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Abstract
The Amazon rainforest is considered one of the Earth’s tipping elements and may lose stability
under ongoing climate change. Recently a decrease in tropical rainforest resilience has been
identified globally from remotely sensed vegetation data. However, the underlying theory assumes
a Gaussian distribution of forest disturbances, which is different from most observed forest
stressors such as fires, deforestation, or windthrow. Those stressors often occur in power-law-like
distributions and can be approximated by α-stable Lévy noise. Here, we show that classical critical
slowing down (CSD) indicators to measure changes in forest resilience are robust under such
power-law disturbances. To assess the robustness of CSD indicators, we simulate pulse-like
perturbations in an adapted and conceptual model of a tropical rainforest. We find few missed
early warnings and few false alarms are achievable simultaneously if the following steps are carried
out carefully: first, the model must be known to resolve the timescales of the perturbation. Second,
perturbations need to be filtered according to their absolute temporal autocorrelation. Third, CSD
has to be assessed using the non-parametric Kendall-τ slope. These prerequisites allow for an
increase in the sensitivity of early warning signals. Hence, our findings imply improved reliability
of the interpretation of empirically estimated rainforest resilience through CSD indicators.

1. Introduction

The Amazon rainforest is considered a crucial com-
ponent of the Earth’s climate system [1] and has been
suggested as an Earth system tipping element [2–4].
There is growing concern that various anthropo-
genic stressors, such as climate change and asso-
ciated changes in rainfall patterns, fires, land-
use change and deforestation, cause a decrease in
resilience and could ultimately lead to large-scale

shifts in the Amazon ecosystem, with severe con-
sequences for the biosphere and human societies
[5–8]. Based on conceptual models and observa-
tional data, it is believed that the rainforests exhib-
its the potential for multi-stability at specific levels
of moisture supply [9–13]. This means that cer-
tain regions of the rainforests may transition from
a rainforest to a savanna-like vegetation state if
local precipitation rates are decreased below critical
thresholds.
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Tropical rainforests, such as the Amazon basin,
are subject to multiple stressors [14, 15]. These can
originate due to weather (e.g. droughts, heat waves,
windthrows), hydrology (e.g. landslides and water
table dynamics), biotic factors (e.g. insect outbreaks)
or anthropogenic activity (e.g. deforestation, wild-
fires). Such stressors cause disturbance events, which
in turn change the forests in a pulse-like manner.
The consequences of disturbances are often visible
in the canopy gap structure, i.e. single disturbance
events destroy entire parts of the forest, while neigh-
boring parts are almost completely undisturbed. This
gap structure has been observed to follow power-law-
like distributions [16–24]. In other words, there is a
scale-free nature to the gaps, and very large gaps are
likely. These power-law-like distributions have also
been observed directly for droughts [25], carbon cycle
extremes [26, 27] and wildfires [28, 29] in differ-
ent ecoregions worldwide. Hence, if we understand
disturbances as random perturbations to the forest,
i.e. as noise, this noisemight have non-Gaussian char-
acteristics. For instance, the noise could be heavy-
tailed (e.g. power-law tails). Thus, extreme events
becomemore likely than under Gaussian white noise.
Furthermore, Gaussian noise would lead to continu-
ous forest state evolutions, whereas noise due to dis-
turbance events would result in discrete jumps in
the time series. Of course, describing all disturbances
by one abstract probability distribution is a highly
reductive approach given the complexity of the sys-
tem, yet if it were to be done, a non-Gaussian distri-
bution should not be ruled out.

The resilience of tropical rainforests is usually
measured as the response to disturbances directly
from observed time series data. The recovery rate
to disturbances is related to the temporal autocor-
relation of a time series. If a forest is resilient and
quickly recovers, the autocorrelation is lower com-
pared to a higher autocorrelation of amore vulnerable
forest that slowly recovers. Increased autocorrela-
tion in tropical rainforests worldwide has been found
using different remotely-sensed vegetation proxies
such as above-ground biomass (accounting for water
stress, deforestation and vapor-pressure deficit, [14]),
vegetation optical-depth ([7] only Amazon basin, and
[30] globally), normalized difference vegetation index
(NDVI) [31] and kernel NDVI [32].

Interpreting the autocorrelation as an indicator of
resilience requires certain mathematical assumptions
[33, 34], under which the autocorrelation can also
serve as an early warning signal in the approach to a
critical transition [35]. The underlying phenomenon,
called critical slowing down (CSD), traces a decreas-
ing ability of a system to recover from perturbations
when it loses stability. Typically, Gaussian noise is
assumed. This is because an analytical relationship
between the classical CSD indicators, named vari-
ance and temporal autocorrelation of lag one, and

the recovery rate λ of the dynamics linearized around
a given equilibrium can be established [36, 37] (see
below). However, because it is not clear that the dis-
turbances occurring in tropical rainforests can be
described with Gaussian noise, it is doubtful whether
forest resilience can effectively be measured via auto-
correlation metrics.

In this paper, we study forest resilience indicat-
ors for the non-Gaussian noise case. There are various
possible noise distributions to this purpose. Here, we
focus on α-stable Lévy noise, for three reasons: (1) it
is a heavy-tailed generalization of the Gaussian distri-
bution, with tails that follow a power-law (i.e. extreme
events become more likely). (2) The noise time series
contains jumps, which is in line with discrete disturb-
ances events that happen as abrupt burst-like pulses
(e.g. wild fires or wind throws). (3) The α-stable dis-
tributions are the limit distributions for sums of ran-
dom variables with infinite variance [38–40], i.e. they
encompass different heavy-tailed phenomena. These
characteristics serve well in representing the ones we
postulate for disturbances in tropical rainforests in
different temporal scales [41].Hence, it is necessary to
understand whether the CSD-based resilience indic-
ators still perform well for Lévy noise. Additionally,
we look at pink noise, which contains power-law tails,
but no jumps. Previous work has already looked at
red noise and time-correlated noise [36, 37, 42]. Of
course, our approach of employing 1D non-Gaussian
noise distributions is reductive, as it can not repres-
ent all possible temporal and spatial patterns [43, 44].
Yet, since the presence of non-Gaussian noise is plaus-
ible for tropical rainforests, the correct functioning of
resilience indicators and early warning signals before
critical transitions should be assessed thoroughly.

For this assessment, we use a simple conceptual
tipping element model of a tropical rainforest system
[45]. This model can represent a real tropical rain-
forest at the highest level of abstraction, capturing
only the stabilising and destabilising feedbacks of the
spatially extended system. It gives a reasonable first-
order approximation to the tipping structure [45, 46],
i.e. the bi-stability of tropical ecosystems which could
either be a rainforest or a savannah state [9]. For our
analysis of forest resilience, it therefore constitutes a
good starting point. The argument is a similar one
as before: if the indicators do not work in such a
simple setting, it is unlikely they would work if real
rainforests were to be observed or modelled in more
detail.

2. Methods

Conceptual model of a tropical vegetation eco-
system for simulating regime shifts. In this work,
we investigate tropical rainforest resilience under
power-law noise. Forest resilience is frequently
measured with indicators exploiting CSD, such as
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Figure 1. Overview of the study design. (a) Tropical rainforest model bifurcation diagram: depending on the precipitation level,
three different equilibrium states may exist, namely rainforest, savannah and desert. © Icons made by Freepik from
www.flaticon.com. (b) Many natural stressors can be modeled through α-stable Lévy noise, i.e. in contrast to Gaussian noise
(α = 2), the tails have power-law decay and hence large events can happen. © Icons made by Freepik from www.flaticon.com. (c)
We simulate a climate change scenario, during which we force the precipitation level to decrease below the critical threshold of the
rainforest-savannah transition. We compute the rolling autocorrelation AC(1) before the critical transition and observe increases
near single large disturbance events and in approach to the critical transition. (d) The CSD indicator time series (in this case:
AC(1)) gets converted into a binary early warning indicator. For this, first a slope is calculated in a window approaching the
critical transition. Then, the statistical significance of this slope is assessed by comparing to a null distribution of random phase
shift surrogates with a one-sided test. If the slope is significant, there is early warning (i.e. decreasing rainforest resilience).

the autocorrelation. The phenomenon describes
a decreased stability of a system up to the point
where the system undergoes a critical transition and
switches into another state. Hence, the estimation of
forest resilience is typically an identical process as the
study of early warning to critical transition, such as
early warning of tipping elements in the Earth system.

In order to test the reliability of early warn-
ing signals (forest resilience indicators), we sim-
ulate rainforest-savannah transitions of a tropical
rainforest using the conceptual model by van Nes
et al [45]. Thus, our theoretical approach provides
evidence necessary to understand actual measure-
ments that may be influenced by non-Gaussian noise.

In this model, the tree cover T [%] of the
rainforest is a tri-stable system with forest, savan-
nah and treeless states depending on the pre-
cipitation P (mmd−1) as an external forcing.
Ignoring the treeless state, the model dynam-
ics locally exhibit the following characterist-
ics: for 2mmd−1 < P < 2.94mmd−1 only a
stable savannah state exists, for 2.95mmd−1 <
P < 4.41mmd−1 both a stable savannah and a
stable forest state exist and for 4.42mmd−1 <
P < 5mmd−1 only a stable forest state exists
(figure 1(a)). These regimes result from a govern-
ing equation [45], which without displaying units
reads

3
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Figure 2. (a) The potential landscape of the tropical vegetation model used in this study, for varying precipitation levels (colors).
The dotted line represents the original potential used in [45]. The solid line includes the modifications to represent short
timescales introduced in this work. The black lines indicate the potential at P = 2.943mmd−1, which is the tipping point for the
rainforest model, higher precipitation values (in red colors) allow for a stable rainforest state, while for lower precipitation values
(in blue colors) only a stable savannah state exists. (b) The return time it takes for the forest to recover from a disturbance. In the
original van Nes et al [45] model (dash-dotted), return times even for very small disturbances are in the hundreds of years. Our
work adds short timescales (solid), i.e. recovery from small disturbances e.g. due to synoptic-scale weather variations is quick.

dT

dt
=

0.3P

0.5+ P
T

(
1− T

90

)
− 1.5T

T+ 10
− 0.11 ·T(

T
64

)7
+ 1

.

(1)

Here, the first term describes a logistic growth of tree
cover with a precipitation-dependent expansion coef-
ficient. The second term accounts for the Allee effect:
if the tree cover is low, new trees have a harder time
growing because they have less protective covering
from older trees. The third term introduces a wild-
fire effect: dense forests are subject to higher fire mor-
tality. While this model represents a strongly stylised
way to model the dynamics of tropical vegetation, its
simplicity is central to our study as it allows for many
simulations of critical transitions.
Model modification to include forest response

on short timescales.Originally, the van Nes et al [45]
tipping model was developed to model critical trans-
itions on long timescales. To investigate early warn-
ing for such critical transitions, a system response on
short timescales is necessary because all CSD indic-
ators are based on an increasing disturbance recov-
ery time as a tipping point is approached. In the ori-
ginal van Nes et al [45] rainforest model, recovery
from even very small disturbances would take hun-
dreds of years (figure 2(b), dashed lines). This can
be loosely understood as the removal of a few trees
and subsequent regrowth. However, small changes in
the rainforest state T could also be understood as a
response to climate variations, i.e. small fluctuations

due to weather systems. For instance, during a drier
than usual period, trees might develop fewer leaves,
but already a couple of months later they could
completely recover (compare [47–50]). Recent work
[51, 52] has shown a slow response of Amazonian
rainforest to dry season intensification in terms of
forest species composition, indicating a fast recov-
ery from disturbances is possible. Furthermore, it is
reasonable to assume faster recovery in cases of relat-
ively small forest openings due to pulse-like disturb-
ances like wind throw and small fires. In such cases,
the surrounding remaining stands may help with
faster recruitment and subsequent canopy closure.
However, there are also cases of slow forest response:
for long-term climatic changes (e.g. in precipita-
tion or temperature) field evidence has been presen-
ted indicating slower mortality [53–55], with sim-
ilar processes potentially also causing slower recov-
ery. Note that the forest response to weather systems
can be highly nonlinear, as trees have several regu-
lating mechanisms (e.g. stomatal control or hydraulic
resistance), which may render the forest fairly stable
even under stronger climatic fluctuations. Still, it is
reasonable to argue that there is the possibility for the
mature rainforest to quickly recover from small per-
turbations which may loosely be understood as syn-
optic variations.

We introduce this net response to small fluctu-
ations into the model by adding an additional short-
term resilience term to equation (1). This leads to

4
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the following changes in the potential: around the
stable fixed point, we create an additional poten-
tial valley, decreasing in depth as the rainforest-
savannah tipping point is approached. Figure 2(a)
displays the changes: a little peak parametrized
by a Gaussian exponential function centred at the
rainforest attractor (right-most minimum of the
potential) is subtracted from the original potential
(figure 2(a), dashed lines). This additional stabiliz-
ing force strongly reduces the return times from small
disturbances (figure 2(b), solid lines). The updated
model equations, again displayed without units, are:

dT

dt
=

0.3P

0.5+ P
T

(
1− T

90

)
− 1.5T

T+ 10
− 0.11 ·T(

T
64

)7
+ 1

(2)

− (tanh(25P− 75)+ 1)
5

2

∆Tfix (T,P)

exp(5− P)3

× exp

(
−5

2

∆Tfix (T,P)
2

exp(5− P)2

)
(3)

+ dNt. (4)

Here, ∆Tfix(T,P) = T−Tfix(P) is the distance to the
rainforest fixed point at given P. We chose the height
and width of the Gaussian such that the return time
of a 1% tree cover disturbance at P = 5mmd−1 is
approximately one month. The width is decreased
exponentially (exp(5− P)) with lower P and the
height is decreased by a scaled sigmoid (tanh(25P−
75)+ 1) such that close to the savannah transition it
vanishes. In addition, the new term dNt represents
noise increments.
Simulating rainforest disturbances with α-

stable Lévy noise Multiple stressors influence trop-
ical rainforests. Many of these occur as single, dis-
crete, events. For instance, wildfires or windthrows
may destroy parts of the forest within a few hours.
The outcome is subsequently visible in the canopy
gap structure. Commonly, the observed fragment-
ation patterns of tropical rainforests, in particular
the Amazon, follows a power-law-like distribution
[16–24, 56, 57]. This means, patches of all sizes exist,
and particularly large gaps are observed more fre-
quently than they would be if their origin was a ran-
dom Gaussian noise process. In reality, the disturb-
ance distribution alone does not cause the observed
gap structure. Instead, complex spatial and temporal
mechanisms are at play. However, as droughts [25]
and wildfires [29] can also follow power-law-like dis-
tributions, it is possible that random perturbations
in tropical rainforests follow a non-Gaussian distri-
bution, possibly with power-law tails.

In this work, we assess via simulations whether
CSD can be detected if the underlying noise distri-
bution is not Gaussian but has power-law tails with
jumps. For random variables with power-law tails
(and thus infinite variance), a generalized central

limit theoremholds [38, in section 35 theorem5]. The
limit distributions belong to the family of α-stable
Lévy noise [58]. This is a family of distributions with
parameters α ∈ (0,2],β ∈ [−1,1] that generalizes the
Gaussian distribution (containing it at α = 2,β =
0). We choose β = −1, to simulate negative disturb-
ances, the resulting tail behaviour in a log-log plot
is shown in figure 1(b). For α< 2, the tails follow a
power-law [59, 60]. In this work, we useα-stable Lévy
noise Lα(σ;β) with amplitude σ as noise increments
in our models:

dNt ∼ Lα
(
dt

1
ασ;β =−1

)
. (5)

Such Lévy noise leads to jumps in the forest trajectory
if α < 1, which could represent single, rapid events
such as wildfires [29] or windthrows [57].
Early warning of regime shift with CSD indicat-

orsWhen a system approaches a tipping point, CSD
measures the gradually declining recovery rate of the
linearized dynamics and can be used as an early warn-
ing indicator [35, 61–63]. Here, CSD refers to an
increase in the recovery time from perturbations as
the system approaches a bifurcation. Measured by the
rate of recovery from small perturbations, the phe-
nomenon is used to assess ecological resilience and to
warn before a critical transition is reached. The the-
oretical justification for using the standard deviation
and the autocorrelation as CSD indicators arises from
first linearizing the dynamics around a given stable
fixed point x∗ to obtain the linear Langevin equation

dx = λ(x− x∗)dt + σdBt (6)

where Bt is a Wiener process. The solution is
an Ornstein–Uhlenbeck process, for which analytic
expressions of both classical CSD indicators can be
derived [64]:

Var [x] =−σ2

2λ
(7)

AC1 [x] = exp(λ∆t) , (8)

where ∆t> 0 is the sampling time step. Clearly,
in approach to a critical point at which the lin-
ear restoring rate vanishes (λ↗ 0), both indicat-
ors increase monotonically (Var[x]↗∞, AC1[x]↗
1). This statement holds also for equation (2) with
a more general Gaussian noise term dNt. However,
if the noise term follows an α-stable Lévy distribu-
tion with α< 2, variance and AC(1) are ill-defined
because the second moment of x would be infinite.
Since the EWS assessments inherent to this study are
always performed on a bounded state space, this poses
no practical problem and an analogous CSD charac-
teristic to that seen for the Gaussian white noise case
can indeed be analytically motivated (see appendix C
for further discussion). We will assess the numerical
behaviour of the above indicators using simulations

5



Environ. Res. Lett. 19 (2024) 024029 V Benson et al

with disturbances that follow such power-law noise
with jumps. Furthermore, we assess the performance
of the interquartile range (IQR), an indicator of the
width of a distribution similar to the standard devi-
ation, yet more robust to outliers. Even though we do
not give exact analytical expressions for the IQR, CSD
suggests that as a critical point is approached, the IQR
increases monotonically (IQR↗∞).

The concrete protocol follows Boers [64] and is
depicted in figures 1(c) and (d). We simulate 1000
model years of steady state, followed by 500 years of
climate change and 500 years in a new steady state.
During the simulated climate change, the forcing
parameter precipitation is changed from 5.0mmd−1

to 2.5mmd−1. Hence, the forest undergoes a crit-
ical transition with the rainforest state ceasing to
exist around 1400 years at a value of 2.943mmd−1.
We simulate realizations of systems under such for-
cing with sampled noise. To study the actual noise
independent of the underlying drift, we subtract a
deterministic trajectory from each stochastic real-
ization. Note that this optimal way of nonlinearly
detrending the time series—a necessary processing
step prior to computing CSD indicators—is only pos-
sible in model systems. When working with observa-
tional data, one has to rely on suitable low-pass filter-
ing.We then computemoving-window early warning
signals with a window size of 10 model years. From
these indicators, we compute a slope. We assess if the
slope is increasing by comparing it with a null dis-
tribution of slopes of the same time series perturbed
under random phase shifts. If the ground truth time
series were strictly monotonically increasing, then all
surrogate time series would have a lower slope (as
there is no other ordering that would preserve the
monotonicity). For our purpose, we set a one-sided
significance level of 5%. Hence, if the observed slope
lies among the 5% highest slopes of the surrogate null
distribution, then it is deemed significant and hence
early warning is confirmed.

3. Results

Early warning with few misses and few false alarms
is possible under Lévy noise according to our exper-
iments. We quantify the rate of achieving accurate
early warnings with the recall, the fraction of cor-
rectly predicted transitions (true positives, TP) over
all transitions (true positives and false negatives, FN).
In other terms, the recall is high if no critical trans-
ition is missed, and low, if there are too few early
warnings.

Recall=
TP

TP+ FN
. (9)

To study false alarms, we assess our earlywarning clas-
sification pipeline over random 50 year windows of

the simulated steady-state years (which have no crit-
ical transition). We quantify the rate of false alarms
with the false positive rate (FPR), i.e. the fraction
of transitions predicted (false positives, FP) over all
assessed transition-free time windows (false positives
and true negatives, TN). In other terms, the FPR is
low if there are no false alarms, and high, if there are
too many early warnings.

FPR=
FP

FP+TN
. (10)

When resolving small timescales and assessing
CSD with the non-parametric Kendall-τ slope, we
find an high average recall of 0.99 (figure 3(c)).
Hence, early warning works with few misses. This
corresponds to a measure of forest resilience that is
able to detect destabilization, i.e. a decline in the sys-
tem’s resilience. More specifically, the early warning
pipeline displays a high recall (on average 0.99) across
all combinations of noise amplitude σ and Lévy index
α that can be considered as weak noise levels. This
suggests that within the employed limits both para-
meters do not strongly affect the performance of the
CSD indicators. The depicted early warning pipeline
entails the usage of the IQR as an early warning indic-
ator and theKendall-τ to assess an increasing slope. In
addition, the underlying time series data was gener-
ated by our model modification which resolves short
timescales.

In cases that small timescales are not resolved, we
obtain a low average recall of 0.11 (figures 3(b) and
(d)). Moreover, the recall is low across all admissible
parameter combinations. Notably, also for Gaussian
noise (α= 2), the earlywarning does notwork. This is
due to the relatively long recovery time scale (O(100)
model years) for even small perturbations of a few
percent in tree cover (figure 2(b), dash-dotted lines)
being on the same order of magnitude as the sim-
ulated critical transition (∼500 model years climate
change, figure 1(c). Hence, the Van Nes model is in
a transient state with regards to the simulated per-
turbations, which inhibits the applicability of CSD
indicators. In other terms, if this were the case for
the real world, i.e. the rainforest would only respond
very slowly to perturbations, a declining forest resili-
ence would not be measurable with CSD indicators.
Note, this result does not discredit the van Nes et al
[45] model in general, rather it just renders it unsuit-
able for testing CSD indicators on noise timescales of
months to years. Thus, this result justifies why in this
work we extend the original model with a conceptual
modification to account for short timescales, thereby
making it more realistic and suitable for testing CSD
indicators. Hence, in the following, we will only con-
sider modelled time series including this modifica-
tion, in which a response to disturbances on short
timescales is resolved.
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Figure 3. Recall across various noise amplitudes and anomaly indices (α= 2 is Gaussian noise). Shown are only those noise
configurations that can be considered as weak noise determined by the observed first passage time. Panels (a) & (c) show
processing chains that leads to high recall, i.e. the power-law disturbances are properly dealt with. Panel (c) is slightly preferred, as
recall is close to 1.0 for all noise configurations, with slight decrease close to the strong noise regime. Panels (b) & (d) in contrast
show no proper treatment of power-law disturbances, which leads to low recall close to 10% ± 2%. Notably, the recall is also low
for Gaussian noise (α= 2), because the internal time scale (O(100)model years) in the van Nes et al [45] model is too long in
comparison to the modeled critical transition (500 model years) to observe CSD. Thus, the van Nes et al [45] model can be
considered unsuitable for the study of CSD indicators due to a lacking representation of short timescales.

If CSD is assessed on a filtered time series, we find
a low FPR of on average 0.02 for the non-parametric
Kendall-τ slope on IQR time series (figure 4(a)).
Here, the filtering is leveraged as a post-hoc adjust-
ment to assess the significance of a decline: by ran-
dom chance, onemight detect a significant slope even
if the magnitude of the autocorrelation is very low.
Hence, we flag those early warnings, where the tem-
poral autocorrelation is below 0.5.We refer to the res-
ulting indicator as Adjusted Kendall-Tau Slope. Note
that the autocorrelation is particularly suitable to per-
form this filtering because there is a natural way of
thresholding, in contrast to the standard deviation

or the IQR. When including such filtering, the early
warning (forest resilience) pipeline produces few false
alarms.

In contrast, when early warning is detected
on raw (unfiltered) time series, we detect a non-
neglibile average FPR of 0.10, again for the case
of non-parametric Kendall-τ slope on IQR time
series (figure 4(b)). Hence, the early warning pipeline
without the filtering of perturbations according to
their temporal autocorrelation, raises false alarms.
For an ecological system, this means a declin-
ing resilience measured solely by a CSD indicator
should always be double-checked, for instance against

7
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Figure 4. False positive rate (FPR) for parameter ranges also shown in figure 3. Panel (a) displays a processing chain that leads to
low FPR, i.e. the power-law disturbances are properly dealt with. FPR is close to 0.0 for noise configurations far from the strong
noise regime, but increases close to the strong noise regime. Panel (b) in contrast shows the effect of improper treatment of
power-law disturbances. This leads to a false positive rate close to 10%, but with a higher variation across noise configurations.

Table 1. Average recall and false positive rate (FPR) for various processing chains (bold: best number per metric). Averages are
computed across a wide choice of noise amplitudes and anomaly indices, as long as the resulting noise can be considered weak (as
measured by the first passage time). Each row shows the result for one processing scenario for both, the original van Nes et al [45]
model, for which CSD does not work due to a lack of representation of short timescales and for our model modification, which includes
small timescale. The first block of rows presents different choices for computing the slope of the early warning indicator, here the
non-linear parametric Kendall-τ slope is robust and thus preferrential. The robustness becomes clear in the second block, there is little
variation in recall when comparing other early warning indicators than the interquartile-range (IQR). The final row shows that
adjusting the early warning based on the absolute autocorrelation reduces the FPR by a factor of five, while keeping a high recall. In all
cases, the van Nes et al [45] model has low Recall, which does not mean it is a bad model, simply that it is unsuitable for studying CSD
indicators. Our Model modification, in turn, enables the study of CSD indicators across all processing scenarios.

van Nes Our Model

Slope Indicator Recall FPR Recall FPR

Linear IQR 0.10 0.07 0.85 0.10
Theil-Sen IQR 0.04 0.04 0.51 0.08
Kendall-τ IQR 0.11 0.08 0.99 0.10

Kendall-τ Std. Dev. 0.10 0.10 0.97 0.10
Kendall-τ Lag-1 AC 0.10 0.11 0.96 0.11

Adj. Kendall-τ IQR 0.11 0.08 0.99 0.02

the magnitude of the temporal autocorrelation in
historical time series. Otherwise, a false alarmmay be
raised.

Table 1 summarizes the key findings by com-
paring mean recall and mean FPRs across a selec-
tion of scenarios. First, using Kendall-Tau slopes in
our model (including short timescales), high recall
can be achieved (third row). Second, adjusting the
early warning for the magnitude of the autocorrela-
tion, low false-positive rates at high recall are possible
(last row). For the original van Nes et al [45] model,
recall is always low, irrespective of the processing
(third column). For our model, only the Kendall-Tau
slope gives consistently high recall, linear and Theil–
Sen slopes suffer from jumps in the noise structure
(fifth column). The type of indicator used to assess

CSD (i.e. rainforest resilience) is less relevant, we
find the IQR slightly outperforms standard deviation
and autocorrelation, but all three measures are valid
options (rows 3–5). The average FPR before adjust-
ing is around 10%, and can be reduced to only 2% by
removing false positives with low autocorrelation.

4. Discussion

Our work suggests that CSD can be used to assess
resilience loss due to an approaching critical trans-
ition also in the presence of extreme events mod-
elled by α-stable Lévy noise. In the case of the
Amazon rainforest, this confirms the empirical res-
ults by other studies indicating a destabilization of the
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system [5, 7, 8, 65, 66] as beingmore generally applic-
able than previously thought.

The particular tropical rainforest model used in
this study is a strongly simplified rainforest model.
However, it can be understood as a special case of
a very general model: a double-well potential, the
mathematical normal form of a saddle-node bifurc-
ation. For transitions in a double-well potential, our
findings hold and are robust (see appendix A). Hence,
they are not limited to just the particular choice of
the conceptual model in this study but are more
widely applicable to any system exhibiting such crit-
ical transitions. For instance, many tipping elements
of the Earth system have been modelled through
special cases of the double-well potential [4, 67,
68]. Also some other models of tropical rainforests
[46, 69] belong to the double-well potential family.
Furthermore, we claim our analysis is relevant for
the actual rainforest system, which is highly com-
plex. To support such statement, one may consider
increasing complexity of the model, e.g. by study-
ing global dynamical vegetation models. Due to their
high-dimensionality, they usually cannot be easily
represented by a potential landscape. However, for
Coupled Model Intercomparison Project 6 models,
abrupt local forest dieback has been diagnosed in the
Amazon basin [70]. Hence, the existence of critical
transitions is indicated and locally such a transition
can again be reasonably well approximated by simple
double-well potential models, as done in this study.

A similar line of thought can be employed regard-
ing the inclusion of short timescales in the van Nes
et al [45] rainforest model. In this study, an addi-
tional Gaussian potential was added to the rainforest
stable state, implementing a fast response of the forest
to small fluctuations due to weather. This modifica-
tion does not alter themodel globally: the stable states
remain the same, only with locally varying recov-
ery rates. A process-based implementation of the fast
response rate would have a similar behavior, when
coarse-grained, hence it would have similar behavor
and would not qualitatively change the outcome of
this study. Still, future work may consider extending
the van Nes et al [45] model not just conceptually (as
done in this study), but rather through mathemat-
ical descriptions of ecological mechanisms modulat-
ing the forests behavior on short timescales.

Not all non-Gaussian disturbances necessarily
are of α-stable Lévy-type. Instead, in some circum-
stances, coloured noise has been observed in ecolo-
gical systems and in particular in tropical rainforest
[71–75]. In such cases, the two most commonly pos-
tulated colour noises are pink noise and red noise.
For red noise, which displays an auto-correlated noise
structure, resilience measures based on CSD indic-
ators need to be adapted, but then they work as in

the case of white noise [37]. Pink noise has power-
law tails but does not lead to jumps in the forest
state evolution. Therefore, we find that our results
for α-stable Lévy noise are robust for pink noise (see
appendix B and table B1 for details). Hence, for a wide
range of non-Gaussian noise observed in ecology,
CSD indicators are valid choices to measure tropical
rainforest resilience.

Two further points regarding the accuracy of our
mathematical model require caution: first, we have
chosen tomodel forest disturbances viaα-stable Lévy
noise to honour the prevalence of extreme events in
observations. However, as the variable representing
the state of the rainforest is bounded between 0 and
100% (tree cover density), the far end of the noise tail
needs to be disregarded, because tree cover cannot fall
below 0% nor go beyond 100%. This restricts the con-
ceptual modelling capabilities of the α-stable noise
model. It does however not pose a practical problem
for interpreting the model data as observations from
a multi-stable forest system because an exceedingly
extreme disturbance always simply leads to a tipped
system. Our work demonstrates that the concept of
CSD holds in the case of α-stable noise distributions
when observing the time span before tipping. Second,
due to ongoing deforestation for many decades, one
might argue the Amazon is not in a steady state, but
rather on a transient.Hence, the equilibrium assump-
tion of CSD, whereby a slow change in the external
forcing only changes the equilibrium state, but does
not keep the system in disequilibrium for long, may
be violated. Nevertheless, studies have found that the
Amazon rainforest may approach a tipping point due
to deforestation [76, 77].

5. Conclusion

We find robustness of CSD indicators used tomeasure
resilience in multi-stable systems driven by α-stable
Lévy noise. The presence of disturbances with power-
law spectrum occurring in single discrete jumps does
not affect the identification of early warning of a
critical transition as long as the jump size is small
enough to avoid immediate, noise-induced trans-
itions between alternative stable states. For this pur-
pose, we find it is ideal to test the IQR with Kendall-
Tau slope for significant increases and filter for
cases with low autocorrelation.With such processing,
high recall and low FPRs can be achieved. Most
recent work computing resilience indicators based on
remote sensing in the Amazon basin follow a similar
procedure [7, 30]. In particular, they assess rainforest
resilience with CSD indicators and find a resilience
decline. Our work emphasizes that such empirical
findings are not corroborated in the presence of non-
Gaussian disturbances, which could not be ruled out
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previously. Hence, it adds to the increasing evid-
ence that the Amazon rainforest’s resilience has been
declining in recent decades, irrespective of the actual
nature of the noise (white, coloured, or Lévy noise).
Future work may proceed in two manners. First, it
may extend the analysis to include a spatial compon-
ent. Spatial processes are highly relevant for tropical
vegetation health and resulting spatial patterns [43,
44], e.g. patchiness, have been introduced as another
type of early warning signal (i.e. resilience indicator)
[78]. Second, it may study the effectiveness of differ-
ent noise types in simulating remotely sensed rain-
forest health indices, for instance through estimat-
ing the exact power law in different vegetation health
indicators with statistical tests.
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Appendix A. Double-well potential

We repeat ourα-stable Lévy noise experiments with a
genericmodel based on a double-well potential.More
specifically, we construct a double-well potential with
similar timescales and value range as the Amazon
model with short timescales introduced in the main
body of this work. Let x ∈ [0,100] be an abstraction
of the rainforest state and c ∈ R be an external for-
cing (think climate change). Our model becomes the
first-order ODE:

dx

dt
=

τ

a

((x
a
+ b
)3

+
x

a
+ b− 4

√
4

27
c

)
+ dNt.

(A.1)

With a timescale τ = 1000, a value range a= 20
and a value shift b=−3 as fixed parameters.
For c<−1, equation (A.1) has one stable fixed
point (the rainforest state, x≈ 80), for −1⩽ c⩽ 1,
there are two stable fixed points exist and for
c> 1 there is again only one stable fixed point
exists (the savannah state x≈ 40). As in the main
text, we choose α-stable Lévy noise for the noise
term dNt.

These parameter settings allow us to perform sim-
ulations in the same set-up as described in figure 1,
with the minor difference that we simulate climate
change by linearly increasing the forcing from c=
−1.5 to c= 1.5. The results are consistent with those
in the main body. Figure A1 shows the recall across
a variety of noise settings, for two cases: 1. adjus-
ted Kendall-Tau slopes on the IQR, where recall is
always high, and 2. linear slopes on the standard
deviation, where some deterioration in recall can be
observed towards the strong noise regime. The adjust-
ment for a low FPR is less effective in the case of
the double-well potential: without it, Kendall-Tau
slopes on IQR get 9.3% false positives, while with
the adjustment, the FPR drops to 8.6%. Likely this
is due to the threshold of AC(1) = 0.5 introduced in
the main body, which seems valid for the Amazon
rainforest model, but not for the double-well
potential.
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Figure A1. Same as figures 3(c) and (b), but using a double-well potential as the model. Recall across various noise amplitudes
and anomaly indices (α= 2 is Gaussian noise). Shown are only those noise configurations that can be considered as weak noise
determined by the observed first passage time. Panel (a) shows a processing chain that leads to high recall, i.e. the power-law
disturbances are properly dealt with. Recall is close to 1.0 for all noise configurations, with a slight decrease close to the strong
noise regime. Panel (b) in contrast shows no proper treatment of power-law disturbances, which leads to reduced recall closer to
the strong noise regime.

Table B1. Same as table 1, but for pink noise. Recall and false positive rate (FPR) for various processing chains (bold: best number per
metric). Averages are computed across a wide choice of noise amplitudes, as long as the resulting noise can be considered weak (as
measured by the first passage time). The columns 3–4 show results for the original van Nes et al [45] model, for which critical slowing
down does not work due to a lack of representation of short timescales. Columns 5–6 our model, which includes short timescales. The
third row shows the non-linear Kendall-Tau slope is robust and thus preferrential. The robustness becomes clear in rows 3–5, there is
little variation in recall when comparing other early warning indicators than the interquartile-range (IQR). The final row shows that
adjusting the early warning based on the absolute temporal autocorrelation reduces the FPR to zero, while keeping a high recall. In all
cases, the van Nes et al [45] model has low Recall, which does not mean it is a bad model, simply that it is unsuitable for studying CSD
indicators. Our Model modification, in turn, enables the study of CSD indicators across all processing scenarios.

van Nes Our Model

Slope Indicator Recall FPR Recall FPR

Linear IQR 0.16 0.08 0.98 0.12
Theil-Sen IQR 0.04 0.04 0.36 0.09
Kendall-τ IQR 0.12 0.08 0.99 0.11

Kendall-τ Std. Dev. 0.14 0.09 0.99 0.11
Kendall-τ Lag-1 AC 0.19 0.11 0.99 0.09

Adj. Kendall-τ IQR 0.12 0.08 0.99 0.00

Appendix B. Pink noise

We generate pink noise by first generating Gaussian
noise, taking its Fourier transform, dividing each
amplitude by the square root of its frequency and
then transforming inversely. We then perform simu-
lations for a range of noise amplitudes using the same
Amazon rainforest models described in section 2
(both, the van Nes et al [45] original, and our vari-
ation including short timescales).We enforce negative
disturbances bymirroring the pinknoise at the origin,
but we keep a small additional Gaussian noise term to
represent climatic variations.

The results are presented in table B1 and are con-
sistent with the α-stable Lévy noise results. A high
recall and a lowFPR can be achieved by using adjusted

Kendall-tau slopes on the IQR in our model (which
includes short timescales).

Appendix C. Linear Langevin dynamics
underα-stable noise forcing

We have relayed the motivation behind employing
variance and AC(1) as indicators for changes in sys-
tem stability in the main text. This theoretical treat-
ment regarded a linearised model under white noise
forcing (see equation (6)). The analytical quantit-
ies of variance and AC(1) in equations (7) and (8)
directly arise from this model and approximate the
expected quantities in applications to real bifurcation
dynamics. The restoring rate λ is a metric for system
stability and vanishes when crossing a co-dimension
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1 bifurcation. Insofar as a natural system can be
viewed as being in equilibrium and experiencing
small Gaussian white noise disturbances, the derived
expressions dictate an increase in variance and AC(1)
as the system approaches a critical transition. In
the present work, we propose that Gaussian white
noise forcing is an inadequate modelling choice for
e.g. forest dynamics, as extreme disturbances are reg-
ularly observed. The question of whether the equi-
librium dynamics of a linearised system under asym-
metric, heavy-tailed noise forcing allows for a sim-
ilar technique to assess CSD points to the following
Langevin equation,

dxt = λ(xt − x∗)dt+σdLαt , (C.1)

where we assume here w.l.o.g. that x∗ = 0. As in
the main text, the noise term σdLαt is assumed to
be α-stable Levy-noise with α< 1, skewness para-
meter β =−1, and scaling parameter c= σdt1/α.
The increments σdLαt are independent of each other.
Their characteristic function is given by

ϕσdLα (s) = exp
(
isµ− |cs|α (1− iβsgn(s) tan(πα/2))

)
= exp

(
−|σdt1/αs|α (1+ isgn(s) tan(πα/2))

)
.

We will first show that there exists a stationary
solution to equation (C.1), which is itselfα-stable.We
can write the Euler–Mayurama discretisation corres-
ponding to equation (C.1) as

x(∆t)
t+∆t − x(∆t)

t = λx(∆t)
t ∆t+σ∆Lαt

⇔ x(∆t)
t+∆t = (1+λ∆t)x(∆t)

t +σ∆Lαt . (C.2)

In the limit of ∆t→ 0, this autoregressive pro-
cess converges to a solution of the continuous-time
Langevin equation (C.1). Ansatz: assume that x(∆t) is
itself αx(∆t)-stable with parameters βx(∆t) and cx(∆t) .
For this to be a stationary distribution, one can see
via induction on the discrete-time equation that first
two the parameters must be the same as those of
the noise, i.e. αx(∆t) = α and βx(∆t) = β =−1. The
correct choice of cx(∆t) remains to be calculated. For
this, notice that the two random variables on the
right-hand side of equation (C.2) are independent,
so the characteristic function of the total must be the
product of the two individual ones:

ϕx(∆t) (s) = ϕ(1+λ∆t)x(∆t) (s)ϕσ∆Lα (s)

⇔ exp((−|cx(∆t) s|α (1+ isgn(s) tan(πα/2))))

= exp
(
−
(
|(1+λ∆t) cx(∆t) s|α + |σ∆t1/αs|α

)
×(1+ isgn(s) tan(πα/2)))

⇔ |cx(∆t) s|α = |(1+λ∆t) cx(∆t) s|α + |σ∆t1/αs|α

⇔ cαx(∆t) = (1+λ∆t)α cαx(∆t) +σα∆t

⇔ cαx(∆t) =
σα∆t

1− (1+λ∆t)α
.

In the limit of∆t→ 0, this implies that

cαx =
−σα

αλ
.

This result is consistent with the known variance
c2x =

−σ2

2λ for the Gaussian white noise case of α= 2.
Since the scaling parameter cx dictates the distri-

bution width of the observed process, we may posit
a direct influence of the linear restoring rate λ on
the observed variance and the IQR, analogous to the
case of Gaussian white noise. We have to bear in
mind however, that in this setting of an unbounded
observable, the variance of the α-stable distribution
is ill-defined and will numerically diverge to infin-
ity when applying law of large numbers estimators.
In the application of a bounded forest state variable,
we expect the finite variance to be an increasing func-
tion of λ, which can thus function as a CSD indicator.
Further analysis is needed to theoretically motivate
the use of AC(1) in a similar fashion. However, as has
been laid out during the analysis within themain text,
its use is warranted on a numerical basis.
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