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a b s t r a c t 

In this paper, the path integral solutions for a general n-dimensional stochastic differential equa- 

tions (SDEs) with α-stable Lévy noise are derived and verified. Firstly, the governing equations for the 

solutions of n-dimensional SDEs under the excitation of α-stable Lévy noise are obtained through the 

characteristic function of stochastic processes. Then, the short-time transition probability density func- 

tion of the path integral solution is derived based on the Chapman-Kolmogorov-Smoluchowski (CKS) 

equation and the characteristic function, and its correctness is demonstrated by proving that it satis- 

fies the governing equation of the solution of the SDE, which is also called the Fokker-Planck-Kolmogorov 

equation. Besides, illustrative examples are numerically considered for highlighting the feasibility of the 

proposed path integral method, and the pertinent Monte Carlo solution is also calculated to show its 

correctness and effectiveness. 

© 2023 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and 

Applied Mechanics. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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In almost all fields, such as physics, chemistry, biology, me- 

eorology, finance, and engineering, uncertainty is inevitable, and 

he system can be modeled and characterized by stochastic dif- 

erential equation (SDE) [1,2] . One of the most important example 

s the Langevin equation, which describes how a system evolves 

hen subjected to both deterministic and random forces. The ear- 

iest and classical application is Brownian motion, which models 

he motion of Brownian particles in fluid under random impacts 

f surrounding fluid molecules. Afterwards, the systems driven by 

aussian white noise (or Brownian motion) make extensive and in- 

epth progress in both theory and dynamical behaviours [3] . In ad- 

ition, systems under Poisson and Lévy noise excitations have also 

eceived attention due to the diversity of random factors [4–6] . For 

he response uncertainty of these systems, probability and statis- 

ics are powerful tools for system analysis. 

Starting from the SDE, we can simulate the sample path of the 

quation, and then obtain the mean, variance or approximate the 

robability density function of the response by statistical methods. 
∗ Corresponding author.:. 
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esides, it is also possible to first derive the equation satisfied by 

he probability density function of the response of the SDE, which 

s called the Fokker-Planck-Kolmogorov (FPK) equation. The FPK 

quation for systems under Gaussian noise, Poisson and α-stable 

évy noise are second-order, integral-differential and fractional 

artial differential equations, respectively [7–9] . As partial differ- 

ntial equation, the FPK equation can be solved by finite difference 

ethod, finite element method and spectral method, etc. It can 

bviously be solved by the path integral method specific to ran- 

om problems, which is a functional integration that includes 

ll random sample paths. The path integral solution is both the 

olution of the FPK equation and the probability density function 

f the solution of the SDE. Compared with the statistical methods, 

he path integral method is not affected by the number of sample 

aths, and has higher precision, especially in the tail part of the 

robability density function, which is very useful for the study of 

he response of random systems and rare events. 

The earliest use of the path integral method for response of SDE 

oes back to 1983, when Wehner and Wolf presented an efficient 

umerical path integral method to solve nonlinear governing equa- 

ion of SDE with Gaussian noise [10] . Extension of the path integral 
ty of Theoretical and Applied Mechanics. This is an open access article under the 
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ethod to restrictive stochastic processes and time dependent co- 

fficients case shows their wide applicability [11] . After that, the 

ath integral method under Gaussian noise excitation has made a 

eries of research progress in system response, algorithm improve- 

ent, etc. [12–16] . In recent years, it has also even been extended 

o the case of non-Gaussian noise excitation [17–21] . The path inte- 

ral method for SDE under α-stable Lévy noise is now available for 

ne-dimensional and single-degree-of-freedom(SDOF system. But 

n open question is whether it can be directly generalized to n- 

imensional systems like the Monte Carlo method, which seems to 

e currently the only method for solving higher-dimensional SDEs 

nder Lévy noise excitation and obviously applicable to systems 

f arbitrary dimensions? In this paper, we provide a more general 

ath integral formulation for a general n-dimensional SDE under 

-stable Lévy excitation. 

Considering the following n-dimensional Itô SDE 
 

˙ X (t) = f (X , t) + g(X , t ) ξ(t ) , 

X (t 0 ) = x 0 , 
(1) 

ere X(t) = [ X 1 (t) , X 2 (t ) , · · · , X n (t )] 
T 

is an n-dimensional state 

ector, f (X, t) is an n-dimensional vector function [ f 1 (X, t) ,

f 2 (X, t) , · · · , f n (X, t)] T , and g(X, t) = diag (g 1 (X, t) , g 2 (X, t) , · · · ,

 n (X , t)) . X (t 0 ) = x 0 = [ x 0 , 1 , x 0 , 2 , · · · , x 0 ,n ] 
T is the initial con-

ition, which can be deterministic or stochastic. ξ(t) = 

 ξα1 
(t) , ξα2 

(t ) , · · · , ξαn (t )] 
T 

and ξα j 
(t)( j = 1 , 2 · · · , n ) are mu- 

ually independent symmetric α-stable Lévy noise, which is 

he formal derivative of symmetric α-stable Lévy process 

 α j 
(t) . L α j 

(t) ∼ S α j 
(σ j t 

1 /α, 0 , 0) with characteristic function

(k ) = exp [i kL α j 
(t)] = exp (−D L j 

t | k | α j ) , where D L j 
= σ

α j 

j 
is the

oise intensity. And, the characteristic function for the increment 

f L α j 
( t ) is δZ L α j 

( k, δt ) = exp 

(
−δt D L j 

| k | α j 

)
( δt is the time incre- 

ent), which corresponding to the distribution S α j 
(σ j δt 1 /α, 0 , 0) . 

For the Markov Process, the Chapman-Kolmogorov- 

moluchowski (CKS) equation holds. Namely, for any δt > 0 

p ( x , t + δt| x 0 , t 0 ) = 

∫ 
R n 

p ( x , t + δt| y, t ) p ( y, t| x 0 , t 0 ) d y, (2) 

here p ( x , t + δt| x 0 , t 0 ) and p ( y, t| x 0 , t 0 ) are probability density 

unctions at time t + δt and t , with the initial condition X(t 0 ) = x 0 .

p ( x , t + δt| y, t ) is the transition probability density function from 

he position y at the time t to the position x at the time t + δt . 

In the above CKS equation, the transition probability density 

unction p ( x , t + δt| y, t ) can be represented as 

p ( x , t + δt| y, t ) = F 

−1 [ δZ X ( k, δt | y, t ) ] 

= F 

−1 [ exp ( δK X ( k, δt | y, t ) ) ] 

= 

∫ 
R n 

1 

( 2 π) 
n exp 

[
−i k 

T ( x − y ) 
]

exp [ δK X ( k, δt | y, t ) ] d k. (3) 

mong which, F 

−1 is the Fourier inverse transformation and k

s the conjugate variable of x − y. In the above, δZ X ( k, δt | y, t )
nd δK X ( k, δt | y, t ) are the characteristic function and cumulant 

enerating function of the transition probability density function 

p ( x , t + δt| y, t ) . 

Substituting Eq. (3) into Eq. (2) , we get 

p ( x , t + δt| x 0 , t 0 ) = 

∫ 
R n 

∫ 
R n 

1 

( 2 π) 
n exp 

[
−i k 

T ( x − y ) 
]

exp [ δK X ( k, δt | y, t ) ] p ( y, t| x 0 , t 0 ) d kd y. (4) 

etting δt = 0 , Eq. (4) reduces to 

p ( x , t| x 0 , t 0 ) = 

∫ 
R n 

∫ 
R n 

1 

( 2 π) 
n exp 

[
−i k T ( x −y ) 

]
p ( y, t| x 0 , t 0 ) d kd y. (5) 
2 
sing Eq. (4) minus Eq. (5) , we get 

p ( x , t + δt| x 0 , t 0 ) − p ( x , t| x 0 , t 0 ) 
= 

∫ 
R n 

∫ 
R n 

1 

( 2 π) 
n exp 

[
−i k 

T ( x − y ) 
]{ exp [ δK X ( k, δt | y, t ) ] − 1 } 

p ( y, t| x 0 , t 0 ) d kd y. (6) 

Besides, the characteristic function for the increment of the so- 

ution X(t) of the SDE (1) is 

Z X ( k, δt | y, t ) = exp [ δK X ( k, δt | y, t ) ] 

= E 
{

exp 

[
i k 

T ( X ( t + δt ) − X ( t ) ) 
]| X ( t ) = y 

}
= E 

{
exp 

[
i k 

T ( f ( y, t ) δt + gδL ) 
]| X ( t ) = y 

}
= E 

{
exp 

[
i k 

T f ( y, t ) δt + i k 

T gδL 
]| X ( t ) = y 

}
= exp 

[
i k 

T f ( y, t ) δt 
]
E 
[
exp 

(
i k 

T gδL 
)]

= exp 

[
i k 

T f ( y, t ) δt 
]

exp 

[ 

−
n ∑ 

j=1 

δtD L j 

∣∣∣∣∣g j | α j 

∣∣k j ∣∣α j 

] 

.

(7)

hus, the cumulant generating function δK X ( k, δt | y, t ) is obtained 

s 

δK X ( k, δt | y, t ) = i k 

T f ( y, t ) δt −
n ∑ 

j=1 

δtD L j 

∣∣∣∣∣g j | α j 

∣∣k j ∣∣α j 

= 

n ∑ 

j=1 

i k j f j ( y, t ) δt −
n ∑ 

j=1 

δtD L j 

∣∣∣∣∣g j | α j 

∣∣k j ∣∣α j 
. (8) 

he inverse of the cumulant generating function is 

F 

−1 [ δK X ( k, δt | y, t ) ] 

= F 

−1 

[ 

i 

n ∑ 

j=1 

k j f j ( y, t ) δt −
n ∑ 

j=1 

δtD L j | g j | α j | k j | α j 

] 

= 

n ∑ 

j=1 

F 

−1 
[
i k j 
]

f j ( y, t ) δt −
n ∑ 

j=1 

F 

−1 
[| k j | α j 

]| g j | α j D L j δt 

= −
n ∑ 

j=1 

∂ 

∂(x j − y j ) 
δ( x − y ) f j ( y, t ) δt 

−
n ∑ 

j=1 

∂ α j 

∂| x j | α j 
δ(x − y) | g j | α j D L j δt. (9) 

Based on the inverse Fourier transformation of cumulant gener- 

ting function F 

−1 [ δK X ( k, δt | y, t ) ] , Eq. (6) can be recast into 

p ( x , t + δt| x 0 , t 0 ) − p ( x , t| x 0 , t 0 ) 
= 

∫ 
R n 

∫ 
R n 

1 

( 2 π) 
n exp 

[
−i k 

T ( x − y ) 
]{ exp [ δK X ( k, δt | y, t ) ] − 1 } 

p ( y, t| x 0 , t 0 ) d kd y 

= 

∫ 
R n 

∫ 
R n 

1 

( 2 π) 
n exp 

[
−i k 

T ( x − y ) 
][

δK X ( k, δt | y, t ) + O 

(
δt 2 

)]
p ( y, t| x 0 , t 0 ) d kd y 

= 

∫ 
R n 
F 

−1 [ δK X ( k, δt | y, t ) ] p ( y, t| x 0 , t 0 ) d y + O 

(
δt 2 

)
= 

∫ 
R n 

[ 

−
n ∑ 

j=1 

∂ 

∂ 
(
x j − y j 

)δ( x − y ) f j ( y, t ) δt 

−
n ∑ 

j=1 

∂ α j 

∂| x j − y j | α j 
δ( x − y ) 

∣∣g j ∣∣α j 
D L j δt 

] 

p ( y, t| x 0 , t 0 ) d y 
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= −δt 

n ∑ 

j=1 

∂ 

∂x j 

[
f j ( x , t ) p ( x , t| x 0 , t 0 ) 

]

+ δt 

n ∑ 

j=1 

D L j 

∂ α j 

∂| x j | α j 

[∣∣g j | α j p ( x , t| x 0 , t 0 ) 
]
. (10) 

Dividing both sides of the Eq. (10) by δt and taking the limit, 

e have 

∂ 

∂t 
p ( x , t| x 0 , t 0 ) 

= lim 

δt→ 0 

p ( x , t + δt| x 0 , t 0 ) − p ( x , t| x 0 , t 0 ) 
δt 

= −
n ∑ 

j=1 

∂ 

∂x j 

[
f j (x , t) p(x , t| x 0 , t 0 ) 

]

+ 

n ∑ 

j=1 

D L j 

∂ α j 

∂| x j | α j 

[| g j | α j p(x , t| x 0 , t 0 ) 
]
, (11) 

ith the initial condition 

p ( x , t| x 0 , t 0 ) = δ(x − x 0 ) = 

n ∏ 

j=1 

δ
(
x j − x 0 , j 

)
. (12) 

nd the above fractional FPK equation ( 11 ) deduces to classical 

econd-order FPK equation corresponding to SDE excited by Gaus- 

ian white noise when α = 2 . 

Besides, the fractional operator ∂ α/∂| x | α in the above derivation 

s the Riesz fractional derivative 

d 

α f ( x ) 

d | x | α = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−D 

α
+ f ( x ) + D 

α
− f ( x ) 

2 cos ( πα/ 2 ) 
, α � = 1 

− 1 

π

d 

d x 

∫ + ∞ 

−∞ 

f ( ξ ) 
x −ξ

d ξ , α = 1 

, (13) 

here 

 

α
+ f ( x ) = 

1 

�( n − α) 

d 

n 

d x n 
∫ x 
−∞ 

f ( ξ ) 

( x − ξ ) 
α−n +1 

d ξ , 

 

α
− f ( x ) = 

( −1 ) 
n 

�( n − α) 

d 

n 

d x n 
∫ ∞ 

x 

f ( ξ ) 

( ξ − x ) 
α−n +1 

d ξ , 

(14) 

re the left and right Riemann-Liouville derivatives with n = 1 for 

 < α < 1 , and n = 2 for 1 < α ≤ 2 . 

This part mainly presents the derivation of the path integral so- 

ution for the n-dimensional SDE under Lévy noise excitation, and 

ts correctness is verified by proving that the corresponding frac- 

ional FPK equation is satisfied. 

The transition probability density function p(x , t + δt| ̄x , t) , used

n the path integral solution, can be obtained through the SDE (1) . 

aking the trajectories starting from the point x̄ from the whole 

rajectories of the response processes X(t) . The trajectories (la- 

elled as X̄ (ρ) ) between [ t , t + δt ] satisfy the following SDE 
 

˙ X̄ (ρ) = f ( ̄X , ρ) + g( ̄X , ρ) ξ(t + ρ) , 

X̄ ( 0 ) = x̄ , 
( 0 ≤ ρ ≤ δt ) , (15) 

here x̄ = ( ̄x 1 , ̄x 2 , · · · , ̄x n ) is a deterministic initial condition. 

herefore, the transition probability density function of Eq. (1) co- 

ncides with the unconditional probability density function of the 

esponse process X̄ (ρ) of Eq. (15) evaluated in δt . Namely, p(x , t +
t | ̄x , t ) = p X̄ (x , δt) . Assuming δt is small enough, X̄ (δt) can be ap-

roximated as 

¯
 (δt) = x̄ + f ( ̄x , t) δt + g( ̄x , t ) dL(t ) . (16)

onsidering the independence of L α j 
(t) ( j = 1 , 2 · · · n ) , 

¯
 j (δt) ( j = 1 , 2 , · · · , n ) is 

¯
 j (δt) = x̄ j + f j ( ̄x , t) δt + g j ( ̄x , t ) dL α j 

(t ) . (17)
3 
or the case g j ( ̄x , t) = 0 , X̄ j (δt) = x̄ j + f j ( ̄x , t) δt is a deterministic

alue. We have 

p X̄ j (x j , δt) = δ
(
x j − x̄ j − f j ( ̄x , t ) δt 

)
. (18) 

hen g j ( ̄x , t) � = 0 , due to dL α j 
(t) ∼ S α j 

(
σ j δt 1 / α j , 0 , 0 

)
, then

¯
 j (δt) ∼ S α j 

(| g j ( ̄x , t) | σ j δt 1 / α j , 0 , ̄x j + f j ( ̄x , t) δt 
)
. Thus the proba- 

ility density function is 

p X j 

(
x j , δt 

)
= F 

−1 
[ 

Z X j 

(
k j , δt 

)] 
= F 

−1 [ 
exp 

(
i k j 
(
x j + f j ( x , t ) δt 

)
− δt D L j 

∣∣g j ( x , t ) ∣∣α j 
∣∣k j ∣∣α j 

)] 
. (19) 

To obtain the path integral solution of the SDE (1) , we 

eed to specify the matrix g(X, t) . Considering the independence 

f L α j 
(t)( j = 1 , 2 · · · , n ) , we can always assume that the first

(r < n ) values of g(X, t) are zero and the others are nonzero.

amely, g(X, t) = diag (0 , · · · , 0 , g r+1 (X, t) , g r+2 (X, t) · · · , g n (X, t))

ith g i (X, t) � = 0(i = r + 1 , · · · , n ) . Then the transition probability

ensity function can be obtained as 

p ( x , t + δt| x , t ) = p X ( x , δt ) = 

n ∏ 

j=1 

p X j 

(
x j , δt 

)

= 

r ∏ 

j=1 

δ
(
x j −x j − f j ( x , t ) δt 

) n ∏ 

j= r+1 

F −1 
[ 

Z X j 

(
k j , δt 

)] 

= 

n ∏ 

j= r+1 

F −1 
[ 

exp 

(
i k j 
(
x j + f j ( x , t ) δt 

)
−δt D L j 

∣∣g j ( x , t ) ∣∣α j 
∣∣k j ∣∣α j 

)]
r ∏ 

j=1 

δ
(
x j − x j − f j ( x , t ) δt 

)
. (20

Letting n = 1 , r = 0 , the above formula reduces to the short-

ime transition probability density function of the one-dimensional 

DE. And it degenerate into the SDOF case when n = 2 , r = 1 . Espe-

ially, when α = 2 the above transition probability density function 

an be explicitly integrated as 

p ( x , t + δt| x , t ) 

= 

n ∏ 

j= r+1 

1 

2 

√ 

πδtD L 

∣∣g j ( x , t ) ∣∣ exp 

[ 

−
(
−x + x + f j ( x , t ) δt 

)2 

4 δt D L 

∣∣g j ( x , t ) ∣∣2 

] 

r ∏ 

j=1 

δ
(
x j − x j − f j ( x , t ) δt 

)
. (21) 

After getting the transition probability density function, the 

ath integral solution can be easily obtained by the CKS equa- 

ion p(x , t + δt) = 

∫ 
R n p(x , t + δt| x , t) p( x , t)d x , in which p(x , t +

t | ̄x , t ) is shown in formula (20) . Starting from the known initial

robability density function p(x , t 0 ) , we get the probability den- 

ity function p(x , t 1 ) at the next time instant t 1 = t 0 + δt . Then

he probability density function p(x , t 2 ) , p(x , t 3 ) , · · · are obtained

y recursively invoking the CKS equation until a time t that we 

ant. Dividing the time interval [ t 0 , t] into N parts, with the time 

tep δt = (t − t 0 ) /N. Then, starting from the initial probability den-

ity function p(x 0 , t 0 ) , the probability density function p(x , t) can

e calculated by 

p ( x , t ) = 

∫ 
R n 

p 
(
x , t 

∣∣x N−1 , t N−1 

) ∫ 
R n 

p 
(

x N−1 , t N−1 

∣∣x N−2 , t N−2 

)
· · ·

∫ 
R n 

p 
(
x 2 , t 2 | x 1 , t 1 

)∫ 
R n 

p 
(
x 1 , t 1 | x 0 , t 0 

)
p ( x 0 , t 0 ) 

d x 0 d x 1 · · · d x N−2 d x N−1 . (22) 

here t 0 < t 1 < · · · < t N = t, t n = t 0 + nδt (n = 0 , 1 , · · · , N) and

 

n = x (t n ) . 

The path integral solution is just the solution of the FPK equa- 

ion. Although we did not directly derive the path integral solution 
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Fig. 1. Probability density functions for the system (35) when β = 1 , ω 0 = −1 , δ = 2 , D L = 0 . 1 and α = 2 . 0 . ( a ),( b ) are the stationary joint probability density functions. ( c ),( d ) 

are stationary marginal probability density functions comparison with the analytical solutions, and ( e ), (f ) are their corresponding log-log plots. 
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Fig. 2. Probability density functions for the system (35) when β = 1 , ω 0 = −1 , δ = 2 , D L = 0 . 1 and α = 1 . 5 . 
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Fig. 3. Marginal probability density functions for the system (35) when β = 1 , ω 0 = −1 , δ = 2 , D L = 0 . 1 and α = 1 . 5 . ( a ),( b ) are for x 1 and x 2 , and ( c ),( d ) are their corre- 

sponding log-log plots. 
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rom the FPK equation, we can verify its correctness by proving 

hat the path integral solution satisfies the FPK equation 

∂ 

∂t 
p ( x , t| x 0 , t 0 ) = −

n ∑ 

j=1 

∂ 

∂x j 

[
f j (x , t) p(x , t| x 0 , t 0 ) 

]

+ 

n ∑ 

j= r+1 

D L j 

∂ α j 

∂| x j | α j 

[| g j | α j p(x , t| x 0 , t 0 ) 
]
. (23) 

he above equation is obtained through the frac- 

ional FPK Eq. (11) by specifying the matrix g(X, t) = 

iag (0 , · · · , 0 , g r+1 (X, t) , g r+2 (X, t) · · · , g n (X, t)) with g i (X, t) � =
(i = r + 1 , · · · , n ) . 

For the sake of simplicity, the proof is performed in Fourier 

pace to avoid directly dealing with the intractable fractional-order 

erivatives. The characteristic function of the path integral solution 

n Fourier space can be rewritten as 

 X ( k, t + δt ) = F [ p ( x , t + δt ) ] 

= 

∫ 
R n 

F [ p ( x , t + δt| x , t ) ] p ( x , t ) d x 

= 

∫ 
R n 

{ 

r ∏ 

j=1 

exp 
[
i k j 
(
x j + f j ( x , t ) δt 

)]
n ∏ 

j= r+1 

exp 

(
i k j 
(
x j + f j ( x , t ) δt 

)
−δt D L j 

∣∣g j ( x , t ) ∣∣α j 
∣∣k j ∣∣α j 

)} 

p ( x , t ) d x
6 
= 

∫ 
R n 

n ∏ 

j=1 

exp 
[
i k j x j 

] n ∏ 

j=1 

exp 
[
i k j f j ( x , t ) δt 

]
n ∏ 

j= r+1 

exp 

(
−δt D L j 

∣∣g j ( x , t ) ∣∣α j 
∣∣k j ∣∣α j 

)
p ( x , t ) d x 

= 

∫ 
R n 

exp 
[
−i k T x 

]{ 

1 + 

n ∑ 

j=1 

i k j f j ( x , t ) δt 

−
n ∑ 

j= r+1 

D L j 

∣∣g j ( x , t ) ∣∣α j 
∣∣k j ∣∣α j δt + O 

(
δt 2 

)} 

p ( x , t ) d x 

= Z X ( k, t ) − δt 

n ∑ 

j=1 

F 
[

∂ 

∂x j 

(
f j ( x , t ) p ( x , t ) ) 

]

+ δt 

n ∑ 

j= r+1 

D L j 
F 
[

∂ 
α j 

∂| x j | α j 
( | g j ( x , t ) | α j p ( x , t ) 

)]
+ O 

(
δt 2 

)
. (24)

The inverse Fourier transformation of the above equation is 

p ( x , t + δt ) 

= p ( x , t ) − δt 

n ∑ 

j=1 

∂ 

∂x j 
( f j (x , t) p(x , t)) 

+ δt 

n ∑ 

j= r+1 

D L j 

∂ α j 

∂| x j | α j 
(| g j (x , t) | α j p(x , t)) + O (δt 2 ) . (25) 
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Fig. 4. Stationary probability density functions for the system (40) . ( a ),( b ) are for f (x ) = −0 . 5 x , h (x ) = 

√ 

1 + 0 . 1 x , ( c ),( d ) are for f (x ) = 0 . 1 x − x 3 , h (x ) = 

√ 

1 + 0 . 1 x , and other 

parameters are τ = 0 . 2 , D L = D = 0 . 02 , α = 1 . 8 . 
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eshaping Eq. (25) and taking the limit δt → 0 , we get 

∂ 

∂t 
p ( x , t ) = −

n ∑ 

j=1 

∂ 

∂x j 

[
f j (x , t) p(x , t) 

]

+ 

n ∑ 

j= r+1 

D L j 

∂ α j 

∂| x j | α j 

[| g j | α j p(x , t) 
]
. (26) 

onsidering the initial condition X(t) = x 0 , the FPK equation can 

e rewritten as Eq. (23) . 

According to the path integral theory, for any n-dimensional 

DE, we need to perform the following two steps to obtain the 

ath integral solution. First, the corresponding short-time transi- 

ion probability density function p(x , t + δt| ̄x , t) is derived from

he SDE, where the derivation of the short-time transition proba- 

ility density function is obvious according to previous discussion. 

nd then starting from the initial conditions, the short-time tran- 

ition probability density function is used for the step-by-step iter- 

tion of the CKS equation to get the path integral solution at each 

oment. Without any tricks, the one-step iterative formula can be 

umerically implemented as follows: 

p ( x , t + δt ) 

= 

∫ 
R n 

p ( x , t + δt| x , t ) p ( x , t ) d x 

= 

∫ + ∞ 

−∞ 

∫ + ∞ 

−∞ 

· · ·
∫ + ∞ 

−∞ 

p ( x , t + δt| x , t ) p ( x , t ) d x 1 d x 2 · · · d x n 

= 

N 1 ∑ 

i 1 = −N 1 

N 2 ∑ 

i 2 = −N 2 

· · ·
N n ∑ 

i n = −N n 

p 
(
x , t + δt 

∣∣x 1 ,i 1 , x 2 ,i 2 , · · · , x n,i n , t 
)

7 
· · · p 
(
x 1 ,i 1 , x 2 ,i 2 , · · · , x n,i n , t 

)
�x 1 �x 2 · · ·�x n , (27) 

here 2 N k (k = 1 , 2 , 3 , · · · , n ) is the number of grids divided

n the x k direction, and �x k is the grid size. Considering 

he same discretization at time t and t + δt , the one-step 

ransition matrix, whose elements are p(x 1 , j 1 
, x 2 , j 2 

, · · · , x n, j n , t +
t | ̄x 1 ,i 1 , ̄x 2 ,i 2 , · · · , ̄x n,i n , t ) ( −N k ≤ i k , j k ≤ N k , k = 1 , 2 , · · · n ) , has a di- 

ension of ( 2 N 1 × 2 N 2 · · · × 2 N n ) 
2 . It can be seen that the itera- 

ion of path integral solution leads to the curse of dimensional- 

ty as the dimension increases. The path integral method for one- 

imensional examples is clearly valid and well studied, and we 

lso experimented with SDOF systems and got some convincing re- 

ults. In this section, we mainly focused on the two-dimensional 

nd three-dimensional examples, where some tricks are used to 

ddress storage and computation issues. The path integral solu- 

ions in figures are marked with PI. To verify the correctness, the 

onte Carlo solutions are calculated as a comparison, and marked 

ith MC in the figures. 

The SDOF systems with α-stable Lévy white noise can be mod- 

lled by the following SDE 
 

Ẍ + f 
(
X, ˙ X 

)
= ξα( t ) , 

X ( 0 ) = X 0 , ˙ X ( 0 ) = 

˙ X 0 . 
(28) 

n the above, f 
(
X, ˙ X 

)
is a nonlinear function of X and 

˙ X . And, 

α( t ) is α-stable Lévy white noise with the characteristic function 

 ( k ) = exp 

(
−D L | k | α

)
, where D L and α are the noise intensity and 

he stability index of the α-stable Lévy white noise, respectively. 

α( t ) is the formal time derivative of a symmetric Lévy stable pro- 

esses L α( t ) . 
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Fig. 5. Marginal stationary probability density functions for the system (40) when f (x ) = 0 . 1 x − x 3 , h (x ) = 

√ 

1 + 0 . 1 x , τ = 0 . 2 , D L = D = 0 . 02 and α = 1 . 8 . ( a ),( b ) are for x 1 
and x 2 , and ( c ),( d ) are their corresponding log-log plots. 
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Letting X = [ X, ˙ X ] 
T = [ X 1 , X 2 ] 

T 
, then Eq. (28) can be rewritten in 

ector form as Eq. (1) 

˙ X = f ( X ) + gξ( t ) , X ( 0 ) = X 0 , (29) 

here f ( X ) = 

[
f 1 (X 1 , X 2 ) 

f 2 (X 1 , X 2 ) 

]
= 

[
X 2 

− f (X 1 , X 2 ) 

]
, g = 

[
0 0 

0 1 

]
, ξ( t ) = 

0 

ξα( t ) 

]
and X 0 = 

[
X 0 
˙ X 0 

]
. And, with n = 2 , r = 1 , the corresponding

PK equation is 

∂ 

∂t 
p ( x 1 , x 2 , t ) = − ∂ 

∂x 1 
[ x 2 p(x 1 , x 2 , t) ] 

+ 

∂ 

∂x 2 
[ f (x 1 , x 2 , t) p(x 1 , x 2 , t) ] + D L 

∂ α

∂| x 2 | α p(x 1 , x 2 , t) , 
(30) 

ith the deterministic initial condition p(x 1 , x 2 , 0) = δ(x 1 −
 0 ) δ(x 2 − ˙ X 0 ) or any assigned distribution. Starting from the initial 

ondition, the path integral solution p ( x 1 , x 2 , t ) can be obtained 

hrough the formula (22) , among which the short time transition 

robability density function is specified according to Eq. (20) as 

p 
(

x n 1 , x 
n 
2 , t n | x n −1 

1 , x n −1 
2 , t n −1 

)
= 

δ
(
x n 1 − x n −1 

1 
− x n −1 

2 
δt 
)

2 π∫ ∞ 

−∞ 

exp ( −i kx n 2 ) exp 

[
i k 
(
x n −1 

2 − f 
(
x n −1 

1 , x n −1 
2 

)
δt 
)
−δtD L | k | α

]
d k, 

(31) 
8

here t 0 < t 1 < · · · < t N = t, t n = t 0 + nδt (n = 0 , 1 , · · · , N) and x n =
 (t n ) = ( x 1 (t n ) , x 2 (t n ) ) = (x n 

1 
, x n 

2 
) . 

And, the probability density function p 
(
x n 

1 
, x n 

2 
, t n 

)
is 

p 
(
x n 1 , x 

n 
2 , t n 

)
= 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

p 
(

x n 1 , x 
n 
2 , t n | x n −1 

1 , x n −1 
2 , t n −1 

)
p 
(
x n −1 

1 , x n −1 
2 , t n −1 

)
d x n −1 

1 d x n −1 
2 

= 

1 

2 π

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

δ
(
x n 1 − x n −1 

1 − x n −1 
2 δt 

)
exp 

(
−i kx n 2 

)
· · ·

exp 
[
i k 
(
x n −1 

2 − f 
(
x n −1 

1 , x n −1 
2 

)
δt 
)
−δtD L | k | α

]
p 
(
x n −1 

1 , x n −1 
2 , t n −1 

)
d k d x n −1 

1 d x n −1
2 

= 

1 

2 π

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

exp 
(
−i kx n 2 

)
exp 

[
i k 
(
x n −1 

2 − f 
(
x n 1 − x n −1 

2 δt, x n −1 
2 

)
δt 
)

−δtD L | k | α
]

p 
(
x n 1 − x n −1 

2 δt, x n −1 
2 , t n −1 

)
d k d x n −1 

2 . (32)

he above iteration can be implemented by the space partition 

 1 ,i 1 
= a + i 1 �x 1 ( i 1 = 0 , 1 , 2 , · · · L, L = ( b − a ) / �x 1 ) and x 2 ,i 2 = c + 

 2 �x 2 ( i 2 = 0 , 1 , 2 , · · · M, M = ( d − c ) / �x 2 ) based on a finite domain 

= { ( x 1 , x 2 ) | a ≤ x 1 ≤ b, c ≤ x 2 ≤ d } , which is assumed to contain 

ll the probability density functions. Then the discretized iteration 

ormula can be rewritten as 

p 
(
x n 1 ,i 1 

, x n 2 ,i 2 
, t n 
)

= 

M ∑ 

j 2 = 0 
q 
(
x n 1 ,i 1 

, x n 2 ,i 2 
, t n | x n −1 

2 , j 2 
, t n −1 

)
p 
(
x n 1 ,i 1 

−x n −1 
2 , j 2 

�t, x n −1 
2 , j 2 

, t n −1 

)
�x 2 , (33) 
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Fig. 6. Probability density functions for the system (40) when f (x ) = 0 . 1 x − x 3 , h (x ) = 

√ 

1 + 0 . 1 x , τ = 0 . 2 , D L = D = 0 . 02 and α = 1 . 8 . 

9 
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Fig. 7. Marginal probability density functions for the system (40) when f (x ) = 0 . 1 x − x 3 , h (x ) = 

√ 

1 + 0 . 1 x , τ = 0 . 2 , D L = D = 0 . 02 and α = 1 . 8 . ( a ),( b ) are for x 1 and x 2 , and 

( c ),( d ) are their corresponding log-log plots. 
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(
x n 1 ,i 1 

, x n 2 ,i 2 
, t n 
∣∣x n −1 

2 , j 2 
, t n −1 

)
= 

∫ ∞ 

0 

1 

π
exp 

[
−�tD L | k | α

]
cos 

[
k 
(
−x n 2 ,i 2 

+ x n −1 
2 , j 2 

− f 
(
x n 1 ,i 1 

− x n −1 
2 ,i 2 

�t, x n −1 
2 , j 2 

)
�t 

)]
d k, (34) 

nd the value of non-grid points in the above equation can be ob- 

ained by interpolation. 

Considering the Duffing oscillator with additive Lévy noise, 
 

Ẍ + β ˙ X − ω 0 X + δX 

3 = ξα( t ) , 

X ( 0 ) = 0 , ˙ X ( 0 ) = 0 , 
(35) 

hose corresponding FPK equation is (letting X = [ X, ˙ X ] 
T = 

 X 1 , X 2 ] 
T 
) 

∂ 

∂t 
p ( x 1 , x 2 , t ) = − ∂ 

∂x 1 
[ x 2 p(x 1 , x 2 , t) ] + D L 

∂ α

∂| x 2 | α p(x 1 , x 2 , t) 

+ 

∂ 

∂x 2 

[
(βx 2 − ω 0 x 1 + δx 3 1 ) p(x 1 , x 2 , t) 

]
. (36) 

hen α = 2 , it has stationary solution 

p ( x 1 , x 2 ) = exp 

[
− β

2 D L 

(
x 2 2 − ω 0 x 

2 
1 + 

δ

2 

x 4 1 

)]
. (37) 
10 
For the numerical implementation, we can refer to our study of 

rticle about the path integral method of SDOF system for simpli- 

ed and parallel computation of the short-time transition proba- 

ility density function [22] . In the following numerical results, the 

patial variables are discretized as [ −5 : 0 . 02 : 5 ] × [ −5 : 0 . 01 : 5 ] 

nd time step is 0.01. 

In Fig. 1 , we present the path integral solution, the Monte Carlo 

olution and the analytical solution of system (35) at α = 2 . 0 . In

his figure, Fig. 1 a and 1 b are the joint probability density func- 

ions of the system, which are displayed by surface plots and con- 

our plots. The results show that the two numerical results fit well. 

igure 1 c and 1 d present the marginal probability density func- 

ions of x 1 and x 2 relative to the analytical solution, and the re- 

ults are well fitted. A good fit of the marginal and joint proba- 

ility density functions indicates the correctness of the path inte- 

ral results. In addition, Fig. 1 e and 1 f present log-log plots of the

arginal probability density functions, Monte Carlo results with 

 × 10 8 sample paths calculate probability density function values 

s low as 1 × 10 −7 , and path integral solution can be calculated 

ven as low as 1 × 10 −15 , which indicates the high precision of the 

ath integral solution. 

Figure 2 presents the transient solution of the system (35) at 

ome moments from the initial to the stationary when α = 1 . 5 .

ue to the lack of an analytical solution, we adopted the Monte 
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Fig. 8. Stationary probability density functions for the system (40) when f (x ) = 0 . 01 x − 3 x 3 , h (x ) = 

√ 

1 + 0 . 1 x , τ = 0 . 2 , D L = 0 . 1 , D = 0 . 02 and α = 0 . 9 . 
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arlo solution for comparison with the path integral solution. The 

omputational cost of the path integral solutions and the Monte 

arlo solutions with 1 × 10 8 sample paths are 4 . 75831 × 10 4 s and 

 . 12310 × 10 5 s , respectively. The contour plot of the joint proba- 

ility density function of the system at time t = 0 , 2 , 5 , 30 is pre-

ented. The Monte Carlo solution is consistent with the path inte- 

ral solution, indicating the effectiveness of path integral method 

n solving the transient solution, and the same contour lines indi- 

ate that the accuracy is at least 1 × 10 −3 . The marginal probabil- 

ty density function of the transient solution is presented in Fig. 3 . 

he path integral solutions and the Monte Carlo solutions fit well 

t each moment, and their log-log plots show that the precision is 

igher than 10 −3 by enlarging the tail region. 

The scalar SDE with colored Gaussian parametric noise and 

évy external noise reads 
 

˙ X (t) = f (X, t) + h (X, t ) ξc (t ) + ξα(t) , 

X (0) = x 0 , 
(38) 

here ξc (t) and ξα(t) are colored Gaussian and α-stable Lévy 

hite noises, and both noise sources are considered to be inde- 

endent from another. Moreover, f (X, t) and h (X, t) are functions 

f X and t , and x 0 is the initial value of X(t) at time t = t 0 . In

he above, colored Gaussian noise is exponentially correlated with 

he mean value E[ ξc (t)] = 0 and the correlation function R (τ ) =
[ ξc (t) ξc (t ′ )] = 

D 
τ exp (−| t −t ′ | 

τ ) . This colored Gaussian noise can be 

xpressed by a Langevin equation 

˙ 
c (t) = − 1 

τ
ξc (t ) + 

√ 

2 D 

τ
ξ (t ) , (39) 

here ξ (t) is standard Gaussian white noise. 

Letting X = [ X, ξc ] 
T = [ X 1 , X 2 ] 

T , Eq. (38) can be rewritten as 
 

 

 

˙ X 1 = f ( X 1 , X 2 , t ) + h ( X 1 , X 2 , t ) X 2 + ξα(t) , 

˙ X 2 = − 1 

τ
X 2 + 

√ 

2 D 

τ
ξ ( t ) , 

(40) 

ith the initial condition 

X 1 ( 0 ) = X ( 0 ) = x 0 , 

X 2 ( 0 ) = ξc ( 0 ) = ξc0 , 
(41) 

here ξc0 is a random variable with given probability density func- 

ion. And this equation can be written in vector form as 
 

˙ X (t) = f (X , t) + g(X , t ) ξ(t ) , 

X (t) = x 0 , 
(42) 
11 
here f ( X ) = 

[
f ( X 1 , X 2 , t ) + h ( X 1 , X 2 , t ) X 2 

− 1 
τ X 2 

]
, g = 

[
1 0 

0 
√ 

2 D 
τ

]
, ξ( t ) = 

ξα( t ) 
ξ ( t ) 

]
and x 0 = 

[
x 0 
ξc0 

]
. With n = 2 and r = 2 , the corresponding

PK equation is 

∂ 

∂t 
p ( x 1 , x 2 , t ) 

= − ∂ 

∂x 1 
[ ( f (x 1 , x 2 , t) + h (x 1 , x 2 , t) x 2 ) p(x 1 , x 2 , t) ] 

− ∂ 

∂x 2 

[ 
− 1 

τ
x 2 p(x 1 , x 2 , t) 

] 
+ D L 

∂ α

∂| x 1 | α [ p(x 1 , x 2 , t) ] 

+ 

1 

2 

∂ 2 

∂| x 2 | 2 
[ 

2 D 

τ 2 
p(x 1 , x 2 , t) 

] 
, (43) 

ith the initial condition p(x 1 , x 2 , 0) = p X 1 (x 1 ) p ξc0 
(x 2 ) . Starting

rom the initial condition, the path integral solution p ( x 1 , x 2 , t ) can 

e obtained through the formula (22) . Among which the short time 

ransition probability density function is specified according to 

q. (20) as 

p 
(

x n 1 , x 
n 
2 , t n | x n −1 

1 , x n −1 
2 , t n −1 

)
= F 

−1 
{

exp 

[
i k 1 
(
x n −1 

1 + 

(
f 
(
x n −1 

1 , x n −1 
2 

)
+ h 

(
x n −1 

1 , x n −1 
2 

)
x n −1 

2 

)
δt 
)

− δtD L | k 1 | α
]}

F 

−1 
{ 

exp 

[ 
i k 2 

(
x n −1 

2 − 1 

τ
x n −1 

2 δt 

)
− 1 

2 
δt 

2 D 

τ 2 
| k 2 | 2 

] } 
= 

1 

2 π

∫ ∞ 

−∞ 

exp ( −i k 1 x 
n 
1 ) 

exp 
[
i k 1 
(
x n −1 

1 + 

(
f 
(
x n −1 

1 , x n −1 
2 

)
+ h 

(
x n −1 

1 , x n −1 
2 

)
x n −1 

2 

)
δt 
)

− δtD L | k 1 | α
]
d k 1 

1 

2 π

∫ ∞ 

−∞ 

exp ( −i k 2 x 
n 
2 ) exp 

[ 
i k 2 

(
x n −1 

2 − 1 

τ
x n −1 

2 δt 

)
− δt 

D 

τ 2 
| k 2 | 2 

] 
d k

= 

1 

2 π

∫ ∞ 

−∞ 

exp ( −i k 1 x 
n 
1 ) exp 

[
i k 1 
(
x n −1 

1 + 

(
f 
(
x n −1 

1 , x n −1 
2 

)
+ h 

(
x n −1 

1 , x n −1 
2 

)
x n −1 

2 

)
δt 
)

− δtD L | k 1 | α
]
d k 1 

τ√ 

4 πδtD 

exp 

[ 

−
τ 2 
(
−x n 2 + x n −1 

2 
− 1 

τ x n −1 
2 

δt 
)2 

4 δtD 

] 

, (44

here t 0 < t 1 < · · · < t N = t, t n = t 0 + nδt (n = 0 , 1 , · · · , N) and x n =
 (t n ) = (x 1 (t n ) , x 2 (t n )) = (x n , x n ) . With this transition probability
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Fig. 9. Marginal probability density functions for the system (40) when f (x ) = 0 . 01 x − 3 x 3 , h (x ) = 

√ 

1 + 0 . 1 x , τ = 0 . 2 , D L = 0 . 1 , D = 0 . 02 and α = 0 . 9 . ( a ),( b ) are for x 1 and 

x 2 , and ( c ),( d ) are their corresponding log-log plots. 
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ensity function, the probability density function p 
(
x n 

1 
, x n 

2 
, t n 

)
can 

e calculated as 

p ( x n 1 , x 
n 
2 , t n ) = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

p 
(

x n 1 , x 
n 
2 , t n | x n −1 

1 , x n −1 
2 , t n −1 

)
p 
(
x n −1 

1 , x n −1 
2 , t n −1 

)
d x n −1 

1 d x n −1 
2 

= 

L ∑ 

j 1 =0 

M ∑ 

j 2 =0 

p 
(

x n 1 , x 
n 
2 , t n | x n −1 

1 , j 1 
, x n −1 

2 , j 2 
, t n −1 

)
p 
(
x n −1 

1 , j 1 
, x n −1 

2 , j 2 
, t n −1 

)
�x 1 �x 2 . (45) 

Since the component x 2 is Gaussian distributed, a part of the 

ransition probability density function can be integrated into an 

xponential analytical form, which reduces the one-fold integra- 

ion of the transition probability density function calculation. After 

hat, we only need to solve the problem of storage capacity of the 

ransition matrix in numerical implementation. When implement- 

ng numerically, we perform each step of the path integral iteration 

y reshaping the matrix into a low-dimensional matrix, and divide 

he region like the SDOF system when the matrix is very large to 

peed up the calculation of the transition matrix. 

We calculate the stationary solution of the system under two 

ifferent sets of parameters and verify them with the Monte 

arlo solution, which are presented in Fig. 4 . In numerical imple- 
12 
entation, the space partition is selected as [ −1 . 5 : 0 . 01 : 1 . 5 ] ×
 

−2 : 0 . 02 : 2 ] and the time-step is 0.01 for the path integral and 

onte Carlo solution. The running time of the path integral solu- 

ions and the Monte Carlo solutions with 1 × 10 8 sample paths are 

 . 11112 × 10 4 s and 1 . 89466 × 10 5 s , respectively. The same shape

nd color of the three dimensional surface plots show the correct- 

ess of the path integral solutions. Comparing the results of these 

wo sets of parameters, the path integral method can not only cap- 

ure the results of unimodal, but is also effective in the compli- 

ated bimodal case. 

In Fig. 5 , we also present the stationary marginal probabil- 

ty density functions and their log-log plots. The results show 

hat the path integral solutions of the marginal probability den- 

ity functions of x 1 and x 2 fit well with the Monte Carlo solutions 

ith 1 × 10 8 sample paths. The log-log plots are also fitted, which 

hows that our path integral method can accurately calculate the 

DF value down to around 10 −5 by enlarging the tail region of the 

robability density function. 

Then, in order to show the effectiveness of the path integral 

ethod for the transient solutions, we present the contour plots of 

he transient probability density functions of the bimodal example 

t t = 0 , 2 , 5 , 30 in Fig. 6 , and annotate the contours on the plots.

he results show that the contour plot of the path integral solution 

nd the Monte Carlo solution at each moment are consistent, indi- 
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Fig. 10. Marginal joint probability density functions for the system (47) at t = 1 when f (x, ̇ x ) = x − ˙ x , h (x, ̇ x ) = 0 . 1 , τ = 0 . 2 , D L = 0 . 02 , D = 0 . 02 and α = 1 . 8 . ( a ),( b ) are for 

p(x 1 , x 2 ) , ( c ),( d ) are for p(x 1 , x 3 ) , and ( e ),( f ) are for p(x 2 , x 3 ) . 
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ating that the path integral method can accurately determine the 

ransient solutions at each moment. In Fig. 7 , the marginal proba- 

ility density functions are presented. The probability density func- 

ion of x 1 is fitted at 10 −3 and the probability density function of 

 2 is fitted at 10 −6 , respectively. 

For generality, the path integral solutions with α = 0 . 9 is pre- 

ented in Figs. 8 and 9 . In numerical implementation, the space 

artition is selected as [ −1 . 5 : 0 . 01 : 1 . 5 ] × [ −1 . 6 : 0 . 02 : 1 . 6 ] and 

he time-step is 0.05 for the path integral and Monte Carlo so- 

ution. Running time of the path integral solutions and Monte 

arlo solutions with 1 × 10 8 sample paths are 4 . 33232 × 10 4 s 

nd 4 . 03310 × 10 4 s , respectively. The same surface plots and con- 

our lines of the stationary joint probability density function 
x

13
n Fig. 8 and the good fits of the marginal probability den- 

ity function in Fig. 9 show the correctness of the path integral 

olutions. 

The second order stochastic differential equation with colored 

aussian parametric noise and Lévy external noise reads 

 

 

 

 

 

Ẍ (t) = f (X, ˙ X , t) + h (X, ˙ X , t ) ξc (t ) + ξα(t) , 

X (0) = x 0 , 

˙ X (0) = 

˙ x 0 , 

(46) 

here the definition of ξc (t) and ξα(t) can refer to previous para- 

raph. f (X, ˙ X , t) and h (X, ˙ X , t) are functions of X , ˙ X and t , x 0 and 

˙  are the initial value of X(t) and ˙ X (t) at time t = t . 
0 0 
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Fig. 11. Marginal probability density functions for the system (47) at t = 1 when f (x, ̇ x ) = x − ˙ x , h (x, ̇ x ) = 0 . 1 , τ = 0 . 2 , D L = 0 . 02 , D = 0 . 02 and α = 1 . 8 . ( a ) presents the 

results for x 1 , x 2 , x 3 , and ( b ) is the corresponding log-log plot. 
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Letting X = [ X, ˙ X , ξc ] 
T = [ X 1 , X 2 , X 3 ] 

T 
, Eq. (46) can be rewritten 

n vector form as 
 

˙ X (t) = f (X , t) + g(X , t ) ξ(t ) , 

X (t) = x 0 , 
(47) 

n the above equation, f ( X ) = 

[ 

X 2 
f ( X 1 , X 2 , t ) + h ( X 1 , X 2 , t ) X 3 

− 1 
τ X 3 

] 

, 

 ( X ) = 

⎡ 

⎣ 

0 0 0 

0 1 0 

0 0 
√ 

2 D 
τ

⎤ 

⎦ , ξ( t ) = 

[ 

0 

ξα( t ) 
ξ ( t ) 

] 

and x 0 = 

[ 

x 0 
˙ x 0 

ξc0 

] 

. With 

 = 3 and r = 2 , the corresponding FPK equation is 

∂ 

∂t 
p ( x 1 , x 2 , x 3 , t ) 

= − ∂ 

∂x 2 
[ ( f (x 1 , x 2 , t) + h (x 1 , x 2 , t) x 3 ) p(x 1 , x 2 , x 3 , t) ] 

− ∂ 

∂x 1 
[ x 2 p(x 1 , x 2 , x 3 , t) ] − ∂ 

∂x 3 

[ 
− 1 

τ
x 3 p(x 1 , x 2 , x 3 , t) 

] 
+ D L 

∂ α

∂| x 2 | α [ p(x 1 , x 2 , x 3 , t) ] 

+ 

1 

2 

∂ 2 

∂| x 3 | 2 
[ 

2 D 

τ 2 
p(x 1 , x 2 , x 3 , t) 

] 
, (48) 

here the initial condition p(x 1 , x 2 , x 3 , 0) = δ(x 1 − x 0 ) δ(x 2 −
˙  0 ) p ξc0 

(x 3 ) . Starting from the initial condition, the path integral 

olution p ( x 1 , x 2 , x 3 , t ) can be obtained through the formula 

22) . Among which the short time transition probability density 

unction is specified according to Eq. (20) as 

p 
(
x n 1 , x 

n 
2 , x 

n 
3 , t n | x n −1 

1 , x n −1 
2 , x n −1 

3 , t n −1 

)
= δ

(
x n 1 − x n −1 

1 − x n −1 
2 δt 

)
×F 

−1 
{

exp 

[
i k 2 
(
x n −1 

2 + 

(
f 
(
x n −1 

1 , x n −1 
2 

)
+ h 

(
x n −1 

1 , x n −1 
2 

)
x n −1 

3 

)
δt 
)

− δtD L | k 2 | α
]}

×F 

−1 
{ 

exp 

[ 
i k 3 

(
x n −1 

3 − 1 

τ
x n −1 

3 δt 

)
− 1 

2 

δt 
2 D 

τ 2 
| k 3 | 2 

] } 
= δ

(
x n 1 − x n −1 

1 − x n −1 
2 δt 

)
× 1 

2 π

∫ ∞ 

−∞ 

exp ( −i k 2 x 
n 
2 ) exp 

[
i k 2 
(
x n −1 

2 + 

(
f 
(
x n −1 

1 , x n −1 
2 

)
+ h 

(
x n −1 

1 , x n −1 
2 

)
x n −1 

3 

)
δt 
)

− δtD L | k 2 | α
]
d k 2 
14 
× τ√ 

4 πδtD 

exp 

⎡ 

⎢ ⎣ 

−
τ 2 

(
−x n 3 + x n −1 

3 
− 1 

τ
x n −1 

3 
δt 

)2 

4 δtD 

⎤ 

⎥ ⎦ 

, (49) 

here t 0 < t 1 < · · · < t N = t, t n = t 0 + nδt (n = 0 , 1 , · · · , N) and x n =
 (t n ) = (x 1 (t n ) , x 2 (t n ) , x 3 (t n )) = (x n 

1 
, x n 

2 
, x n 

3 
) . And, the probability

ensity function p 
(
x n 

1 
, x n 

2 
, x n 

3 
, t n 

)
can be 

p ( x n 1 , x 
n 
2 , x 

n 
3 , t n ) 

= 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

p 
(

x n 1 , x 
n 
2 , x 

n 
3 , t n | x n −1 

1 , x n −1 
2 , x n −1 

3 , t n −1 

)
p 
(
x n −1 

1 , x n −1 
2 , x n −1 

3 , t n −1 

)
d x n −1 

1 d x n −1 
2 d x n −1 

3 

= 

1 

2 π

τ√ 

4 πδtD 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

exp ( −i k 2 x 
n 
2 ) 

× exp 

[
i k 2 
(
x n −1 

2 + 

(
f 
(
x n 1 − x n −1 

2 δt, x n −1 
2 

)
+ h 

(
x n 1 − x n −1 

2 δt, x n −1 
2 

)
x n −1 

3 

)
δt 
)

− δtD L | k 2 | α
]

× exp 

⎡ 

⎢ ⎣ 

−
τ 2 

(
−x n 3 + x n −1 

3 
− 1 

τ
x n −1 

3 
δt 

)2 

4 δtD 

⎤ 

⎥ ⎦ 

×p 
(
x n 1 − x n −1 

2 δt, x n −1 
2 , x n −1 

3 , t n −1 

)
d k 2 d x n −1 

2 d x n −1 
3 . (50) 

hen the path integral solution is calculated by space partition 

 

−1 : 0 . 02 : 1 ] × [ −1 : 0 . 02 : 1 ] × [ −1 : 0 . 02 : 1 ] and the time-step 

s 0.01 for the path integral and Monte Carlo solution. The tran- 

ition probability density function of the path integral method is 

alculated parallelly by dividing the region into 8 different parts, 

nd the calculation time of each part is about 4428 . 42 s . The

omputational cost of Monte Carlo solutions with 2 × 10 5 sample 

aths is 3 . 5998 × 10 3 s . The marginal probability density function 

f p(x 1 , x 2 ) , p(x 1 , x 3 ) , p(x 2 , x 3 ) in Fig. 10 and p(x 1 ) , p(x 2 ) , p(x 3 )

n Fig. 11 show the good agreement of path integral solutions and 

onte Carlo solutions. 

In this paper, we mainly derive and verify the path integral so- 

ution for n-dimensional SDE under the excitation of α-stable Lévy 

oise. Specifically, we deduce the short-time transition probabil- 

ty density function required by the path integral method of n- 

imensional SDE and prove its correctness. After that, two spe- 

ial examples were selected for numerical implementation, which 

how the correctness and effectiveness of the derivation. The path 

ntegral formulas we derived are obviously valid and usable for 



W. Zan, Y. Xu and J. Kurths Theoretical and Applied Mechanics Letters 13 (2023) 100430 

h

p

h

t

o

o

h

p

D

c

i

A

J

o

R

 

[

[

[

[

igher-dimensional examples when solving the problems of com- 

utation and storage, although only three-dimensional examples 

ave been numerically implemented. In order to be able to solve 

his problem, we can try to convert the problem into an equivalent 

peration that does not require multiple integrations and storage 

f large matrices, or solve it with the help of neural networks that 

ave become very popular in recent years for high-dimensional 

roblems. 
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