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Embedding theory of reservoir computing and reducing reservoir network using time delays
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Reservoir computing (RC), a particular form of recurrent neural network, is under explosive development

due to its exceptional efficacy and high performance in reconstruction and/or prediction of complex physical
systems. However, the mechanism triggering such effective applications of RC is still unclear, awaiting deep
and systematic exploration. Here, combining the delayed embedding theory with the generalized embedding
theory, we rigorously prove that RC is essentially a high-dimensional embedding of the original input nonlinear
dynamical system. Thus, using this embedding property, we unify into a universal framework the standard
RC and the time-delayed RC where we introduce time delays only into the network’s output layer, and we
further find a trade-off relation between the time delays and the number of neurons in RC. Based on these
findings, we significantly reduce the RC’s network size and promote its memory capacity in completing systems
reconstruction and prediction. More surprisingly, only using a single-neuron reservoir with time delays is
sometimes sufficient for achieving reconstruction and prediction tasks, while the standard RC of any large size

but without time delay cannot complete them yet.

DOI: 10.1103/PhysRevResearch.5.1.022041

The last decades have witnessed the extensive applica-
tion and development of machine learning technology in
data-driven research and in high-technology-oriented industry
as well. As a representative leader among many machine
learning techniques, the artificial neural network (ANN) has
emerged as a powerful approach that is well suited for cop-
ing with the supervised learning problems. Among various
architectures of ANN, reservoir computing (RC), which is
a recently developed framework [1], a special variant of a
recurrent neural network, and also known as a generalization
of the echo-state network (ESN) [2] or liquid-state machine
(LSM) [3], has been reported to have great efficacy in re-
construction and/or prediction of many complex physical
systems only based on the observational data of time series
[4-7]. The architecture of RC is quite contracted. As shown
in Fig. 1(a), only three weight matrices are involved: the
input matrix and the reservoir recurrent matrix are randomly
generated but fixed, while the output matrix is determined via
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training. As such, efficient least squares optimization methods
rather than the resource-consuming backpropagation algo-
rithm are adopted in the training process [8]. Behind such a
contracted architecture, two questions arise naturally: “What
is the fundamental mechanism resulting the efficacy of RC?”
and “How can the structure be improved using the uncovered
mechanism?” These questions have attracted great attention
and motivated abundant discussions, including those from the
topology and the complexity of random connections [9,10] to
the spectral radius of random networks and the edge of chaos
[11-13], from the fading memory property [14] to the echo
state property [15,16], from the choice of activation functions
[17] to the training algorithm of the output layer [18]. Yet,
recent understanding of RC is often via heuristic interpretation
and it is widely believed that a successful RC should possess
high dimensionality, nonlinearity, fading memory, and separa-
tion property [6], but barely with rigorous and mathematical
demonstrations.

In order to decipher the RC’s capacity of reconstructing
and forecasting nonlinear dynamics, several efforts from a
viewpoint of dynamical systems have been recently made. For
example, the regression model and the dynamical model de-
composition method were used to illustrate the usefulness of
RC for forecasting chaotic dynamics [19,20], and, to demon-
strate the approximation capability of RC, an embedding
conjecture was studied and could be partially validated for
a specific form of RC under the right technical conditions
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FIG. 1. RCs as different nonlinear dynamical systems and em-
beddings. (a) A standard RC without time delay. (b) The generalized
embedding W from the input dynamics to the standard nonde-
layed reservoir network and the delayed embedding F' from the
input dynamics to the delayed reservoir network, which constitute
a topological conjugation between the dynamics of the nondelayed
reservoir network and the delayed reservoir network. (c) A time-
delayed RC with a smaller network size in the reservoir layer.

[21,22]. In the area of photonic neural networks, an archi-
tecture of photonic reservoir computing has been developed
using a spatiotemporal analogy to translate a delayed differ-
ential equation (DDE) into a virtual single-neuron reservoir
network [23-25]. Still, despite these significant efforts and
achievements, some key questions remain unsolved: how to
understand the network dimension of general RC using the
theories of nonlinear dynamics and functional analytics, and
how to design a small-size network in RC for sustaining its
efficacy.

In this Letter, we rigorously study the mechanism of RC
from a viewpoint of nonlinear dynamical systems and propose
a framework of time-delayed RC. Particularly, combining the
delayed embedding theory with the generalized embedding
theory, we first prove a general reservoir network rigorously as
a high-dimensional embedding of the original input nonlinear
dynamical system. Then, we further reveal a trade-off rela-
tion between the time delays and the number of neurons by
unifying into a universal framework the standard RC without
delays and the time-delayed RC where the time delays are
introduced into the network’s output layer. It therefore allows
us to construct a random reservoir network with a significantly
reduced physical dimension to achieve the efficacy that the
original larger-size RC owns. Surprisingly, we show that a

single neuron reservoir, in a standard form without introduc-
ing any DDE or time-division multiplexing technique, can
sometimes work well for reconstructing and forecasting some
representative physical systems. Moreover, we find flexible
memory capacity in the time-delayed RC, which makes it
possible to accomplish more challenging tasks of dynamics
reconstruction that cannot be easily achieved using a standard
RC of the same scale.

We start with a standard RC as sketched in Fig. 1(a). Here,
the input data x; € R” represents the state vector of a dynami-
cal system that is evolving on a compact manifold M with the
evolution operator ¢ € Diff>(M) : x;41 = @(x). The vector
r, € R™ represents the state of m reservoir neurons at time
step k, the input layer weight matrix Wi, and the reservoir net-
work matrix W are, respectively, m x n and m x m random
matrices generated according to certain distribution laws. The
dynamical evolution of the reservoir neurons is governed by
RN): 7y = (1 —a)ry + apWiesr—1 + Winxy ), where « is
the leakage factor, and ¢ € C?[R, (—1, 1)] is set a sigmoid
function (e.g., tanh) in this Letter. The output vectory, € R’ is
determined by the output weight matrix Wy, € R/*™ such that
¥i = Wourk. In the task of nonlinear system reconstruction,
given the time series, denoted by x;,k=1,...,N+1, as
training data, the target is to train the output weight matrix
Wout SO as to approximate the one-step dynamics prediction,
i.e., Y, &~ xr4+1. To achieve this, the output weight matrix Woy
is generally calculated by minimizing the loss function £ =
ZQ’ZI [xcs1 — Wouk II> + Bl Wou l|* over the training data set,
where 8 > 0, the L,-regularization coefficient, is introduced
to make optimization robust. After training, one can fix the
output weight matrix Wy, and redirect the outputy, = Woury
as an approximation of x;; into the input layer of the net-
work and thus generate the autonomous dynamics for x; with
k> N.

To rigorously establish an embedding theory for RC, we
consider directly the evolution (RN) of the reservoir neurons
with the leakage factor « = 1 as

M = O (Wreaty, + Wingttlxo), k=0,1,...,

and define a map as &k [ro,WreS,Wm](xo)—rkx Here,

rOx =by, by € 1", and 1 = (-1, 1). Thus, we rigorously
have the following result.

Theorem 1. Let m > 2 dim(M) + 1 and [ro, Wies, Win] €
I'" x R™™ x R™" with dim(M) as the box-counting di-
mension of the manifold M. Then, there exists a number k* >
0, such that &*[ry, Wyes, Win] € CH(M, R™) is generically an
embedding for all k > k*.

Here, the generic conclusion in Theorem 1 means that,
for all [rg, Wees, Win] € S where S C 1™ x R™™ x R™*" ig
an open and dense set, &K [rg, Wies, Win] is an embedding for
any sufficiently large k. The detailed and rigorous proof with
respect to the C' topology is provided in the Supplemen-
tal Material (SM) [26]. Moreover, the echo state property,
a necessary condition for constructing an RC, requires that,
with the general configuration {W;,, Wi, ¢}, the evolutions
(RN) of the reservoir neurons, starting from any different
initial values E)l) and rO , converge to the same dynam-
ics, i.e., limy_ o ||r(1) (2)|| 0 [15]. Hence, by virtue of
Theorem 1, regardless of the choice of the initial value ry,

L022041-2



EMBEDDING THEORY OF RESERVOIR COMPUTING ...

PHYSICAL REVIEW RESEARCH 5, L022041 (2023)

the dynamics of reservoir neurons is determined by the input
dynamics, i.e., there exists a unique embedding V such that
r, = V(xy) after a transient phase, while each component
ric = W;(xy) implies that the dynamics of each neuron is an
observable of the original dynamics.

In the standard RC investigated above, m, the number of
reservoir neurons and also known as the reservoir dimension,
is often required to be huge [6,8]. To design a different
RC framework, significantly reducing m, we introduce
time delays into the output layer, as sketched in Fig. 1(c).
While all the configuration {Wi,, W, ¢} and the input
data x are set in the same manner, the reservoir network
is assumed to include g (<m) neurons only. Thus, a new
reservoir vector before the output layer is designated as
Fto = [Pk Tlkets -+ o Plhmditars - -2 Tqko - - o Tqmdyre] | s
and, correspondingly, the output matrix W, is calculated by
minimizing the L, loss function

N
L= Ixirr — WouFcl” + Bl Wourll,
k=1

with Wy € R*? and d = Ziq:l d;. Here, the new reservoir
vector 7, is formed by the lagged dynamics of each neuron,
i.e., ¢ neurons with each neuron contributing d; lagged dy-
namics [7;k, ¥ik—z, - - . i k—dc+c], Where T is a time delay,
and d is assigned as the output dimension of this delayed RC.

Now, we are in a position to demonstrate that the
time-delayed RC with the above-assigned d has the same
representation and computation ability as the standard RC
involving m neurons without time delay under the same
parameter settings, as long as d ~ m. Actually, based
on the delayed embedding theory and its applications
[27-30], an approximate combination of the lagged
observable can also generically form an embedding, i.e.,
for smooth observational functions Wi,..., ¥, F(x)=
(W), Wil '@ Wilem TP, (), Wy
e~ '), ..., \Ilq[(pdq’l(x)]} is generically an embedding
as long as > 7 | d; > 2dim(M). Using the above-obtained
conclusion that each neuron is generally an observable, we
further conclude that the proposed new reservoir vector 7 is
also an embedding. Thus, the dynamics of the state vector
r; in the m-neuron reservoir network without time delay is
topologically conjugated with the dynamics of the reservoir
vector 7, of a g-neuron reservoir network in the sense of
embedding as long as m = d with d = )/, d;, as sketched
in Fig. 1(b). Consequently, we come to the conclusion that
the delayed observables of the RC state, seen as additional
nonlinear observables, have the same computational power
in the system reconstruction.

To demonstrate the capability of our time-delayed RC, we
first consider the benchmark Lorenz system. After a training
phase including N = 6000 samples, the autonomously gener-
ated dynamics by the RC are shown in Fig. 2(a). Particularly
used are a standard RC, a time-delayed RC containing fewer
neurons with uniformly lagged dynamics for each neuron, and
a time-delayed RC containing the same number of neurons but
with random lags for each neuron. Clearly, the time-delayed
RC has almost the same performance of system reconstruction
as the nondelayed one, no matter whether the lags are uni-
formly or randomly generated. Actually, this coincides with

(a)
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FIG. 2. (a) Reconstructed dynamics of the Lorenz system by a
nondelayed RC including 200 neurons, a delayed RC #1 including
40 neurons with uniformly five lags for each neuron, and a delayed
RC #2 including 40 neurons with random lags for each neuron. Here,
the time unit is expressed in the Lyapunov time, and the random lags
are generated by a distribution centered at 5 as shown in the inset.
(b) System reconstruction test for the Lorenz system with different
combinations of Npeyron and Ny, where the training MSE in a log-
scale and the contour curves are, respectively, highlighted. Here, 7 =
5 and the sampling step size is At = 0.01. All the other parameter
settings are introduced in Ref. [26].

the above-performed arguments from a viewpoint of embed-
ding that the dynamics of this nondelayed RC is a generalized
embedding to the input dynamics with generically 200 observ-
ables, while the dynamics of the time-delayed RC forms an
embedding of dimension 200 when the sum of lags equals 200
for either uniform or random lags. Such a trade-off relation
is further clearly illustrated in Fig. 2(b), where a different
neuron number with a different lag number for each neuron is
combined, and, for each combination, a training error is calcu-
lated as the mean squared error (MSE) on the training data set
based on over 20 independent runs. As depicted in Fig. 2(b),
for a fixed moderate number of neurons, the training error
decreases monotonically with the lag number for each neuron,
and, for a fixed moderate lag number, the training error also
decreases monotonically with the neuron number. Analogous
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results are also obtained for the other benchmark systems, as
presented in Ref. [26] (see Fig. S5). All these further reinforce
the above conclusion that, whenever d ~ m with moderate
Niag and Npeyron, the time-delayed and the nondelayed RCs
generally share the same ability in system representation, and
the number of neurons and of time lags can be traded off
mutually in these frameworks.

Such a trade-off relationship further puts the nondelayed
and time-delayed RCs into a unified framework where the
output dimension d becomes the effective reservoir dimension
that finally decides the ability of the system representation.
The standard nondelayed RC is actually a degenerated form
in this unified framework where all the neurons have zero lag.
More surprisingly, we find that it is even possible to reduce
the number of neurons into one and realize a single-neuron
reservoir in the proposed framework. To see this, we con-
sider a gene regulation model with multiple delays: x(¢) =
—kx(t) + gfi[x(t — 7)) fo[x(t — 12)], which describes self-
inhibition and self-activation with distinct delays 7; and 1,
and with specific parameters the one-dimensional model has
chaotic dynamics [26,31,32]. Specifically, a time-delayed RC
including only one neuron with 600 lags is used to reconstruct
the dynamics, and the autonomously generated dynamics after
training are shown in Fig. 3(a). The results confirm that the
single-neuron, time-delayed RC performs well, achieving the
same reconstruction ability of the time-delayed RC with mul-
tiple neurons. Frankly, the single-neuron RC in this numerical
illustration is only a special case that is not universally suitable
for any system reconstruction. Due to the multiscale property,
the task of system reconstruction for multiple variables using
one reservoir network usually requires more than one single
neuron. As for the task in Fig. 2(a), in order to get a successful
prediction for the three components of the Lorenz system,
a single-neuron reservoir is not adequate even with multiple
time delays. In addition to the equivalent representation abil-
ity in the sense of embedding, we further discover that the
time-delayed RC has a more flexible memory capacity, which
is an essential measure for RC’s reconstruction ability for
delayed systems. In the dynamics reconstruction job for the
above gene regulation model in Fig. 3(a), the chaotic dynam-
ics cannot be reconstructed by a standard RC, no matter how
large the reservoir is, according to the dimension test [26].
However, with all the same reservoir environment, the time-
delayed RC [both RC#1 and RC#2 in Fig. 3(a)] can fulfill the
job quite well. To understand this phenomenon, we calculate
the memory capacity (MC) for different RC frameworks, us-
ing the definition in Ref. [8] and with different combinations
Of Npeuron and Ny, but satisfying the same output dimension,
i.e., Nneuron - NMiag = 600. Specifically, MC of a reservoir refers
to its ability to retain information from previous time steps
and it is defined in Ref. [8] as

_cov [x(r — k), @)
~ var[x(r)] - var [§x(£)]”

where a random sequence of input values x(¢) is presented
to the reservoir, and the reservoir output y(¢) is trained to
predict a previous input value x(¢ — k), and here cov(-) and
var(-), respectively, represent covariance and variance.
Figure 3(b) clearly shows that, as Nj,, increases, the
reservoir computer with different delay settings has stronger

4 ‘ ‘ ‘
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FIG. 3. (a) Reconstructed dynamics of the chaotic gene regula-
tion model by the standard RC including 600 neurons (see the inset),
the single-neuron, time-delayed RC#1 with 600 lags, and the time-
delayed RC#2 including six neurons and 100 lags for each neuron.
(b) MC test with different combinations of Nneuron * Niag- Here, 7 =5
and the sampling step size is At = 0.1. All the other parameter
settings are introduced in Ref. [26].

memory capacity though still keeping a fading memory fash-
ion. This is essential for the dynamics reconstruction job,
particularly for time-delayed physical or biological systems
such as the gene regulation model above. Thus, the proposed
time-delayed RC framework has a more flexible capability to
deal with dynamics reconstruction jobs requiring tunable MC.

Finally, to further validate the efficacy of the time-delayed
RC in reconstructing a high-dimensional spatial-temporal sys-
tem, we consider the ideal storage cellular automation model
(ISCAM) simulating heterocatalytic reaction-diffusion pro-
cesses at metal surfaces [33,34]. Considering the extremely
high dimension (the 100 x 100 grids yields 10000 input di-
mension), it is a challenging job to reconstruct the chaotic
spatial-temporal patterns. As shown in Fig. 4, with the same
reservoir output dimension, the time-delayed RC has almost
the same reconstruction ability as the nondelay one.

Our framework uses a few hyperparameters, such as d, the
effective reservoir dimension, and t, the time delay, which
definitely affect RC’s efficacy in system reconstruction. In
fact, the existing literature included some criteria for select-
ing such parameters in system reconstruction using delayed
embedding theory. We thus implement these criteria, the di-
mension test and the delayed mutual information (DMI), to
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FIG. 4. Reconstructed chaotic patterns for the ISCAM model by a standard nondelayed RC including 5000 neurons and a time-delayed
RC including 1000 neurons and five lags for each neuron. (a) Selected dynamical pattern using different evolution rules. (b) Reconstruction

errors deviating from true dynamics from different RC frameworks.

determine d and 7. From a perspective of embedding, d is only
required to be larger than 2 - dim(M) while practically the
box-counting dimension of the manifold M is usually very
small, i.e., dim(M) is between 2 and 3 [35,36] for the chaotic
Lorenz attractor. However, to design an effective RC, d is
required to be moderately large (see all the examples above).
This is probably because, although the generic property in
the embedding theory means open and dense in a topolog-
ical sense, there are still degenerated situations in practice,
particularly for randomly generated networks (see Fig. S1 in
Ref. [26]). Moreover, to reveal the mechanism from repre-
sentation to computation, the recent efforts used the universal
approximation theory [21] and the dynamic mode decomposi-
tion (DMD) [19] framework, which further demonstrate the
necessity of a large network size of RC in achieving good
approximations. Thus, the dimension tests are used to seek
a suitable d for each computation. As for the delay t, either
a too-small or too-large value renders computation problem-
atic in system reconstruction, which naturally prompts us to
introduce a modified DMI test taking into account the in-
trinsic time scales of the neuronal dynamics in RC. Finally,
it is noted that, for chaotic systems, the lagged observables
earlier than the Lyapunov time have diminishing predictive
power for the current time step, so we suggest the constraint
T - At - Niayg < Amax for the choice of 7 and Ny, in practice,
where At is the sampling step size. The details for the choice
of these hyperparameters are given in Ref. [26].

In conclusion, we have provided deep and rigorous insight
into the mechanism of RC from a viewpoint of embedding the-
ory and nonlinear dynamical systems. Based on our analytical
findings, we have studied the role of time delay in the reser-
voir network and proposed a framework of time-delayed RC.
This framework can significantly reduce the network size and
promote the memory capacity, making its ability attain or even
transcend the ability owned by the standard RC. Considering
the computational costs, which are crucially dependent on the
network size in the dynamical evolution of RC, and the hard-
ware costs related to the circuit size in those overwhelmingly
developed physical RCs [6], a smaller-size reservoir is al-
ways expected to promote its real and extensive applications.
Moreover, we notice a recently published and independent
work [37] where a method, different from the perspective of
embedding theory and memory capacity presented here, was
proposed to concatenating internal states through time in RC
and realize model-size reduction. Lastly, any contributions to
designing RC frameworks of low resource consumption are
believed to advance the direction of machine learning and thus
be of broad applicability in solving data-driven science and
engineering problems.
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