of force-force cluster correlation. η is the exponent of force-
force cluster correlation calculated via the scaling of pair correlation function g(r)∼
r−(d−2+ηdirect) (circle) and derived from the hyperscaling relation η = 2β/ν (triangle) at
ft = fc (see also fig. S7). The horizontal dashed line shows the RP exponent, and the
shaded area is the corresponding error bar of the exponent estimated in previous
works. η Does not display a systematic dependence in thewide range of flow rate _γ.
It is shown that the nature of force-force cluster correlation is given by that of RP for
all flow rates. The packing fraction is ϕ = 0.86, and each data point is an average
over an ensemble of at least 1.5 × 104 configurations.

Fig. 5. Power-law scaling of critical exponents. Above a crossover flow rate
_γc ≃ 10� 5, the critical exponents ν and γ increase algebraically with the reduced

flow rate ~_γ ¼ ð _γ � _γcÞ= _γc. Both exponents share the same scaling relation ≏ ~_γ
0:73

within the error bars. The shaded regions denote the SE in the fit exponent and the
amplitudes over the baselines. a and b are obtained from the best power-law fit to
our data for the correlation exponent ν, b0 = b = 0.73, and a0 is considered as the
only fit parameter for _γ. The packing fraction is ϕ = 0.86, and each data point is an
average over an ensemble of at least 1.5 × 104 configurations.
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similar behavior for the exponent β, but, because our data presented
in Fig. 3B bear rather large error bars, our test was not conclusive
enough to be shown in Fig. 5.

DISCUSSION
The interplay between network topology and macroscopic proper-
ties in network glass formers (53), and more specifically in chalco-
genide network glasses (54, 55), has been well addressed in the
context of RP (18). Attempts have been made to reconcile RP
with isotropic jamming (21), yet such a connection has been
evasive. The reconciliation of RP with jammed granular media is
crucial because such a reconciliation will facilitate a unified frame-
work for granular media and glasses, as suggested by long-range
stress correlations in both systems.

Here, we investigated the percolation of interparticle forces
between particles in a dense regime in which all degrees of
freedom of particles are over-constrained (56). We unequivocally
established that the connectivity of the interparticle force network
undergoes a second-order phase transition, whose scaling proper-
ties, for a wide range of flow rates, are given by those of the RP uni-
versality class. This demonstrates that the emergence of shear
elasticity originates from the internal organization of particles in
the form of chains of interparticle forces. Thus, the emergence of
shear elasticity is a manifestation of mechanical self-organization.
Recent work supports our view; e.g., Tong et al. (12) investigated
stress correlation in a model glass at finite temperature with giant
anharmonic fluctuations and demonstrated that the stress correla-
tion emerges as a result of long-range interparticle force correlation
manifested as a distinct correlated percolation universality class, a
hint to mechanical self-organization.

A crucial step toward a better understanding of force/stress
anomalies requires lifting the constraint of the mechanical
balance. This is very important for parent liquid states and
flowing granular media that are not quenched into a local energy
minimum. As pointed out by Lemaître (38), this is very challenging
because, in the absence of the mechanical equilibrium, the structure
of correlations becomes very complex. Our work is a step forward in
this direction. It provides a previously unknown link between force
correlation in flowing granular media, RP, and a potential relation-
ship to mechanical self-organization. The ingredients giving rise to
RP in sheared frictionless spheres, namely, (i) over-constraining
and (ii) slow deformation, are important and may motivate future
attempts for field theoretic treatments (31, 41) of amorphous
flowing material.

Our results cover a typical athermal system undergoing a shear-
driven jamming transition in the dense phase. An important ques-
tion is whether and to what extent these results apply to thermal
glasses. The RP has been originally devised to address the glass tran-
sition in thermal glasses, yet it has not been confirmed in any mo-
lecular simulation. Determining whether a slow deformation is a
necessary factor for recovering RP in thermal glasses will be an ex-
citing research pursuit for future numerical investigations. We hope
our work will inspire further studies on thermal glasses using mo-
lecular dynamics simulations.

A recent study on jamming by compression shows that the com-
pression rate is a relevant parameter for the jamming transition
(57). Moreover, the authors find that isotropically compression-
driven jamming is in the same universality class as that of shear-

driven jamming. Another study shows that, whereas jamming by
compression is markedly history dependent and, as a result, gives
rise to a range of critical densities, shear-driven jamming is not
history dependent (58). There is a chance that the controversy in
percolation in isotropically compressed packings is related to
these issues and the history of the system plays the role of a relevant
parameter giving rise to a spectrum of critical exponents. Our
results should motivate future works to resolve this controversy.

METHODS
Our system consists of frictionless bidisperse disks in two-dimen-
sional space. The interactions between disks are governed by
short-range linear repulsive and dissipative forces. These interac-
tions can be expressed as Fij = Knξijrij/rij − Meffγnvn. Two particles
i and j of radii Ri and Rj at positions ri and rj interact when the
mutual compression of particles ξij = Ri + Rj − rij > 0. In this equa-
tion, rij = ri − rj, Kn is the elastic constant for a normal contact, and
γn is the viscoelastic damping constant for a normal contact. vn is
the normal component of the relative velocity of the two particles,
and Meff = m1m2/(m1 + m2). The ξij is called the mutual compres-
sion of two particles. We use LAMMPS software (27) for simulating
shear-driven granular systems. The Verlet method (59), which
serves as the default integrator in LAMMPS, is used to numerically
integrate the equations of motion for particles. This algorithm cal-
culates the new positions and velocities of particles using their
current values and the forces acting on them by using a two-step
process that accounts for both position and velocity updates. The
details of the algorithm are incorporated in section S3. Lees-
Edwards boundary conditions (59) are applied to create a
uniform overall flow rate _γ along the x direction. To emulate
these boundary conditions in LAMMPS, each particle is given an
initial velocity according to viðt ¼ 0Þ ¼ _γyîi at time t = 0, where
yi is the y position of particle i. To maintain the velocity profile,
we use the command “fix deform” with “remap v” option.

To prevent crystallization, we use a 1 : 1 binary mixture of par-
ticles with particle radii R0 = 0.5 and R1 = 0.7. For seeking simplicity,
we set the mass of each particle equal to its area, m = πR2. By con-
sidering Kn = 1 and γn = 1, we measure time in our simulations
using the units of τ0 ≡ γnd2

0/Kn = 1, where d0 represents the diameter
of the small particles. The shear rate can then be nondimensional-
ized with _γ� τ0, which is important for comparison with other
simulations and experiments. The packing fraction ϕ = 0.86 > ϕJ
is considered. To check the robustness of the results against chang-
ing the packing fraction and the repulsive force amplitude, we sim-
ulate systems with ϕ = 0.865,Kn = 1, and ϕ = 0.86,Kn = 1.5, as shown
in figs. S9 to S13. Notably, we find that these changes do not signifi-
cantly affect the reported original exponents, as they fall within the
same range of error bars (see fig. S13).

The number of particles is N = 2048, 4096, 8192, 16,384, 32,768,
and 65,536. This vast range of system sizes facilitates a systematic
finite-size scaling, by which we calculate all the scaling properties
of networks at the thermodynamic limit N → ∞. Furthermore,
various flow rates _γ ¼ 10−6, 2 × 10−6, 5 × 10−6, 10−5, 2 × 10−5, 5
× 10−5, 10−4, 2 × 10−4, 4 × 10−4, 5 × 10−4, and 10−3 are considered
for each system size. All reported quantities, such as Ps, P∞, and χ
are computed by averaging over 10 independent simulations (real-
izations) each of which consists of around 1.5 × 103 uncorrelated
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configurations separated by a strain difference equal to the unit of
the length after the system has reached a steady state.

Supplementary Materials
This PDF file includes:
Sections S1 to S4
Figs. S1 to S13
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