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We study the dynamics of a piecewise-linear second-order delay differential equation that is representative of
feedback systems with relays (switches) that actuate after a fixed delay. The system under study exhibits strong
multirhythmicity, the coexistence of many stable periodic solutions for the same values of the parameters. We
present a detailed study of these periodic solutions and their bifurcations. Starting from an integrodifferential
model, we show how to reduce the system to a set of finite-dimensional maps. We then demonstrate that
the parameter regions of existence of periodic solutions can be understood in terms of discontinuity-induced
bifurcations and their stability is determined by smooth bifurcations. Using this technique, we are able to show
that slowly oscillating solutions are always stable if they exist. We also demonstrate the coexistence of stable
periodic solutions with quasiperiodic solutions.
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I. INTRODUCTION

This paper is concerned with the dynamics of time-delayed
relay systems. Such systems have great practical importance,
as relay control-systems are applied in many different areas of
engineering. In relay control, the control signal is a piecewise
constant function of the measured output, typically switching
between just two values. In addition, the control signal is often
delayed due to finite signal transmission and processing times,
sampling delays, or other latencies in control loops. As a re-
sult, the controlled system is described by a nonsmooth delay
differential equation (DDE). Aside from control applications,
nonsmooth DDEs arise as descriptions of naturally occurring
systems for which nonlinearities are well approximated by
functions that take on discrete values [1,2]. Due to their impor-
tance, nonsmooth DDEs have been the focus of much recent
attention [1–7].

Another reason to study relay systems is that analytic
results become possible. Delay differential equations have,
generically, an infinite dimensional state space [8], corre-
sponding to the fact that the initial condition consists of the
history of the system over the entire delay interval. The high-
dimensionality makes the study of DDEs challenging. Under
relay feedback, the dynamics can be reduced to the dynamics
of finite dimensional maps, which leads to significant simpli-
fications of the analytic treatment. The trade-off is that the
interplay between the discontinuous relay feedback (switch-
ing) and delay leads to unique types of bifurcation scenarios,
so-called discontinuity-induced bifurcations [7].

The dynamics of first-order time-delayed relay systems is
well understood. Under some mild assumption on the DDE,
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it can be shown that solutions will converge to an orbitally
stable slowly oscillating periodic solution [3,4].

However, first-order systems are insufficient to describe
many naturally occurring phenomena and technological ap-
plications. Often, second-order models are required to capture
the essence of the dynamics. Yet the classification of possible
solutions of second-order time-delayed relay systems remains
largely incomplete. Even information concerning the proper-
ties of just the periodic solutions is only partially answered,
especially for arbitrary choices of parameters.

For second-order models, an interesting possibility arises
in control applications because the relay signal can now de-
pend on two variables, e.g., the system position and velocity
[7].

In this paper, we study one of the simplest generic models,
a linear second-order time-delayed relay systems in which
velocity serves as the feedback signal. We show that the
system demonstrates a complex bifurcation structure with sig-
nificant multirhythmicity, the coexistence of multiple stable
periodic solutions [9]. Due to the combination of linear flow
and piecewise-constant feedback, the system can be reduced
to a set of finite-dimensional maps. We use these maps to
analytically determine regions of existence and stability of
periodic solutions.

II. BACKGROUND

Second-order linear DDEs with time-delayed relay feed-
back have the form

α ÿ + β ẏ + γ y = σ sign[g(y(t − τ ), ẏ(t − τ ))], (1)

where α, β, γ , τ are real constants, the dot denotes the deriva-
tive with respect to time t, and σ = ±1 signifies positive or
negative feedback. The function g(y, ẏ) : R2 → R divides the
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y, ẏ plane into two domains, {g < 0} and {g � 0}, and the relay
nonlinearity is modeled as

sign(x) =
⎧⎨
⎩

+1 x > 0
−1 x < 0
0 x = 0.

(2)

If parameters α, β are positive and γ is negative, then
Eq. (1) is analogous to an inverted pendulum with relay feed-
back. The case where the delayed relay signal depends on the
position, g = y(t − τ ), has been discussed in Ref. [5]. It was
shown that a unique stable periodic orbit is possible under
certain conditions on the parameters. These conditions can
be relaxed if the delayed relay signal depends not only on
position but velocity as well, as shown in Ref. [7].

If parameters α, β, γ are positive, then Eq. (1) represents
a harmonic oscillator with relay feedback. Such a model with
β = 0 and the delayed relay signal depending on the position
is discussed in Refs. [1,10], with the model originating from
experimental studies on the pupil light reflex [11]. A rich set
of bifurcations and solutions was identified [1].

In this paper, we discuss Eq. (1) with positive parameters
α, β, γ and the delayed relay signal depending on the velocity.
This situation was also considered in Ref. [6] in an investiga-
tion of switch-mode power converters. Using numerical case
studies, the authors found periodic orbits as well as smooth
and discontinuity induced bifurcations similar to our results.
In contradistinction to their work, we present explicit analytic
solutions, which allow us to develop a more complete picture
of this system.

III. MODEL

We consider a delayed feedback system consisting of a
two-pole bandpass filter with scalar (dimensionless) output
x that is delayed by τ and passed through a relay, with the
resulting signal serving as the scalar input to the bandpass
filter.

A convenient form for a two-pole bandpass-filter transfer
function, written in terms of angular frequency ω, is

H (ω) = 1

1 + iQ(ω/ωc − ωc/ω)
, (3)

where ωc is the center angular frequency, i.e., the angular
frequency of maximum transmission with |H (ωc)| = 1, and
Q is the quality factor, defined as the ratio of the center
frequency and filter bandwidth [12]. The zero response (or
natural response) of the filter describes the transient response
of the filter due to nonzero initial conditions. It is oscillatory
if Q > 1/2, the underdamped regime, and nonoscillatory if
Q < 1/2, the overdamped regime.

We can associate the following integrodifferential equa-
tion to the system:

x + Q

ωc

dx

dt
+ Q ωc

∫ t

x(s) ds = σ sign(x(t − τ )), (4)

where the right-hand side is the input signal to the bandpass
filter (left-hand side). We distinguish positive (σ = +1) and
negative (σ = −1) feedback.

For our analysis, it is convenient to reference time to the
delay by introducing dimensionless time t via t = t/τ and to

introduce the parameter �, defined as the product of the filter’s
center frequency and the delay:

� = ωc τ. (5)

Furthermore, we introduce a variable y that satisfies ẏ =
Q� x, where the dot denotes the derivative with respect to
dimensionless time t . This yields the nonsmooth DDE,

Q �−1 ẋ = −x − y + σ sign(x(t − 1)), (6a)

ẏ = Q � x, (6b)

which is equivalent to Eq. (1) with g = ẏ(t − τ ), α = (τ/�)2,
β = τ/(Q�), and γ = 1. Model (6) depends on two positive
dimensionless parameters: (1) the quality factor Q, set by the
fractional bandwidth of the filter, and (2) the parameter �. For
a fixed center frequency, � increases proportional to the delay.
Alternatively, for a fixed delay, � increases with the filter’s
center frequency. If � = 2π , then a sinusoidal signal with
a period equal to the delay τ has a frequency that coincides
with the filter’s center frequency. If � > 2π (� < 2π ), then
a sinusoidal signal with period τ has a frequency smaller
(larger) than the center frequency and will be attenuated by
the filter.

IV. SAMPLE SOLUTIONS AND SYMBOLIC
REPRESENTATION

To solve the delayed relay system (6), we note that it is suf-
ficient to keep track of the headpoint coordinates x(t ), y(t ) and
the sign of x in the delay interval or, equivalently, the times
τn at which x crosses zero with t − 1 < τk < τk−1 < · · · <

τ1 � t . The state of the system at time t is, therefore, captured
by a tuple of variable length k + 2, (x, y; τ1, τ2, . . . , τk ). The
solution can be obtained in terms of a discrete time map acting
on the state that maps between key events. There are two key
events that occur:

(1) A zero element is added at time t = tn. When x passes
through zero, a zero element equal to tn is added to the state;
increasing the length of the tuple by one. This event does not
immediately cause the relay feedback to change but it will
switch the sign of the feedback at time tn + 1. Such an event
is denoted by the symbol Z if x transitions from x < 0 to x > 0
and by Z for the opposite transition.

(2) A zero-crossing time is removed from the history.
When τk (t ) = t − 1, τk is deleted from the state tuple. The
sign of the relay feedback switches. Such an event is denoted
by the symbol H if the feedback switch is due to a transition
from x(t − 1) < 0 to x(t − 1) > 0 and by H for the opposite
transition.

Between consecutive events, the feedback term is constant,
either +1 or −1. The evolution is given by the solution of a
linear ordinary differential equation (ODE). Explicit solution
of the ODE allows us to construct an iterative map that moves
the system forward in time from one event to the next.

The ODE flow for constant feedback has a stable fixed
point that lies on the switching manifold and is either a node
[see Fig. 1(a)] or a spiral [see Fig. 1(b)]. In the latter case,
trajectories are guaranteed to cross the switching manifold
such that solutions of DDE (6) are necessarily oscillatory.
In the former case, there are initial conditions that result in
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FIG. 1. Periodic solutions for negative feedback (σ = −1). (a),
(b) Projection onto x − y plane (thick black line), ODE flows associ-
ated with a fixed constant sign of the relay term (thin blue and purple
lines), and switching manifold (thin grey line at x = 0); (c), (d) x(t )
with events indicated. (a), (c) Parameters: Q = 0.4, � = 7. Sym-
metric frequency-two solution [H, Z, H , Z]S

2. (b), (d) Parameters:
Q = 1.5, � = 14, symmetric frequency-three solution [H, Z, H , Z]S

3.

nonoscillatory solutions to DDE (6), ones that approach the
fixed point without ever crossing the switching manifold. In
this paper, we focus on oscillatory solutions and will exclude
such initial conditions from consideration. We also exclude
from consideration the unstable trivial solution (x = y = 0).

To any oscillatory solution corresponds a symbolic-
sequence representing the events. Periodic solutions are
represented by a repeating sequence of events [S1, S2, . . . , Sn]
with Si ∈ {H, H , Z, Z}. Since every cyclic permutation of the
repeating sequence represents the same solution, we start all
sequences with H for the sake of consistency.

To label distinct periodic solutions that have an identical
symbol sequence, we define a discrete number—the oscilla-
tion frequency ν, which is the number of x-zero crossings on
the unit time interval of the delay preceding a time t at which
x(t ) is zero. A periodic solution is said to be slowly oscillating
if ν = 0 and rapidly oscillating if ν > 0. ν is the minimum
value of k observed during the period of the solution, with
the periodic solution’s state tuple (x, y; τ1, τ2, . . . , τk ) never
exceeding a length of ν + 3.

We further label solutions by their symmetry. We note
that DDE (6) remains invariant under the operation (x, y) →
(−x,−y). Periodic solutions that possess this symmetry are
called symmetric, otherwise they are asymmetric. Asymmet-
ric periodic solutions come in symmetry-related pairs.

Thus, our scheme for labeling periodic solutions symboli-
cally is

[S1, S2, . . . , Sn]sν, (7)

with event symbols Si ∈ {H, H , Z, Z}, frequency ν =
0, 1, 2, . . ., and symmetry label s ∈ {S, A} for symmetric
and asymmetric solutions, respectively.

As an example, we depict in Fig. 1 two periodic solu-
tions and, for each, indicate Z , Z events by circles and H ,
H events by squares. The solution shown in Fig. 1(c) is
a symmetric solution with frequency ν = 2 and repeating
four-symbol sequence [H, Z, H , Z]S

2. The periodic solution in
Fig. 1(d) is a symmetric ν = 3 solution with symbol-sequence
[H, Z, H , Z]S

3.
The frequency label ν can be related to the symbolic repre-

sentation by noting that every H (H) event is associated with a
Z (Z) event one delay time in the past. The frequency ν can be
understood as the number of Z/Z symbols in between. As an
example, consider the ν = 2 solution in Fig. 1(c). The H event
at t = 0 that is indicated by the filled square is associated with
the Z event at time t = −1 and there is one Z and one Z in
between.

V. PERIODIC SOLUTIONS

In this section, we discuss periodic solutions to the delayed
relay system (6) and present an overview of their parameter
regions of stability and bifurcations. Periodic solutions and
their bifurcations are analytically calculated and characterized
using a set of finite-dimensional maps, which are defined and
analyzed in Sec. VIII onward.

A periodic solution of Eq. (4) with period P and discrete
frequency ν will also be a solution of Eq. (4) if the delay
is changed to τ ′ = n P + τ (n = 1, 2, . . .) because this map-
ping leaves Eq. (4) unchanged. With respect to the delay τ ′,
this periodic solution has a discrete frequency ν ′ > ν (for a
four-symbol symmetric solution ν ′ = ν + 2n). In terms of the
dimensionless DDE (6), this mapping implies xν ′ (t |�′, Q) =
xν (t |�, Q). Here, xν (t |�, Q) denotes a periodic solution of
DDE (6) with frequency ν and xν ′ (t |�′, Q) the correspond-
ing ν ′-frequency solution of DDE (6) with the � parameter
changed to �′ = � + ωcnP. Under this mapping, the � in-
terval of existence of xν (t |�, Q) results in a corresponding
interval of existence of the ν ′-frequency solution. If these
intervals overlap, the ν and ν ′ frequency solutions coexist,
suggesting that DDE (6) may have an infinite number of
coexisting periodic solutions (since n is arbitrary). While sug-
gestive, it is necessary to study solutions and their domain of
existence in more detail to confirm coexistence and determine
stability.

Figures 2 and 3 demonstrate not only the presence of co-
existing periodic solutions but strong multirhythmicity of the
system.

In Fig. 2, each color represents a mode of stable periodic
oscillations, where by a mode we mean a periodic solution of
DDE (6) that varies smoothly with parameters Q,�. As seen
by the overlapping regions in Fig. 2, there are many stable
periodic solutions that coexist. We note that only the seven
modes with the lowest frequency are shown and additional
overlaps would appear as more modes are included.

In the underdamped regime (Q > 1/2), holding Q fixed
and changing �, periodic solutions are stable for a finite �

interval. This is consistent with the intuition that the frequency
of each oscillating mode should be commensurate with the
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FIG. 2. Stable symmetric periodic solutions in �–Q parameter
plane for negative feedback. Each (colored) region corresponds to a
stable mode. These four-symbol symmetric modes are distinguished
by their associated discrete frequencies ν. At the boundaries (colored
lines), the modes are destabilized through bifurcations.

filter’s passband. Surprisingly, this intuition fails for the over-
damped regime (Q < 1/2).

In the overdamped regime, the number of coexisting stable
modes increases without bound as � increases, as indicated
in Fig. 2, where the overlap of all colors (resulting in brown)
means that all the depicted modes are stable. For this reason,
multirhythmicity is particularly pronounced.

To demonstrate the strong multirhythmicity in the over-
damped regime more clearly, we show in Fig. 3(b) the inverse
period as a function of � for the seven periodic solutions
[H, Z, H , Z]S

ν , with ν = 0, 2, 4, 6, 8, 10, 12 (bottom to top)
that correspond to the seven modes shown in Fig. 2. As �

increases, all periodic solutions are stabilized via torus bi-
furcations (Neimark-Sacker bifurcations of the Poincaré map)
and remain stable. As seen in Fig. 3(b), the periodic solutions
remain stable even if their fundamental frequency is well
below the low-frequency 3dB cutoff of the filter. We argue that
no additional bifurcations occur for values of � beyond those
shown in Fig. 3(b) (see Sec. VIII). This, for a fixed filter and
upon recalling the definition of � given by Eq. (5), implies
that the number of coexisting stable modes continues to grow
as the delay τ is increased.

In contradistinction to the overdamped regime, in the un-
derdamped regime the periodic oscillations gain and lose
their stability as � increases. As seen in Fig. 3(a), there is
a strong correspondence between the intervals of � in which
modes are stable and the passband of the filter. The depicted
symmetric periodic solutions gain and lose their stability via
Neimark-Sacker bifurcations; the only exception is the low-
est frequency mode, shown as the red bottommost line in
Fig. 3(a), which loses stability in a pitchfork bifurcation.

In Fig. 3(a), circles indicate for each mode the values of �

at which the H/H headpoint is at the switching manifold, i.e.,
xH = 0. At the first such point (open circles), the headpoint
simply passes through the switching manifold and the periodic
solution continues to exist. However, the symbol sequence

FIG. 3. Inverse period versus � for negative feedback and
(a) underdamped regime with Q = 1.5 and (b) overdamped regime
with Q = 0.45 (shown by dashed lines in Fig. 2). Periodic solu-
tions: stable (thick line), unstable (thin line). Smooth bifurcations:
Neimark-Sacker (squares) and pitchfork (diamonds) bifurcations.
Discontinuity induced transitions (circles): the H/H headpoint is at
switching manifold, i.e., xH = 0. Filter (shaded region): Passband as
defined by 3dB frequencies.

switches: [H, Z, H , Z]S
ν with ν = 0, 2, 4, 6, 8, 10 (bottom to

top) becomes [H, Z, H , Z]S
ν with ν = 1, 3, 5, 7, 9, 11, respec-

tively. For example, the curve second from the bottom in
Fig. 3(a) (blue curve) is a single mode associated with periodic
solution labels [H, Z, H , Z]S

2 and [H, Z, H , Z]S
3. We refer to

this mode as the ν = 2, 3 four-symbol symmetric mode. At
the second xH = 0 point of each mode (filled circles), there
is a discontinuity-induced bifurcation and the mode ceases to
exist.

VI. BIFURCATION ANALYSIS

Next we turn to a detailed numerical bifurcation analysis
of one of the modes, the ν = 2, 3-mode, to elucidate stability
regions, bifurcations, and boundaries of existence. The bi-
furcation diagram produced is representative; we find similar
bifurcations for other modes.

For each symbol sequence and given discrete frequency ν,
the DDE reduces to a map with fixed dimension. The fixed
points of this map correspond to periodic orbits. Orbit loca-
tion and stability can be determined numerically by using the
MATCONTM continuation software [13] as well as analytically
(see Sec. VIII for details).

In Fig. 4, we label bifurcations by the fixed point bi-
furcations of the map. The Neimark-Sacker and pitchfork
bifurcation curves in Fig. 4(a) are analytic and coincide with
curves obtained using numeric continuation. Also given is the
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FIG. 4. Bifurcations of the ν = 2, 3-mode for negative feedback:
Neimark-Sacker (NS) and pitchfork (PF). (a) �–Q parameter plane
(b) xH of ν = 2, 3-mode (blue) versus � for Q = 1.5 with connect-
ing asymmetric (red) and 12-symbol (black) branches also shown.
Periodic solutions: stable (thick line), unstable (thin line). Smooth
bifurcations: Neimark-Sacker (filled squares) and pitchfork (filled di-
amond). Discontinuity-induced transitions (circles). Open diamonds:
See Fig. 5.

number of unstable directions, i.e., the number of eigenval-
ues of the Jacobian of the map with magnitude larger one.
The parameter region with zero unstable directions, including
the two bounding Neimark-Sacker bifurcation curves, corre-
sponds to the ν = 2, 3 region (enclosed by blue curves) in
Fig. 2.

Fixing the parameter Q to Q = 1.5, we obtain the curves
in Fig. 4(b) via numeric continuation. Shown is the value of x
at the H event as a function of �. It is seen that the ν = 2, 3-
mode (blue) is stable (thick line) in between the subcritical
Neimark-Sacker bifurcation at � = 4.75 and the supercritical
Neimark-Sacker bifurcation at � = 14.78. All other periodic
solutions shown are unstable.

The conditions for construction of the finite-dimensional
maps that capture solutions of the DDE are that the projection
of the solution onto the x − y plane has the following two
properties:

(1) The set of Z/Z-event points is finite and disjoined from
the set of H/H -event points.

(2) The flows are transverse to the switching manifold at
all intersections.

If one of those conditions is violated, a discontinuity in-
duced transition occurs.

Due to the symmetry of DDE (6), the flow is always
transversal to the switching manifold, with the consequence

FIG. 5. Solutions corresponding to open diamonds in Fig. 4(b)
with the H event used for xH indicated by a solid square. Four-symbol
symmetric ν = 2, 3-mode: (a) � = 9.51, ν = 2, (b) � = 10.79, ν =
3, (c) � = 20.46, ν = 3. 12-symbol symmetric solution: (d) � =
20.46, ν = 10. Inset: Detail showing that xH is positive (solid square)
and that there are additional x-zero crossings close by (open circles).

that all discontinuity-induced transitions arise due to a viola-
tion of condition (1).

The violation of condition (1) means that an H/H -point
of a solution reaches the switching manifold. Since at an
H/H -point the solution switches from one to the other flow,
the graph of the solution typically has a corner. For this rea-
son, such discontinuity-induced transitions are called corner
collisions. We should mention that the corner collisions in our
system violate one of the genericity conditions of Sieber [7]
(condition 10b in Ref. [7]) due to the symmetry and perfect
linearity of our system. Nevertheless, the corner collisions in
our system do fall into the typical two main types:

In the first type, the part of the periodic orbit that is close
to the colliding H/H point intersects the switching manifold
transversally. That is, in the vicinity of the H/H point both
flows cross the switching manifold in the same direction.
In this case, as the bifurcation parameter is changed, the
headpoint moves smoothly through the switching manifold,
resulting in a smooth deformation of the periodic solution.
The mode, understood as a periodic solution of the DDE,
continues to exist. This is shown in Figs. 5(a) and 5(b). How-
ever, because the symbol sequence switches and the number
of zeros within the delay interval increases, the corresponding
map changes discontinuously. Its dimension increases by one.

In the second type of corner collision, the part of the
periodic orbit that is close to the colliding H/H -point lies
entirely on one side of the switching manifold for bifurcation
parameter values slightly below the critical value. That is,
in the vicinity of the H/H point, the two flows cross the
switching manifold in opposite directions. In this case, the
mode disappears in a discontinuity-induced bifurcation. This
is shown in Fig. 5, where the four-symbol symmetric ν = 3
mode is shown in Fig. 5(c) and for the same value of � a
coexisting 12-symbol symmetric ν = 10 periodic solution is
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FIG. 6. Detail of asymmetric solution [H, Z, H , Z]A
3 created via

a pitchfork bifurcation (PF). (a) Zoom of Fig. 4(b) near PF: period
doubling (PD) bifurcation, saddle-node (SN) bifurcation. Open dia-
mond: solution shown in (b) and (c).

depicted in Fig. 5(d). These two solutions coincide and cease
to exist at the critical value of �.

Whereas discontinuity-induced transitions of periodic so-
lutions of the DDE determine the range of validity of the
corresponding map of a particular fixed dimension, standard
smooth bifurcations of the periodic solutions of the DDE
correspond to standard bifurcations of fixed points of the map.

In Fig. 6, we show that the pitchfork bifurcation of the
ν = 3 symmetric solution leads to a symmetry-related pair
of asymmetric solutions (we only depict the branch of one
of the two solutions). The asymmetric solution undergoes
its own bifurcations, as seen in Fig. 6(a). Although these
bifurcations reduce the number of unstable eigenvalues, the
solution remains unstable. The asymmetry is apparent in the
x − y projection of Fig. 6(b) and the timetrace depicted in
Fig. 6(c). Similarly to the symmetric solutions, when the
H point of the asymmetric solution reaches the switching
manifold (xH → 0), the solution disappears in a discontinuity
induced bifurcation [see Fig. 4(b)].

We note that asymmetric solutions can be stable, such
as the asymmetric solutions created via the ν = 0, 1-mode’s
pitchfork-bifurcation that is shown as a diamond symbol on
the lowest (red) curve in Fig. 3(a).

VII. QUASIPERIODIC SOLUTIONS

Supercritical Neimark-Sacker bifurcations suggest the ex-
istence of stable quasiperiodic solutions of DDE (6). We
indeed find such solutions, as shown in Fig. 7(a), where we
plot 105 iterates of the discrete map between H events for
Q = 1.5 and several values of �. Initial iterates associated
with the transient approach of the attractor were discarded.
For values of the parameter slightly larger than the supercrit-
ical Neimark-Sacker bifurcation value (� = 14.78), the map
iterates form a closed curve, indicating the existence of a torus
attractor of DDE (6). The size of the torus grows smoothly as
� is increased, as shown in the inset of Fig. 7(a). Numerically,
we were unable to find a stable torus attractor for values

FIG. 7. Quasiperiodic solutions for negative feedback (σ = −1).
Projection onto xH − yH plane. (a) Supercritical Neimark-Sacker
bifurcation of four-symbol symmetric ν = 3 periodic solution (filled
square in Fig. 4). Parameters: Q = 1.5 and � ranging from 14.78 to
14.84. Inset: yH along the dashed line as a function of �. (b) Coexist-
ing stable four-symbol symmetric ν = 3 periodic solution and stable
quasiperiodic solution for Q = 1.93 and � = 14.56.

greater than � = 14.84. It would be interesting to determine
the cause and explain the peculiar attractor shape at the largest
value of �, but we did not pursue this question.

By using previous solutions as initial conditions and chang-
ing both Q and � by small increments, it is possible to follow
the largest torus attractor to Q = 1.93 and � = 14.56. For
these parameters, the torus attractor coexists with the stable
periodic solution, which we show in Fig. 7(b). For fixed
Q = 1.93, stable torus attractors of growing amplitude are
still created via a supercritical Neimark-Sacker bifurcation of
the periodic solution as � is increased past the bifurcation
value. However, the torus curve then folds back, such that
large amplitude torus attractors exist for � values smaller than
the bifurcation value, leading to the coexistence depicted in
Fig. 7(b).

Thus, we find rich dynamics in the underdamped regime.
Not only are multiple stable periodic solutions present (mul-
tirhythmicity) but there are also parameter regions where, in
addition, stable quasiperiodic solutions coexist.

In the overdamped regime, all of the Neimark-Sacker bi-
furcations found are subcritical. We were not able to locate
any stable torus attractors but cannot exclude their existence.
What we find is strong multirhythmicity, a large number of
stable coexisting periodic solutions for large �.

VIII. THEORY

The DDE (6) is reduced to discrete-time finite-dimensional
mappings between events by exploiting the linearity of the
system to explicitly calculate the flow for times in between
events. Defining the headpoint at time t = 0 with v = (x, y)T ,
the flow is given by

�+(t, v) = A(t ) v + b(t ) (8)

if σ · sign(x(−1)) = +1 and by

�−(t, v) = A(t ) v − b(t ) (9)

if σ · sign(x(−1)) = −1. Here,

A(t ) = e−μt

(
cos(ωt )− μ sin(ωt )

ω
− 2μ sin(ωt )

ω
μ2+ω2

2μ

sin(ωt )
ω

cos(ωt )+ μ sin(ωt )
ω

)
(10)
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and

b(t ) =
(

e−μt 2μ sin(ωt )/ω

1 − e−μt (cos(ωt ) + μ sin(ωt )/ω)

)
, (11)

and we introduced the abbreviations

μ = �

2Q
, ω = �

√
4Q2 − 1

2Q
. (12)

The damping constant μ is positive real for all values of �

and Q, whereas ω is positive real if Q > 1/2 but imaginary if
Q < 1/2. In the latter case, ω = i|ω| = �

√
1 − 4Q2/(2Q)

and in Eqs. (10) and (11), one may use the identities
cos(ωt ) = cosh(|ω|t ) and sin(ωt )/ω = sinh(|ω|t )/|ω|. The
flow �± has a single stable fixed point at v∗ = (x, y)T =
(0,±1), which is a spiral if Q > 1/2 (underdamped regime)
and a node if Q < 1/2 (overdamped regime).

As an example of a mapping between events, let us con-
sider a time tn at which there is a Z-type event, such that
x(tn) = 0, and assume σx(tn − 1) < 0 as well as ν > 0, mean-
ing that there is at least one zero crossing in the history
interval. Whether the next event is of H type or Z type is
determined by evaluating the time required to reach either
event under the assumption that the feedback sign does not
switch and then picking the event that occurs first. The time
interval to the subsequent H-type event is

δ = τν + 1 − tn, (13)

whereas the time interval z to the next Z-type event is deter-
mined by solving (

0
y

)
= �−(z, vZ ) (14)

for the smallest positive z. Here, vZ = (0, yZ )T is the Z-
headpoint at time tn. The map to the headpoint of the next
event is then

v = �−(min{δ, z}, vZ ). (15)

In addition to updating the headpoint, the times of zero cross-
ings in the history interval need to be updated. If an H-type
event follows the Z-type event (δ < z), then the number of
zero crossings is unchanged because one zero crossing is
removed and another added. If a Z-type event follows (z < δ),
then the dimension of the state vector is increased by one.
Similarly, if two H-type events follow one another, then the
number of zero crossings and the dimension of the state vector
are reduced by one.

Stable periodic solutions of the DDE (6) that were found
numerically are all of the same type; they all are symmetric
four-symbol solutions consisting of alternating H-type and Z-
type events. As stable solutions are important for applications,
we provide next details about the relevant Poincaré map, its
fixed points, and their bifurcations.

A. Map of four symbol symmetric solutions

We consider four-symbol periodic solutions of DDE (6)
with a symbol sequence consisting of alternating H-type and
Z-type events, that is, either a repetition of the sequence
H, Z, H , Z or of H, Z, H , Z . These solutions correspond to

FIG. 8. Time intervals Tj,n ( j = 1 . . . ν), δn, and zn. Also shown,
the time intervals after one iteration of the state vector, sn+1 =
M+

ν (sn).

fixed points of a Poincaré map Pν that maps the solution
forward by four events per step.

Since these solutions have alternating H-type and Z-type
events, the discrete frequency ν, which counts the number of
zero crossings in the history, remains constant.

Although we found it advantageous to keep track of H
headpoints and their position relative to the switching man-
ifold when doing numerics, in terms of theory it is convenient
to map between Z-type events, in which case the ν + 1 in-
dependent variables can be chosen to be the ν time intervals
between x zero crossings and the y coordinate of the head-
point. The x coordinate of the Z-event headpoint is zero by
definition.

In particular, let us consider a solution at some Z-type
instance t = tn, meaning x(tn) = 0. Furthermore, assume that
σx(tn − 1) < 0 and there are ν zero crossings of x of the his-
tory function at times τ j with j = 1 . . . ν and τ j ∈ (tn − 1, tn).
Let Tj,n denote the ν time intervals between x zero crossings,
i.e., T1,n = tn − τ1 and Tj,n = τ j−1 − τ j for j = 2, . . . , ν (see
Fig. 8). Denote the headpoint at time tn by vZ,n = (0, yZ,n)T

and define the (ν + 1)-dimensional state vector as

sn = (yZ,n, T1,n, T2,n, . . . , Tν,n)T . (16)

The headpoint of the subsequent Z-type event is given by the
map

vZ,n+1 = �+(zn,�−(δn, vZ,n)). (17)

The flow �− shifts the solution until the next sign change of
x(t − 1), which is an H event for positive feedback (σ = 1)
and an H event for negative feedback (σ = −1), with the time
interval to the crossing being

δn = 1 −
ν∑

j=1

Tj,n = 1 −
ν+1∑
i=2

si,n, (18)

if ν > 0 and δn = 1 if ν = 0. The flow �+ then shifts the
solution to the subsequent Z-type event. The time interval for
this mapping is

zn(sn) = 1

ω
arctan

(
e−μδn sin(ωδn)(yZ,n + 1)

2 − e−μδn cos(ωδn)(yZ,n + 1)

)
. (19)

Utilizing the headpoint mapping given by Eq. (17), we
define a map M+

ν that updates the state vector, implementing
the two-symbol Z-to-Z shift,

M+
ν (sn) = (yZ,n+1, δn + zn, T1,n, . . . , Tν−1,n)T . (20)

The map M+
ν is frequency preserving because one zero is

removed and one zero is added to the history. In addition,
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denote with M−
ν the corresponding two-symbol shift map

which advances the solution through one more H-type event
to the subsequent Z-type event.

The symmetry of DDE (6) means that one can express M−
ν

in terms of M+
ν by defining the operation of a sign flip as

Rν (sn) ≡ R sn, (21)

with R being a (ν + 1) × (ν + 1) diagonal matrix with R11 =
−1 and Rj j = 1 ( j = 2, . . . , ν + 1). Then

M−
ν = Rν ◦ M+

ν ◦ Rν . (22)

Therefore, the Poincaré map Pν that maps a four-symbol ν-
frequency solution forward by four symbols is

Pν = Rν ◦ M+
ν ◦ Rν ◦ M+

ν = (Rν ◦ M+
ν )2. (23)

To investigate symmetric periodic solutions it suffices to
study the fixed points of the map Mν = Rν ◦ M+

ν . Explicitly,
sn+1 = Mν (sn) is

s1,n+1 = −1 + 2 cos(ωzn) e−μzn

− (s1,n + 1) cos(ω[δn + zn]) e−μ[δn+zn],

s2,n+1 = δn + zn,

s3,n+1 = s2,n,

...

sν+1,n+1 = sν,n,

(24)

if ν > 0. The slowly oscillating solutions (ν = 0) are gov-
erned by the map

s1,n+1 = − 1 + 2 cos(ωzn) e−μzn

− (s1,n + 1) cos(ω[1 + zn]) e−μ[1+zn]. (25)

B. Fixed points

Symmetric periodic solutions with discrete period ν are
fixed points of Mν . Consistent with the symmetry require-
ment, the simple structure of Mν immediately confirms that
the fixed-point solutions have equal time-intervals between x
zero crossings. We denote this time interval, the switching
interval, by T ∗. It is half of the period Pν of the correspond-
ing four-symbol symmetric periodic solution, i.e., T ∗ = Pν/2.
The period satisfies the constraint

2

ν + 1
< Pν <

2

ν
. (26)

The switching time is the sum of the non-negative time δ∗ to
the next sign switch of the feedback and the non-negative time
z∗ to the subsequent zero crossing, T ∗ = z∗ + δ∗.

In the underdamped regime (Q > 1/2), the ODE-flow �±
crosses the switching manifold repeatedly, and one needs the
inequalities

z∗ = (ν + 1) T ∗ − 1 < π/ω (27)

and

δ∗ = 1 − ν T ∗ < π/ω (28)

to ensure that the map’s fixed point corresponds to a sym-
metric periodic solution with alternating H-type and Z-type

events, as required by the assumptions made in deriving
the map Mν . Recalling that ω = �

√
4Q2 − 1/(2Q), the in-

equalities mean that, for a fixed non-negative integer ν, the
corresponding symmetric periodic solution only exists in
some region of �, Q parameter space [see Figs. 2 and 3(a)].

In the overdamped regime (0 < Q < 1/2), the ODE-flow
�± can cross the switching manifold at most once and no
limits on T ∗ exist. Instead, there are limits on the discrete fre-
quency, ν must be even if the feedback is negative (σ = −1)
and odd if the feedback is positive (σ = +1). The implication
is that there exist symmetric periodic four-symbol solutions
for any even (odd) non-negative integer ν in the case of neg-
ative (positive) feedback. The seven lowest frequency modes
for negative feedback are shown in Fig. 3(b).

Assuming the above conditions are satisfied, the state vec-
tor of the fixed point is

s∗ = (y∗
Z , T ∗, . . . , T ∗)T , (29)

(s∗ = y∗
Z if ν = 0) with the switching interval T ∗ given im-

plicitly by the (smallest) positive root of

tan(ω[(ν + 1)T ∗ − 1]) = sin(ωT ∗)

eμT ∗ + cos(ωT ∗)
(30)

and the y coordinate of the Z-type event being

y∗
Z = −1 + 2

eμz∗ cos(ωz∗) + e−μδ∗ cos(ωδ∗)
. (31)

C. Corner collisions

In terms of the fixed points of map Mν , corner collisions
occur if one of the conditions Eqs. (27) and (28) is violated.
In such a case, there no longer exists a valid fixed point of
Mν . The corresponding periodic solution of the DDE (6) may
cease to exist due to a bifurcation or it may continue to exist
but correspond to a fixed point of a different map, such as Mν ′

with ν ′ �= ν. Mν exhibits both types of corner collisions:
(1) As ω approaches ω → (ν + 1)π from below, we

find that condition (28) is violated because δ∗ → 1
ν+1

(and z∗ → 0). The H/H -event point of the symmetric periodic
solution approaches the switching manifold and collides with
the Z/Z-event point of the periodic solution. That is, as the
parameter ω is increased from below to above ω = (ν + 1)π ,
the headpoint of the four-symbol symmetric periodic moves
through the switching manifold and the ordering of the four-
symbol sequence changes due to Z/Z and H/H symbols
exchanging places. Furthermore, the number of zero cross-
ings ν in the unit delay interval increases by one, such that
one needs to consider the fixed points of the map Mν+1 to
continue the periodic solution.

(2) As ω approaches ω → (2ν + 1)π from below, we find
that conditions (27) and (28) are violated because z∗ → 1

2ν+1

and δ∗ → 1
2ν+1 . The H/H -event point approaches the switch-

ing manifold but does not collide with a previously existing
Z/Z-event point. Instead, the four-symbol symmetric periodic
solution collides with another “nearby” periodic solution and
ceases to exist.

Nearby periodic solutions must be solutions with sym-
bol sequences of more than four symbols per period,
such as 8, 12, 16, . . . symbols. We find that there exists a
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symmetric 12-symbol periodic solution that coexists with the
four-symbol periodic solution and collides with it at the crit-
ical value of ω. One may view this 12-symbol solution as a
fixed point of the third iterate of Mν , one that is distinct from
the fixed point of Mν . We omit the algebra, but show in Fig. 4
the numerical continuation of a 12-symbol solution that was
obtained analytically.

D. Smooth bifurcations

In addition to discontinuity induced transitions, the stabil-
ity of a symmetric four-symbol periodic solutions can change
due to smooth bifurcations. These correspond to standard
bifurcations of the fixed points of the map Mν . Bifurca-
tion curves in parameter space are found by determining the
characteristic roots of Mν linearized about the fixed point.
Since the Poincare map of symmetric periodic solutions is
Pν = M2

ν , it is the square of a characteristic root of Mν that
determines the bifurcation type.

We find that the Jacobian of the map Mν , given by
Eq. (24), has the form

DMν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b b . . . b b b
c d d . . . d d d
0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0

. . .

0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

with coefficients given in Appendix A. The (ν + 1) roots λ

that satisfy

0 = |DMν − λI| (33)

are solutions to the characteristic equation

0 = [(a−1)d − bc]
1 − λν

1 − λ
+ d − (a + d )λν + λν+1, (34)

as shown in Appendix B.
We first consider ν = 0 periodic solutions, slowly oscillat-

ing solutions. In this case, the characteristic equation reduces
to λ = a. It can be shown that |a| < 1 (see Appendix C),
implying that the characteristic roots have magnitude less
than one independent of the choice of parameters. The slowly
oscillating solutions are always locally stable.

We consider next bifurcations of the rapidly oscillating
symmetric four-symbol periodic solutions (ν > 0), focusing
on those bifurcations that were found numerically, namely,
pitchfork and Neimark-Sacker bifurcations. We provide ex-
pressions that not only allow the bifurcation curves to be
determined analytically but enable us to specify parameter
regions where bifurcations cannot occur.

Pitchfork bifurcations are associated with a characteristic
root equal to +1 of the Poincaré map Pν and arise instead
of a generic saddle-node bifurcation due to the inversion-
symmetry of DDE (6). One needs to consider, therefore,
whether there exist curves in parameter space along which
Mν has a characteristic root that is either λ = 1 or λ = −1.
As shown in Appendix D, there exists no solution λ = 1 of

Eq. (34); pitchfork bifurcations are associated with a charac-
teristic value λ = −1. In this case, Eq. (34) reduces to

0 = −a − 1 if ν even, (35a)

0 = (1 + d ) + e−2μT ∗
if ν, odd, (35b)

where we made use of the identity Eq. (A6). The equality
Eq. (35a), covering the case of even ν, cannot be satisfied
because |a| < 1. The equality Eq. (35b), covering the case
of odd ν, cannot be satisfied in the overdamped regime
nor in the underdamped regime if ωT ∗ < π because under
these conditions it can be shown that d + 1 > −e−2μT ∗

(see
Appendix E). Thus, a pitchfork bifurcation can occur only if
the requirements (1) ν is odd and (2) ωT ∗ > π are simultane-
ously satisfied, which is only possible for negative feedback.
No pitchfork bifurcation of symmetric periodic solutions can
occur if the feedback is positive. For negative feedback, an
example of a pitchfork bifurcation curve found by solving
Eq. (35b) is shown in Fig. 4(a) (the analytically determined
curve and bifurcation curve obtained numerically coincide).
As seen in this example, the pitchfork bifurcation of the sym-
metric periodic solution gives rise to a pair of asymmetric
periodic solutions (Fig. 6).

Neimark-Sacker bifurcations are associated with pairs of
complex conjugate roots of magnitude one. Accordingly, we
seek parameter values for which λ = eiφ with φ ∈ (0, π ) is a
solution to the characteristic equation. After some algebraic
manipulation and separation of imaginary and real parts, we
obtain

0 = [ f1 + cos φ]
sin

(
ν+1

2 φ
)

sin
(

φ

2

) + f2 cos

(
ν

2
φ

)
, (36a)

0 = sin

(
ν + 1

2
φ

)
cos

(
φ

2

)
+ f3 sin

(
ν

2
φ

)
, (36b)

where f1, f2, and f3 are functions of � and Q (see
Appendix F). We utilize Eq. (36b) to obtain φ as a function
of the two parameters, φ = φn(�, Q), where n labels the
complex-root pair. Substitution of φn into Eq. (36a) allows
us then to find the Neimark-Sacker bifurcation curves in the
(�, Q) parameter plane for each of the complex-root pairs.

Examples of Neimark-Sacker bifurcation curves are seen
in Fig. 4(a) for the case of negative feedback. There is one
curve for the ν = 2 periodic solution, which has a three-
dimensional Poincaré map, and two curves for the ν = 3
periodic solution, which has a four-dimensional Poincaré
map.

In the overdamped regime, symmetric solutions with ν > 0
are unstable for small � and become stable after undergoing
an appropriate number of Neimark-Sacker bifurcations as �

is increased [see Fig. 3(b)]. We show in Appendix G that the
ν + 1 roots λ of the characteristic equation are inside the unit
circle in the limit of large �. Thus, in the overdamped regime,
each mode first becomes stable and then retains stability as �

is increased. The number of stable coexisting solutions grows
with �. That is, for any chosen discrete frequency ν∗, there
is a sufficiently large � such that all symmetric four-symbol
periodic solutions with even (odd) ν smaller or equal to ν∗ are
stable and coexist if the feedback is negative (positive).

014223-9



ILLING, RYAN, AND AMANN PHYSICAL REVIEW E 109, 014223 (2024)

IX. DISCUSSION

In this paper, we advance the understanding of periodic
solutions that arise in second-order linear DDEs with re-
lay feedback. The DDE discussed is a representative model
of systems with a delayed and bandpass filtered relay-type
feedback signal. It also represents applications that exhibit
approximate harmonic oscillator type dynamics and have a
time-delayed relay feedback of the velocity signal.

We show that it is useful to distinguish the underdamped
and overdamped regime. In the overdamped regime, all stable
solutions found are periodic, whereas a much richer solution
and bifurcation structure exists in the underdamped regime,
for example, when underdamped, stable periodic orbits can
coexist with stable quasiperiodic solutions. In either regime,
the system exhibits strong multirhythmicity. In terms of ap-
plications in which such systems serve as signal generators,
this means that they are able to produce a large number of
distinct periodic modes. These modes can be accessed either
by controlling initial conditions or through parameter tuning.

Similar to first-order delayed relay systems, the slowly
oscillating solution of DDE (6) is always stable if it exists.
The slowly oscillating solution exists for all parameters in the
overdamped regime if the feedback is negative. It also exists
in the underdamped regime, both for positive and negative
feedback, if � is sufficiently small.

In this paper, we have restricted our investigation to a
linear second-order DDE with symmetry. This significantly
simplified the analytic treatment. If symmetry is lifted, then
smooth bifurcations are expected to unfold in the usual way.
For example, pitchfork bifurcations of periodic-solution fixed
points will unfold into corresponding saddle-node bifurca-
tions, similar to what is found in Ref. [1]. The lifting of the
symmetry, for example, by moving the ODE fixed points off
of the switching manifold, would also affect discontinuity-
induced transitions. Tangential grazing bifurcation [7] become
possible [6]. The techniques described in this paper can be
extended in a straightforward way to the asymmetric case.

The linearity of the ODEs governing the dynamics of
DDE (6) permits an explicit construction of finite-dimensional
maps. For nonlinear ODEs, maps can be constructed near
periodic orbits [7] but global results are more difficult to ob-
tain. Nevertheless, the behavior of the linear system is a good
starting point for studies of related models with nonlinearities.

An interesting extension of our paper would be to con-
sider relays that feature intrinsic hysteretic behavior as well
as delay [14], as this is a good model of many control ele-
ments used in practice. It would also be fruitful to explore
the dynamics of DDE (6) with the steplike relay nonlinearity
replaced by a smoothed version, because infinitely sharp step
functions are not achievable in most applications. One often
finds good correspondence. As an example, climate phenom-
ena described by a DDE model containing a sigmoidal-type
nonlinearity was studied numerically in Refs. [15,16] and the
numerically observed behavior of the smooth DDE could be
explained by analysis of a nonsmooth DDE that resulted from
replacing the sigmoidal nonlinearity with a switching function
[2]. Similarly, a second order DDE related to the pupil light
reflex was investigated hand-in-hand with a related smooth
system in Ref. [1]. While the dynamics in the vicinity of the

nonsmooth bifurcations is strongly changed under transition
to the smoothed system, these changes happen in a controlled
manner, allowing one to establish a clear connection. It would
be valuable to explore the correspondence of smooth and
nonsmooth dynamics for DDE (6).
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APPENDIX A: COEFFICIENTS OF JACOBIAN

The coefficients of the Jacobian matrix of the map Mν are

a = −e−μT ∗[
cos(ωT ∗) + μ

ω
sin(ωT ∗)

]
, (A1)

b = −(μ2 + ω2)(y∗
Z + 1)

e−μT ∗

ω
sin(ωT ∗), (A2)

c = 1

(y∗
Z + 1)

e−μT ∗

ω
sin(ωT ∗), (A3)

d = −1 −
[
cos(ωT ∗) − μ

ω
sin(ωT ∗)

]
e−μT ∗

, (A4)

and we note the following useful identities:

[(a − 1)d − bc] = 1 + 2 cos(ωT ∗) e−μT ∗ + e−2μT ∗
, (A5)

[a(d + 1) − bc] = e−2μT ∗
. (A6)

APPENDIX B: COMPUTATION OF THE
CHARACTERISTIC EQUATION

Consider the determinant of the ν × ν matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ α 0 . . . 0 0 1
1 −λ . . . 0 0 0
0 1 . . . 0 0 0

. . .

0 0 . . . 1 −λ 0
0 0 . . . 0 1 −λ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If, when evaluating the determinant, one pulls out α, pulls out
λ−1 from the second row, λ−2 from the third row, λ−3 from the
forth row, etc., and, subsequently, adds the first to the second
row, the second to the third row, and so forth; then one obtains

det A = α

λ(ν−1)ν/2

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 . . . 0 α−1

0 −λ2 . . . 0 α−1

. . .

0 0 . . . −λν−1 α−1

0 0 . . . 0 α−1 − λν

∣∣∣∣∣∣∣∣∣∣∣
,

which is upper triangular and evaluates to

det A = (−1)ν−1(1 − αλν ). (B1)
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The determinant

�(β ) =

∣∣∣∣∣∣∣∣∣∣∣∣

β 1 . . . 1 1 1
1 −λ . . . 0 0 0
0 1 . . . 0 0 0

. . .

0 0 . . . 1 −λ 0
0 0 . . . 0 1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
can be obtained by pulling out (1 − λ)−1 from the first row,
followed by subtraction of all rows other than the first from
the first row, yielding

�(β )

= 1

1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣

β − 1 − βλ 0 . . . 0 0 1
1 −λ . . . 0 0 0
0 1 . . . 0 0 0

. . .

0 0 . . . 1 −λ 0
0 0 . . . 0 1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
,

which, upon utilizing Eq. (B1), evaluates to

�(β ) = (−1)ν−1

[
1 − λν−1

1 − λ
+ βλν−1

]
. (B2)

Utilizing Laplace expansion on the first column of the matrix
in Eq. (33), for which the Jacobian is given by Eq. (32), and
then pulling out, respectively, d and b, we reduce the problem
to

0 = (a − λ)d �(1 − λ/d ) − c b �(1),

which yields the characteristic equation:

0 = [(a − 1) d − b c]
1 − λν

1 − λ
+ d − (a + d ) λν + λν+1.

APPENDIX C: BOUND ON a

To show that |a| < 1, we treat the underdamped and over-
damped case separately: In the underdamped case, both μ and
ω are positive real and it is seen that |a| < 1 because

|a| = ∣∣e−μT ∗ ∣∣∣∣∣cos(ωT ∗) + μ

ω
sin(ωT ∗)

∣∣∣
�

∣∣e−μT ∗ ∣∣(|cos(ωT ∗)| + (μT ∗)

∣∣∣∣ sin(ωT ∗)

ωT ∗

∣∣∣∣
)

� e−μT ∗
(1 + μT ∗)

< 1. (C1)

If Q < 1/2, such that the system is overdamped, ω is imag-
inary (ω = i|ω|) and μ > |ω| holds, as seen from Eq. (12).
Furthermore, a < 0, such that |a| = −a. We can write

|a| = e−μT ∗
[

cosh(|ω|T ∗) + (μT ∗)
sinh(|ω|T ∗)

|ω|T ∗

]

= e−(μ−|ω|)T ∗
[1 + (μ − |ω|)T ∗]

− (μ − |ω|) e−(μ−|ω|)T ∗

2|ω| [e−2|ω|T ∗ + 2|ω|T ∗ − 1].

Since 0 � e−2|ω|T ∗ + 2|ω|T ∗ − 1 with equality for |ω| = 0,
we find

|a| � e−(μ−|ω|)T ∗
[1 + (μ − |ω|)T ∗] < 1. (C2)

APPENDIX D: NO λ = 1 SOLUTION

There exists no solution λ = 1 because substitution of
λ = 1 into Eq. (34) produces the condition

0 = [(a − 1) d − b c] ν + [1 − a], (D1)

which cannot be satisfied because it has a positive right-hand
side. The first term on the right-hand side is positive because,
after rewriting [(a − 1) d − b c] by using Eq. (A5), one finds

1 + 2 cos(ωT ∗) e−μT ∗ + e−2μT ∗ � (1 − e−μT ∗
)2. (D2)

The second term is positive because |a| < 1, as shown in
Appendix C.

APPENDIX E: BOUND ON d

The purpose of this Appendix is to show that if either
Q � 1/2 and ωT ∗ < π or Q < 1/2, then

−e−2μT ∗
< d + 1. (E1)

To demonstrate this inequality, we consider the expression

g = eμT ∗
(d + 1) = μ

ω
sin(ωT ∗) − cos(ωT ∗), (E2)

where we made use of the definition of d given by Eq. (A4).
We will show that g is bounded from below by

f = −e−μT ∗
. (E3)

We treat the overdamped and underdamped regime sepa-
rately: In the overdamped regime (Q < 1/2), ω = i|ω| =
iμ

√
1 − 4Q2. For convenience, we introduce x = |ω|T ∗ and

y = μ/|ω| in order to rewrite Eq. (E2) as

g = y sinh(x) − cosh(x), (E4)

with x ∈ (0,∞) and y ∈ (1,∞) and f as f = −e−xy. First,
note that g and f are equal at x = 0 and that both f and g
have positive slope with respect to x with g′ > f ′ because g′ =
(y − 1) sinh(x) + ye−x, f ′ = ye−xy, and

(y − 1) sinh(x) + ye−x > ye−x > ye−xy > 0 (E5)

if y > 1 and x > 0. Thus, g > f if x > 0 and y > 1.
If Q � 1/2, ω is real and we introduce the variable φ =

ωT ∗ together with the assumption that 0 � φ < π . For conve-
nience we, furthermore, introduce y = μT ∗ and write Eq. (E2)
as

g = y sinc(φ) − cos(φ) φ ∈ [0, π ), y ∈ (0,∞). (E6)

Utilizing the inequalities e−y > (1 − y) if y �= 0 and 1 �
sinc(φ) > 0 if φ ∈ [0, π ), yields the estimate

− f = e−y > (1 − y) � (1 − y) sinc(φ). (E7)

The bound on d is obtained by noting that sinc(φ) � cos(φ)
if φ ∈ [0, π ), such that

− f > cos(φ) − y sinc(φ) = −g. (E8)
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APPENDIX F: NEIMARK-SACKER BIFURCATION

Here we derive Eq. (36). First note that the characteristic
equation, Eq. (34), can be rewritten as

0 = A
λν+1 − 1

λ − 1
+ (λν+1 − 1) − B(λν − 1) + d + 1 − B,

with A = [(a − 1)d − b c] and B = [(a(d + 1) − bc]. Substi-
tution of λ = eiφ , multiplication by e−iνφ/2, and subsequent
separation of real and imaginary parts gives the equation pair

0 = [ f1 + cos φ]
sin

(
ν+1

2 φ
)

sin
(

φ

2

) + f2 cos

(
ν

2
φ

)
,

0 = cos

(
φ

2

)
sin

(
ν + 1

2
φ

)
+ f3 sin

(
ν

2
φ

)
.

For notational convenience, we introduced f1 = A − 1, f2 =
d + 1 − B, and f3 = −d − 1 − B. Utilizing the definition
(A4) of d as well as the identities Eqs. (A5) and (A6) and
recalling that ω and μ are defined in terms of the parameters
� and Q according to Eq. (12), we find that the functions
fi(�, Q) are given by

f1 = 2 cos(ωT ∗) e−μT ∗ + e−2μT ∗
, (F1)

f2 = −
[
cos(ωT ∗) − μ

ω
sin(ωT ∗)

]
e−μT ∗ − e−2μT ∗

, (F2)

f3 =
[
cos(ωT ∗) − μ

ω
sin(ωT ∗)

]
e−μT ∗ − e−2μT ∗

. (F3)

APPENDIX G: STABILITY OF PERIODIC SOLUTIONS
IN THE OVERDAMPED REGIME

In this Appendix, we show that periodic solutions are stable
in the overdamped regime for sufficiently large �.

We consider a four-symbol symmetric solution of some
fixed discrete frequency ν, holding Q fixed and varying �.
Since, in the overdamped regime, solutions exist for all values
of �, one may consider the limit of large � to simplify the
characteristic equation, Eq. (34).

The period of the periodic solution under consideration
is order 2τ/ν (T ∗ is order 1/ν) and, based on the numeric
simulations, one expects stability to arise when the solution’s
inverse period is in the filter’s passband, meaning that it is
comparable to the filter’s center frequency ωc. Recalling the
definition of � given by Eq. (5), this implies that � must be
at least order ν or, equivalently, that �T ∗ should be order one
or larger.

Assuming sufficiently large �, we introduce the small pa-
rameter

ε = e−μT ∗(1−q),

where μ ∝ � as seen in Eq. (12) and q is defined as q =√
1 − 4Q2. For simplicity, we assume 0 < Q �

√
2/3, which

implies 1/3 � q < 1 and (1 + q)/(1 − q) � 2. Thus, terms
ε (1+q)/(1−q) can be neglected in a first-order approximation of
Eq. (34), yielding

0 = (1 + ε)
1 − λν

1 − λ
− 1 + 1 − q

2q
ε + (1 + ε) λν + λν+1.

Substituting λ = λ̂0 + ε λ̂1, we find that to zeroth order in ε

there is a single zero eigenvalue and ν eigenvalues on the
unit circle. Computing the first-order correction by consid-
ering terms of order ε, we find that the magnitude of the ν

eigenvalues close to the unit circle is

|λn| ≈ 1 − ε
(1 − q)

2q

1 − cos φn

ν + 1
,

where n = 1, 2, . . . , ν and φn = 2πn/(ν + 1). The magnitude
is strictly less than one. The periodic solution is stable.

Considering the limit Q → 1/2, the critically damped case,
a similar calculation yields

|λn| ≈ 1 − �T ∗ e−�T ∗ 1 − cos φn

ν + 1
,

where �T ∗ is assumed large. Again, the periodic solution with
discrete frequency ν is stable.
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