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A B S T R A C T

We suggest an approach for detecting and identifying ignition failure on a internal combustion engine used
in aviation through the analysis of vibration time series. The research is carried out at the experimental
stage, where time series of vibrations are collected from sensors installed in various parts of the facility at
various rotational speeds and various operating conditions (no failure/failure of a selected piston). The time
series were decomposed into periodic components centered around dominant frequencies. Data with greater
dimensionality was statistically described using linear and non-linear indicators in short time windows, and
labeled accordingly. Instead of examining the statistical significance of the characteristics of individual groups,
machine learning classification methods were used, which allowed to distinguish the operating state of the
engine (damaged/undamaged), and also to identify a specific unfired cylinder. The use of non-linear indicators
allowed us to obtain 100% classification accuracy with a small number of samples.
. Introduction

The ROTAX 912 engine is one of the most frequently used ultralight
ircraft engines. It is mainly used in light aircraft with a maximum
f two passengers. An important aspect of their use is to ensure flight
afety. It is therefore important to monitor the operational status of the
ngine. Currently, only selected parameters are used, focusing mainly
n the thermal condition of the engine and the efficiency of the lubrica-
ion system. There is no system allowing the diagnosis of the operation
f the ignition system and the stability and repeatability of combustion
ased on vibrational signals [1,2]. Therefore, this work aims to develop
method of diagnostics of the operating condition based on vibrations.
here are two approaches to detecting piston damage in an internal
ombustion engine: based on the analysis of various types of signals and
ased on the model. In the case of the former, we can find many exam-
les of detecting engine misfire based on engine speed or vibroacoustic
ignals in the literature. Typically, the information contained in a one-
imensional signal is not sufficient to identify a misfire, and additional
ools are needed to extract the characteristic features of the signal, both
n the time and frequency domain. For example, adaptive filtering of
he crankshaft speed [3] can extract periodic components improving
isfire accuracy detection. Alternatively, Principal component analysis

PCA) and pattern recognition can be applied [4] to engine speed

∗ Corresponding author.
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signals to detect and identify misfired cylinder. The combination of
vibrational signals of both the crankshaft and the engine block with the
use of Artificial neural networks (ANNs) [5] for best feature selection
can identify the damaged piston. This type of neural network along
with sliding mode observer of the crankshaft angular speed can also
diagnose misfires in four-cylinder SI engine [6]. The spectral properties
of vibration signals obtained by means of wavelet decomposition [7,8],
as well as Fast Fourier transform (FFT) components [9], make it pos-
sible to identify damage to the pistons and clearances in the cylinders.
Model systems combined with experimental data and expert systems
based on fuzzy logic [10], decision trees [11], and linear trees [12]
detect cylinder misfire. The accuracy of damage classification using
such systems increases with the increase in the dimensionality of the
data [13], as well as the wavelet decomposition [14].

This indicates that a single-channel signal may not always capture
a change in the system’s state (such as damage) because it contains
different frequency components from different sources. It turns out that
monitoring of the engine condition can be based on the decomposition
of vibroacoustic signals into components with characteristic frequencies
or concentrated around them. The simplest method of decomposing a
signal into modes is the Empirical mode decomposition (EMD) method
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based on its envelope [15]. This algorithm was successfully used to de-
noise and reconstruct the signal of a properly operating small aircraft
engine [16]. A extended version of the method (Multivariate empirical
mode decomposition) together with the dispersion entropy [17] is able
to detect fire failure in a diesel engine. Statistical characteristics of
the signal components used as input to a neural network [18] are
used in the diagnostics of aviation fuel pump faults. Also, the use of
a Probabilistic neural network (PNN) on a dataset composed of the
energy values of individual Intrinsic mode function (IMF) signals and
average outlet pressure [19] allows the identification of a misfire.

Recently, the Variational Mode Decomposition (VMD) method has
gained popularity, as it seems to be devoid of most of the limitations of
the EMD method, such as modes mixing [20], less sensitivity to noise
and sampling frequency [21–23]. This algorithm also proved useful in
the process of detecting a damaged piston. The results of comparing
the accuracy of classification of the EMD and VMD methods [24]
indicate the advantage of the latter in the case of various damages in
a diesel engine, such as valve clearance fault, fuel supply fault, and
common rail pressure failure. This type of damage can also be detected
using the frequency properties of the bands [25] in conjunction with a
random forest model. Cross-correlation analysis between denoised and
reconstructed signals with faults is also applicable here [26].

Piston misfire can also be treated as a repeatability disturbance in a
non-linear system such as an internal combustion engine and non-linear
time series analysis tools can be used to detect these changes [27]. Due
to the possibility of applying to short and noisy time series, recurrence
analysis is often used here [28,29]. The stability of the combustion
process in diesel engines can be analyzed by means of recurrence
indicators based on the pressure time series, which allows identifying
of various properties of this process, such as determinism and laminar-
ity [30–33]. Comparing the values of non-linear indicators (recurrence
quantificators, the largest Lyapunov exponent, and the correlation di-
mension) confirms the non-linear character of the combustion process
through sensitivity to initial conditions and system complexity [33].
Non-linear features based on recurrence indicators have already been
successfully used to identify faults in rotating machines, in particular
rolling bearings [34,35], as well as to predict power supply drops in
power grids [36].

This research is an extension of our previous investigations on
the same subject [37]. In the former research, we used linear and
non-linear time series analysis to identify the misfire of the cylinder.
We found that a change in the engine’s operation is reflected in its
dynamic response for a single measured point (fixed both engine speed
and manifold air pressure). We were able to distinguish the general
operational state of the engine (i.e., damaged / not damaged), but not
to detect the particular piston misfired. Due to this fact, we decided
that broader research is needed.

First of all, we increased the number of measurement points (com-
pared to previous research), reducing and increasing the engine speed
concerning 50% of the most common operating speed. Secondly, we
increased the number of sensors by adding a new one on the plate of
the engine. In addition, we examined linear and non-linear properties
of both raw vibration signals and their dominant frequency components
(experimental modes) in non-overlapping windows. The features gen-
erated in this way were used to train machine learning models and we
analyzed the accuracy of the prediction within a certain class.

The main purpose of the work is the detection and identification of
a damaged cylinder in an internal combustion engine used in aviation.
In addition, the effectiveness of linear and non-linear statistics (as
features) in the classification of damage in the analyzed experimental
mechanical system was compared.

2. Research object

The tests were carried out on a Rotax 912 ULS engine with a
odified fuel supply system. The engine tested is a four-cylinder engine
2

Table 1
Specification of Rotax 912 ULS engine.

Description Value

Type and number of cylinders boxer 4 cylinders
Ignition type spark ignition, doubled
Cylinder diameter 84mm
Piston stroke 61mm
Compression ratio 10.8 ∶ 1
Displacement 1352 cm3

Starting power/rotation 73.5 kW/5800RPM
Durable/rotational power 69 kW/5500RPM
Max. torque/rotation 128Nm/5200RPM
Power supply MPI system of A & A Tech
Fuel consumption - starting power 27.0 L∕h
Fuel consumption - maximum constant power 25.0 L∕h
Starting rotations 580RPM
Maximum constant speed 5500RPM
Idle speed min. 1400RPM

in a boxer configuration, four-stroke, naturally respirated, with a dual
spark ignition system. It is an engine with air cooling of the cylinders
and liquid cooling of the heads and a dry sump. The engine’s ignition
system has two independent systems with a fixed ignition angle, with
both systems operating one set of plugs each - there are two plugs in
each cylinder. The motor has no flywheel and its output is connected to
a 2.43:1 reduction gear equipped with overload systems and a torsional
vibration damper system. The test engine was equipped with a modified
intake and fuel system. A two - carburetor system was replaced by
a single intake manifold with multi - point fuel injection. The fuel
system is electronically controlled by a control unit from Auto & Aero
Technologies and software developed by the authors of the publication,
among others. Basic information about the engine is shown in Table 1.
The tests were carried out at the Lublin University of Technology in
a laboratory of the Department of Thermodynamics, Fluid Mechanics
and Propulsion Systems (Fig. 1). The engine was installed on a bench
equipped with an electric motor brake Automex 200 and connected to
it using a Cardan shaft. The stand allowed thermal stabilization of the
engine through heat exchanger systems in the oil and liquid cooling
systems of the engine. Cylinder air cooling was provided by a blower
system built into the stand. The focus of the study was on measuring
engine vibrations. For this purpose, a set of six vibration sensors type
PCB M353B12 was mounted using specially made brackets. The sensors
were connected to amplifiers EC Electronics VibA MPPA-3000 and the
amplified signal was measured by measuring instruments type National
Instruments NI-9215. The sensors were placed at points, respectively
(Fig. 1):

1. on the gearbox (𝑊 ) in a horizontal axis perpendicular to the
crankshaft rotation axis;

2. on the 1 cylinder head (1) in a piston movement axis;
3. on the 2-cylinder head (2) in a piston movement axis;
4. on the 3 cylinder head (3) in a piston movement axis;
5. on the 4 cylinder head (4) in a piston movement axis;
6. on the mounting plate (𝑃 ) in a horizontal axis perpendicular to

the crankshaft rotation axis.

All sensors measured vibrations on the same axis. The choice of
measurement axis was based on previous research which showed that
vibrations in this axis carry the most diagnostic information [37,38].
Table 2 shows the basic parameters of the analyzed signals and the
accuracy of their setting (in the case of fixed parameters) and measure-
ment (in the case of measured signals). The bench and measurement
systems were selected to ensure that the measurement accuracy was an
order of magnitude higher than the assumed variability under analysis.
The program for recording the signals was developed in the LabView
environment. Measurements were taken continuously at 30 kHz per

channel.
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Fig. 1. Sensors mounting locations.
Table 2
Measurement accuracy and accuracy in maintaining engine operating conditions during
the tests.

Signal Sensors Sensor accuracy Total test error

Vibration PCB Piezotronics Sensitivity
(±10% 5mV∕g, 0.51mV∕s2)

PCB M353B12 Frequency range (±5%)
1 to 10 000Hz

±0.82m∕s2

Linearity ≤1%

Amplifier VibAMP PA-3000 Distortion ≤0.1%,
Gain error <0.5%,
Reinforcement
drift <50 ppm∕°C

±1.22m∕s2

Measurement
module

NI-9215 Total error 0.6% n.o.,
Offset 0.38% n.o.

±1%

RPM Honeywell
1GT101DC

Total error 0.5% ±5RPM

Engine load Zemic
H3-C3-100 kg-3B

Total error ≤0.02% n.o.,
Sensitivity 3mV∕V,
Accuracy Class C3, Class
N10

±1Nm

Ambient
temperature

KTY 19-6M Accuracy 1% ±4 ◦C

Ambient
pressure

WIKA A-10 Non-linearity
0.25% or 0.5%,
Accuracy 0.3% n.o.

±1mbar

Ambient
humidity

RHT-2H Accuracy 3% ±1%

3. Scope of research

The study was conducted in two groups (Fig. 2):

• at a constant speed of 4000RPM and a variable engine load
expressed by manifold air pressure MAP ranging from 32 to
76 kPa (32, 42, 46, 52, 62 and 76 kPa);

• with a constant MAP load of approximately 48 kPa and engine
speeds of 3000, 3500, 4000, 4500 and 5000RPM (whereby for
thermal reasons the engine load is reduced to 42 kPa at 5000RPM).

The tests were conducted in steady-state engine operation. Five in-
dependent tests were performed for each measuring point as defined
above. The first test covered the operation of the engine running
correctly (marked 𝐶0) and the following tests the engine running with
one cylinder deactivated (𝐶1, 𝐶2, 𝐶3 and 𝐶4 respectively, where the
number indicates the number of the cylinder not running). Cylinder
deactivation was achieved by switching off the fuel supply in the
control system. It was assumed that the constant operating parameter
of the engine would be the rotational speed. This was controlled by the
brake by varying the braking torque. The other operating parameters
3

Fig. 2. Measurement points.

remained unchanged. The ignition advance angle and fuel dosage were
held constant. Measurements were taken after the engine had stabilized
in a given operating mode. The registration included continuous, stable
engine operation for a minimum of 30 seconds. The results obtained
in this way allowed a comparative analysis of the engine vibration. It
should be emphasized that data directly recorded, without any pre-
processing, were used for the analyses. No filtering or other signal
processing was applied so that potential information on system dy-
namics was not lost. However, relying on such data does bring the
problem of vibration sources. In the case of an aircraft, these vibrations
will not only originate from the moving parts of the engine but also
from the aircraft’s components and the airflow. Installing vibration
sensors directly on the engine reduces the strength of vibration signals
from sources other than the engine itself and should not affect the
results obtained. The tests were carried out with a constant engine
load expressed by a constant intake manifold pressure (MAP = 48 kPa)
and variable speed (Fig. 2). The base point (RPM 4000 MAP 48 kPa)
was chosen based on a publication [38] showing that this is one of
the most statistically occurring engine operating points. The other
operating points were determined to determine the effect of engine
speed (and therefore combustion frequency) on the method developed.
The main objective of the research was to develop and validate methods
for detecting misfires based on vibration signals. The objective was
not only to indicate the occurrence of a misfire, but also to indicate
which cylinder was affected. After a preliminary analysis, data from
two sensors were adopted for further analysis: 𝑊 (on the transmission)
and 𝑃 (in the engine plane). Fig. 3 shows the waveforms of the signals
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Fig. 3. Time series of raw signals for two rotational speeds, (a) 3000RPM, (b) 5000RPM and different operating conditions (𝐶0, 𝐶1, 𝐶2).
recorded for both of these points at 3000RPM and 5000RPM and the
various operating variants (𝐶0 – engine running properly, 𝐶1 – cylinder
1 switch off, and 𝐶2 – cylinder 2 switch off). As can be observed, the
level of vibration between an engine running correctly (𝐶0) and one
with one of the cylinders deactivated (𝐶1 and 𝐶2) is visible for the
lowest rotational speed RPM 3000RPM, while the difference between
cylinder 1 and 2 being deactivated (𝐶1 and 𝐶2 accordingly) is not
noticeable at first glance. This difference disappears at the top engine
speed of 5000RPM. Attention should also be drawn to the average
vibration level recorded by the two sensors analyzed. Significantly
higher levels of visible vibration were recorded for the sensor mounted
on the gearbox (𝑊 ) than on the cylinder plate (𝑃 ). Therefore, the
analysis was based not on vibration level but on frequency analysis.
4

4. Methods

The purpose of the analysis was to detect and identify a cylinder
with a misfire through monitoring vibrations with (ideally only one)
sensor. For this classification problem, we started with decomposition
of the signal into a finite number of intrinsic mode functions (IMFs)
that represent different frequency components using Variational Mode
Decomposition (VMD) [20]. VMD is a data-driven method that does not
rely on any assumptions about the underlying mathematical model of
the signal. VMD works by finding the IMFs that best represent the signal
using a variational principle. The algorithm iteratively adjusts the
center frequency and bandwidth of each IMF until they satisfy a set of
constraints that maximize the smoothness of the IMFs while minimizing
their mutual interference. The final result is a set of IMFs covering
the signal’s frequency spectrum and representing different frequency
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components. One advantage of VMD is that it can decompose non-
stationary signals with time-varying frequency components, which is
common in many real - world applications. VMD can also handle signals
with non-linear characteristics, making it a versatile tool for signal
processing. Additionally, VMD has a high level of interpretability, as
each IMF corresponds to a specific frequency component of the signal.
Below, a short description of the algorithm is given. Let us define the
signal 𝑥(𝑡) as a sum of 𝑁 amplitude and frequency - modulated signals:

𝑥(𝑡) =
𝑁
∑

𝑛=1
𝑣𝑛(𝑡) =

𝑁
∑

𝑛=1
𝐴𝑛(𝑡) cos

(

𝜙𝑛(𝑡)
)

, (1)

where 𝐴𝑛(𝑡) is its amplitude and 𝜙𝑛(𝑡) is its phase. Each 𝐼𝑀𝐹 has slowly
varying and positive envelopes and a nondecreasing instantaneous fre-
quency 𝜙′

𝑛(𝑡) concentrated around the central frequency 𝑓𝑛. According
to [20] the algorithm finds at the same time both the amplitudes
of the modes 𝑣𝑛 and their central frequencies 𝑓𝑛 by minimizing the
constrained variational problem [20]:

min
{𝑣𝑛},{𝑓𝑛}

{

∑

𝑛

‖

‖

‖

‖

‖

𝜕𝑡

[(

𝛿(𝑡) +
𝑗
𝜋𝑡

)

∗ 𝑣𝑛(𝑡)
]

𝑒−𝑗𝑓𝑛𝑡
‖

‖

‖

‖

‖

2

2

}

, (2)

here {𝑣𝑛} = {𝑣1, 𝑣2,… , 𝑣𝑁} denotes the set of all modes,
𝑓𝑛} = {𝑓1, 𝑓2,… , 𝑓𝑁} denotes the set of central frequencies, 𝛿
s the Dirac function, ‖⋅‖ is the 𝐿2 norm and ∗ is the convolution

operator. The expression
(

𝛿(𝑡) +
𝑗
𝜋𝑡

)

∗ 𝑣𝑛(𝑡) is the Hilbert transform of

𝑣𝑛(𝑡) that defines the analytical signal, and the exponential term 𝑒−𝑗𝑓𝑛𝑡

shifts the frequency spectrum to the baseband. The IMFs are found in
the frequency domain by reconstructing DFT of the input signal 𝑥(𝑡),
amely 𝑋(𝑓𝑘) = 𝐷𝐹𝑇 (𝑥(𝑡)) in terms of 𝑉𝑘(𝑓𝑘) = 𝐷𝐹𝑇 (𝑣𝑘(𝑡)). Note
hat the choice of the number of modes is critical. Due to the high
ampling frequency (30 kHz) and the desired large number of features
hat describe the dynamics of the system. In our research, the number of
omponents was 𝑁 = 15, which means that each signal recorded at the
xperimental stand corresponded to 15 of time series, which were then
nalyzed. Then, to quantify the degree of linear correlation between the
MFs obtained from VMD and a reference signal (source vibration signal
hat was decomposed), the correlation coefficient was calculated:

(𝑥, 𝑦) = 1
𝑁 − 1

𝑁
∑

𝑖=1

(

𝑥𝑖 − 𝜇𝑥
𝜎𝑥

)( 𝑦𝑖 − 𝜇𝑦
𝜎𝑦

)

, (3)

here 𝑥(𝑡), 𝑦(𝑡) denote two signals, 𝜇 corresponds to the mean and 𝜎
orresponds to the standard deviation. A high correlation coefficient
ndicates that the IMF and the reference signal have a strong linear
elationship, which suggests that the IMF represents a meaningful
omponent of the original signal. On the other hand, a low correlation
oefficient indicates that the IMF and the reference signal have a weak
inear relationship, which suggests that the IMF may not represent

significant component of the original signal. Sample values of the
orrelation coefficient for individual cases are presented in Table 3:

Comparing the values of the correlation coefficient for two signal
ources (𝑊 and 𝑃 ) and different operating conditions (𝐶0, 𝐶1, 𝐶2, 𝐶3
nd 𝐶4) one can notice a fairly high linear correlation for the first 4
odes. Thereafter, these values decrease to increase again for modes
to 12 for the data recorded by the sensor located on the gear (𝑊 ).

herefore, all components were used for further analysis, due to the
nformation about the state of the system that they may contain.

Each of the 15 modes was treated as a new signal for which linear
nd non-linear statistics were calculated in 0.1 s long windows. In the
ase of basic statistical measures, Mean, Median, Root mean square,
urtosis and Skewness were used [39]. In the case of non-linear indi-
ators, Determinism, Laminarity, Entropy of diagonal lines, Maximum
ength of the diagonal and Maximum length of the vertical line from
he method of Recurrence quantitative analysis (RQA) were used [29].
he RQA is a mathematical technique used to analyze and characterize
he complexity of time series data. It is a powerful tool for analyzing
5

on-linear and chaotic systems, and has applications in a wide range
f fields, including engineering and particular damage detection in
ombustion engines [30–33]. RQA is based on the concept of recurrence
lots, which are used to visualize the recurrence of system’s states over
ime [28,29]:

𝑖,𝑗 (𝜀) = 𝛩
(

𝜀 − ‖

‖

‖

𝑥⃗𝑖 − 𝑥⃗𝑗
‖

‖

‖

)

, (4)

here 𝑥⃗𝑖 and 𝑥⃗𝑗 are the states of the system, 𝜀 is the threshold value
hat defines the minimum distance at which two points are considered
o be ‘‘recurrent’’, 𝛩 is the unit step function, and ‖ ⋅ ‖ denotes a
hosen norm (Euclidean in this case). The vector state coordinates
re given numerically by solving appropriate equations of motion of
he system or can be reconstructed from experimental data. Takens’
mbedding theorem allows us to analyze a dynamical system in space
ith topologically equivalent properties, such as distances between

ystem states in time [40]. Two parameters are necessary here to be
etermined: a time delay and embedding dimension. The time delay
hould be large enough to minimize non - linear correlations between
he components of the state vector. They can be determined by the
irst local minimum of the Mutual information function (MI) [41]. The
mbedding dimension should be large enough so that two points are
lose enough to each other in space of a given dimension, but not
igher. This can be checked using the False nearest neighbor (FNN)
unction, which examines the distances between pairs of points in
paces of increasing dimension until the number of false neighbors
rops to zero [42]. In this paper, the time delay and the embedding
imension were determined for each of the IMFs, and then the same for
ll cases was assumed as the median of these values, taking a time delay
f 5, and the embedding dimension of 3. The values of the matrix 𝐑
Eq. (4)) are determined by the reconstructed state space, with 1 when
wo points are close enough to each other, or 0 otherwise. The visual
epresentation of those values is the Recurrence plot (RP). Points can
orm vertical and horizontal lines from which certain statistics can be
erived [43,44]:

• Determinism: the fraction of recurrence points that lie on diagonal
lines in the recurrence plot, indicating how deterministically the
system evolves.

• Entropy: a measure of the complexity or randomness of the
system’s dynamics.

• Laminarity: the fraction of recurrence points in vertical or hor-
izontal lines in the recurrence plot, indicating how much the
system stays in a particular state before transitioning to a different
state.

• Maximal diagonal line length: providing information about the
predictability and regularity of the system.

• Maximal vertical line length: providing information about the
stability of and intermittency in the system.

hese measures can be used to characterize different aspects of the
ystem’s dynamics and identify patterns and structures that may not
e apparent from other types of analysis.

Due to the high dimensionality of the data, it was decided to
se machine learning classification models instead of group statistics.
he comparison of the effectiveness of linear and non-linear features
as made using training and learning sets with the same number of

amples and features in both cases. In the first scenario, the training
et consisted of 5 linear statistics calculated for each component with
he appropriate class label (75 + 1 features). The number of samples in
given class was the same (balanced data) and amounted to 80 (400

amples in total). The test set was constructed in a similar way (the
ame number of features - 76), but with a smaller number of samples

(balanced with a total of 100). In the second scenario, the training and
test data had the same number of features (76) and distribution and
sample size (400 and 100, respectively), but they were generated using
non-linear recurrence indicators. Both the learning and evaluation
process of the models included cross-validation with 10 folds.



Measurement 223 (2023) 113763A. Syta et al.

P
e

Table 3
Correlation coefficient between the individual IMFs and the reference signal for highest rotational speed
5000RPM. Headers correspond to the names of the reference signals: 𝑃 and 𝑊 indicate the mounting
position of the sensor (plate and gear, respectively), and 𝐶0,… , 𝐶4 the number of the damaged cylinder.

𝑃 (𝐶0) 𝑃 (𝐶1) 𝑃 (𝐶2) 𝑃 (𝐶3) 𝑃 (𝐶4) 𝑊 (𝐶0) 𝑊 (𝐶1) 𝑊 (𝐶2) 𝑊 (𝐶3) 𝑊 (𝐶4)

𝐼𝑀𝐹1 0.313 0.267 0.272 0.269 0.270 0.316 0.349 0.445 0.316 0.343
𝐼𝑀𝐹2 0.379 0.348 0.345 0.350 0.354 0.414 0.422 0.540 0.406 0.421
𝐼𝑀𝐹3 0.412 0.380 0.389 0.391 0.385 0.474 0.517 0.379 0.490 0.514
𝐼𝑀𝐹4 0.221 0.380 0.379 0.382 0.378 0.401 0.322 0.251 0.330 0.350
𝐼𝑀𝐹5 0.218 0.225 0.222 0.224 0.225 0.257 0.256 0.226 0.244 0.238
𝐼𝑀𝐹6 0.233 0.235 0.227 0.238 0.233 0.241 0.247 0.238 0.233 0.221
𝐼𝑀𝐹7 0.223 0.260 0.230 0.258 0.237 0.240 0.230 0.230 0.235 0.231
𝐼𝑀𝐹8 0.282 0.237 0.250 0.225 0.250 0.223 0.266 0.275 0.234 0.220
𝐼𝑀𝐹9 0.418 0.326 0.279 0.300 0.299 0.260 0.246 0.251 0.284 0.268
𝐼𝑀𝐹10 0.405 0.044 0.395 0.399 0.415 0.242 0.236 0.246 0.260 0.243
𝐼𝑀𝐹11 0.295 0.303 0.390 0.341 0.358 0.238 0.225 0.236 0.260 0.242
𝐼𝑀𝐹12 0.310 0.323 0.334 0.315 0.338 0.251 0.238 0.246 0.241 0.233
𝐼𝑀𝐹13 0.194 0.218 0.218 0.273 0.218 0.281 0.249 0.260 0.291 0.273
𝐼𝑀𝐹14 0.22 0.233 0.235 0.252 0.236 0.292 0.259 0.271 0.303 0.292
𝐼𝑀𝐹15 0.193 0.206 0.210 0.232 0.208 0.218 0.206 0.210 0.222 0.210
a

a

The entire machine learning process was carried out using the
ycaret software [45], which allows us to compare many models with
ach other due to different purposes. In our case, 4 models with the

highest accuracy (average accuracy) value were selected: two linear
models – Logistic Regression, Linear Discriminant, and two non-linear
models – Random Forest and Extra Trees. It is worth noting that no
optimization of hyperparameters was applied, only their default values
were adopted.

Logistic regression for multiclass classification is an extension of
binary logistic regression. In the classic case (binary classification), a
binomial function is used to model the value of the dependent variable.
For multi - label classification, a polynomial function is used with a one
versus all approach in this case.

In Linear Discriminant analysis predictions are made by calcu-
lating the conditional probability that a new example belongs to a
certain class and selecting the class with the highest probability. The
model assumes the classes in feature space are separated by lines or
hyperplanes.

Both non-linear models used in this paper are ensemble models
that use multiple algorithms to improve the prediction. A Random
Forest constructs multiple decision trees on different subsets of training
data as it trains, which is expected to give better classification results
compared to a single tree. Similarly, the Extra Trees algorithm works,
but in this case a new tree is constructed with each new observation but
in different subsets of features. A detailed description of the classifiers
with application examples can be found in [46].

Accuracy is the most commonly used model evaluation criterion
in machine learning. In the case of multi-label classification, the av-
erage accuracy (per class) is used. Both measures are derived from
the confusion matrix, which is a table that counts the ratio of pre-
dicted classification (horizontal axis) to the true classification (vertical
axis) [47]. In this work, both the average accuracy (for a single-valued
estimation) and the error matrix (to compare the accuracy of the
predictions between classes) were used to compare the performance of
the models.

5. Results and discussion

To compare the selected signal processing methodology, the results
of the classification of raw acceleration signals recorded by sensors lo-
cated both on the transmission and the engine block are first presented
(Tables 4 and 5).

Comparing the results of the classification of the training set com-
posed of linear and non-linear features, it can be seen that they are
inaccurate, but at the same time consistent, but the highest accuracy
is obtained for non-linear features. The Linear Discriminant model
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showed the highest accuracy, and the Logistic Regression the smallest.
Table 4
Accuracy of classification results with linear features of single time series for chosen
measurement points, 𝑃 and 𝑊 correspond to sensor notation (placement): 𝑃 – plate,
nd 𝑊 – gearbox, respectively.
Classifier 𝑃 (3000) 𝑃 (3500) 𝑃 (4000) 𝑃 (4500) 𝑃 (5000)

Logistic Regression 0.42 0.46 0.42 0.39 0.42
Linear Discriminant 0.42 0.47 0.47 0.44 0.41
Extra Trees 0.40 0.39 0.46 0.41 0.33
Random Forest 0.40 0.42 0.46 0.39 0.34

Classifier 𝑊 (3000) 𝑊 (3500) 𝑊 (4000) 𝑊 (4500) 𝑊 (5000)

Logistic Regression 0.40 0.48 0.42 0.38 0.39
Linear Discriminant 0.42 0.46 0.43 0.41 0.41
Extra Trees 0.43 0.48 0.46 0.41 0.41
Random Forest 0.41 0.46 0.45 0.39 0.41

Table 5
Accuracy of classification results with non-linear features of single time series for chosen
measurement points, 𝑃 and 𝑊 correspond to sensor notation (placement): 𝑃 – plate,
nd 𝑊 – gearbox, respectively.
Classifier 𝑃 (3000) 𝑃 (3500) 𝑃 (4000) 𝑃 (4500) 𝑃 (5000)

Logistic Regression 0.33 0.18 0.31 0.34 0.32
Linear Discriminant 0.50 0.46 0.50 0.55 0.61
Extra Trees 0.45 0.41 0.47 0.53 0.57
Random Forest 0.46 0.43 0.46 0.55 0.55

Classifier 𝑊 (3000) 𝑊 (3500) 𝑊 (4000) 𝑊 (4500) 𝑊 (5000)

Logistic Regression 0.26 0.48 0.30 0.29 0.29
Linear Discriminant 0.43 0.46 0.46 0.47 0.48
Extra Trees 0.45 0.48 0.45 0.43 0.45
Random Forest 0.46 0.46 0.42 0.46 0.45

Seeing a lot of room for improvement, it was decided to increase the
number of features, treating each of the IMFs components as a new time
series. Then, the same methodology was used to determine linear and
non-linear statistics for individual components. Thus, the feature space
increased while maintaining the same number of observations. The re-
sults of classification using linear measures are presented in Table 6. We
find a much higher accuracy of up to 0.99 when comparing the results
by training the model on a linear dataset with greater dimensionality
(Table 6) with the results obtained for a smaller number of features
(Table 4). However, the lowest accuracy is below 0.8 (𝑊 (3000) for 3
out of 4 models). Comparative results of the accuracy of identifying
the damaged cylinder using non-linear features are presented in the
Table 7.

The accuracy obtained for the linear set of features increases from
0.73 to 0.99 and from 4000RPM to 5000RPM is close to 1. It should be
noted that the source of the data may be important here, especially if
we compare the results for the lowest rotational speeds (3000RPM and
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Fig. 4. Confusion matrices for Extra tree model, a sensor located at the gearbox (𝑃 ), non-linear features, rotational speed increasing from the left top corner.
.

Table 6
Classification results with linear features of IMFs for chosen measurement points, 𝑃 and
𝑊 correspond to sensor notation (placement): 𝑃 – plate, and 𝑊 – gearbox, respectively

Classifier 𝑃 (3000) 𝑃 (3500) 𝑃 (4000) 𝑃 (4500) 𝑃 (5000)

Logistic Regression 0.84 0.73 0.95 0.98 0.93
Linear Discriminant 0.85 0.79 0.97 0.99 0.96
Extra Trees 0.84 0.78 0.98 0.98 0.97
Random Forest 0.83 0.78 0.97 0.98 0.97

Classifier 𝑊 (3000) 𝑊 (3500) 𝑊 (4000) 𝑊 (4500) 𝑊 (5000)

Logistic Regression 0.77 0.94 0.94 0.94 0.95
Linear Discriminant 0.83 0.96 0.94 0.94 0.94
Extra Trees 0.78 0.93 0.94 0.94 0.94
Random Forest 0.78 0.92 0.93 0.95 0.92

Table 7
Classification results with non-linear features of IMFs for chosen measurement points,
𝑃 and 𝑊 correspond to sensor notation (placement): 𝑃 – plate, and 𝑊 – gearbox,
respectively.

Classifier 𝑃 (3000) 𝑃 (3500) 𝑃 (4000) 𝑃 (4500) 𝑃 (5000)

Logistic Regression 0.99 0.98 0.96 1.00 0.98
Linear Discriminant 0.99 0.99 1.00 1.00 1.00
Extra Trees 0.99 0.99 1.00 1.00 1.00
Random Forest 0.98 0.98 0.99 1.00 1.00

Classifier 𝑊 (3000) 𝑊 (3500) 𝑊 (4000) 𝑊 (4500) 𝑊 (5000)

Logistic Regression 0.92 0.93 0.97 1.00 0.99
Linear Discriminant 0.99 0.99 0.99 1.00 1.00
Extra Trees 0.99 0.99 1.00 1.00 1.00
Random Forest 0.97 0.98 1.00 1.00 1.00

3500RPM), where the discrepancy in accuracy is visible for all chosen
models (𝑃 (3000) versus 𝑊 (3000) and 𝑃 (3500) versus 𝑊 (3500)).

The situation is different in the case of classification results obtained
using non-linear features. While the location of the vibration sensor is
important at lower speeds (3000RPM and 3500RPM), it is visible only
for the logistic regression model. In other cases, the obtained results
are comparable, close to 100% accuracy, and in most cases reaching 1.

The results of the classification on the test data for the Extra trees
model (highest efficiency) are presented in Table 8.

The results of the classification accuracy of the Extra trees model
on both data sets (training (Table 7) and test (Table 8)) are very
similar and at the same time close to unity. This indicates that the
ML model is generalizing well, and that the model has not to overfit
the training data. Overfitting occurs when a model is too complex or
too flexible, and it learns to fit the training data too closely, to the
point that it cannot generalize well to new data. This can result in very
high accuracy on the training data, but poor accuracy on the test data.
Additional information about the classification results (test set) can
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Table 8
Classification results of test set with non-linear features of IMFs for chosen measurement
points, 𝑃 and 𝑊 correspond to sensor notation (placement): 𝑃 – plate, and 𝑊 –
gearbox, respectively.

Classifier 𝑃 (3000) 𝑃 (3500) 𝑃 (4000) 𝑃 (4500) 𝑃 (5000)

Extra Trees 0.97 1.00 0.98 1.00 1.00

Classifier 𝑊 (3000) 𝑊 (3500) 𝑊 (4000) 𝑊 (4500) 𝑊 (5000)

Extra Trees 1.00 0.98 1.00 1.00 1.00

be obtained from the confusion matrix, which shows the classification
results between the different classes and sensor placement: on the
gearbox (𝑊 ) – Fig. 4 and on the plate (𝑃 ) – Fig. 5 for chosen model
(extra trees in this case).

Regardless of the sensor mounting point (𝑃 or 𝑊 ), the classification
accuracy is comparable and at a high level, but changes in different
ways based on rotational speed. Namely, for sensor placed on the plate
(Fig. 4) misclassifications only occur at two speeds: 3000RPM (between
𝐶0 and 𝐶3 classes) and 4000RPM (between 𝐶2 and 𝐶3 classes). If the
sensor location is changed (Fig. 5), the misclassification occurs only at
3500RPM (between classes 𝐶1 and 𝐶3).

6. Conclusions

In the presented work, which aimed to identify a damaged cylinder
of an internal combustion engine used in the light aerospace indus-
try, more measurements were made at various rotational speeds from
3000RPM to 5000RPM, as well as various mountings of sensors measur-
ing vibrations. Identification was carried out only based on collected
vibroacoustic signals and independent of the measurement point.

First, machine learning models were applied to raw experimental
data to identify a damaged cylinder. For each recorded signal, five
linear and non-linear statistics (as a features) were determined and
machine learning classification models were used to identify the non-
working cylinder. It turned out that the classification accuracy was so
unsatisfactory (Tables 4 and 5) that more advanced signal processing
methods had to be used to increase the dimensionality of the data using
additional time series properties/features.

Then, using the VMD algorithm, the raw signals were decomposed
into oscillatory components centered around characteristic frequencies.
Each of the components was used as a new data source, and then the
same methodology was applied (split each component into windows
of the same length, calculate linear and non-linear features for each
window, generate training and test sets, and then apply the same
models).

It turned out that increasing the dimensionality of the data sig-
nificantly improved the classification results for both linear (Table 6)
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Fig. 5. Confusion matrices for Extra tree model, a sensor located at the gearbox (𝑊 ), non-linear features, rotational speed increasing from the left top corner.
and non-linear (Table 7) features. The use of the latter allowed ob-
taining 100% accuracy in most models, for higher rotational speeds.
The validation of the model with the highest accuracy (Extra trees)
showed very good generalization, not deviating from the training re-
sults, which proves the lack of an overfitting effect (Table 8). The
distinction between special cases, i.e., all cylinders switched on (𝐶0) or
one cylinder disabled (𝐶1, 𝐶2, 𝐶3 or 𝐶4) is represented by a confusion
matrix (Fig. 5) where misclassifications only occurred at lower speeds.
It should be added that no optimization of the hyperparameters of the
used models was applied, but only their default values, treating them
as an alternative to group statistics.

It is worth noting that the performance of the model may still
be limited by the specific indicators used, as well as any biases or
limitations in the training data. Therefore, further exploration and
validation may be necessary to fully evaluate the model’s effectiveness.
Also, the determination of features reflecting the non-linear properties
of the dynamics of the system requires more experience than the
determination of linear features.

Overall, this approach based on VMD of vibrational signals in com-
bination with RQA has the potential to identify correctly the misfired
cylinder during operation, providing a valuable tool for detecting and
diagnosing cylinder misfire in small aircraft engines. The combination
of both linear and non-linear features extracted from the VMD method
can provide a more comprehensive analysis of the engine’s behavior,
leading to more accurate and reliable detection of misfire. It is worth
emphasizing that only the use of non-linear measures (recurrence quan-
tification analysis) allowed to improve the accuracy in the classification
of the damaged cylinder.
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