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Abstract Crop models are often used to project future crop yield under climate and global change and
typically show a broad range of outcomes. To understand differences in modeled responses, we analyzed
modeled crop yield response types using impact response surfaces along four drivers of crop yield: carbon
dioxide (C), temperature (T), water (W), and nitrogen (N). Crop yield response types help to understand
differences in simulated responses per driver and their combinations rather than aggregated changes in yields as
the result of simultaneous changes in various drivers. We find that models' sensitivities to the individual drivers
are substantially different and often more different across models than across regions. There is some agreement
across models with respect to the spatial patterns of response types but strong differences in the distribution of
response types across models and their configurations suggests that models need to undergo further scrutiny. We
suggest establishing standards in model evaluation based on emergent functionality not only against historical
yield observations but also against dedicated experiments across different drivers to analyze emergent
functional patterns of crop models.

Plain Language Summary Crop models are widely used to compute crop yields under future climate
change. Yields are determined by many interacting processes. Simulated future crop yields often show a broad
uncertainty range. We investigate the sensitivity of nine different crop models to individual model inputs
(carbon dioxide, temperature, water, nitrogen) in a very large simulation data set and find that there are
substantial differences. We conclude that crop model evaluation needs to include analyses of functional
properties to avoid that very diverse model responses to drivers are not tracked if interacting processes cancel
out in the historical evaluation period but not in future scenarios, leading to large differences between models.

1. Introduction

Crop models are often employed to project crop yields under changing conditions such as global warming and
associated management change for adaptation (Jdgermeyr et al., 2021). Multi-model ensembles are promoted to
enhance the robustness of projections (Asseng et al., 2015; Martre et al., 2015), but questions remain on what
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causes often large differences between projections of individual models (e.g., Jagermeyr et al., 2021; Miiller
etal., 2021; E. Wang et al., 2022). Global Gridded Crop Models (GGCMs) are especially exposed to this question
when applied for assessing climate change impacts (Jigermeyr et al., 2021; Schleussner et al., 2018), adaptation
(Franke et al., 2022; Minoli et al., 2019; Zabel et al., 2021), or environmental impacts of agricultural production
(W. Liu et al., 2018), because their results are used in downstream analyses, such as in integrated assessment
(Ruane et al., 2017) or economic modeling for projecting future land-use change (Stevanovié et al., 2016; Wiebe
et al., 2015). Even though global gridded crop models are often based on detailed field-scale models or have
implemented similar modeling principles in other ecosystem models (Miiller et al., 2019) and show similar
performance in evaluation against historical, national yield statistics (Franke et al., 2020a, 2020b; Miiller
et al., 2017), models are subject to substantial uncertainties from both model structure and parametrization
(Folberth et al., 2019) as well as from calibration and input data quality (Ruane et al., 2021). This uncertainty
shows most prominently in future projections under high-emission climate change scenarios, where models are
exposed to driving data far outside the evaluation domain and results show large inter-model differences
(Jagermeyr et al., 2021; Miiller et al., 2021; Rosenzweig et al., 2014).

Climatic conditions (D. Liu et al., 2020) and soil properties (Qiao et al., 2022) determine yield potentials (Mauser
et al., 2009; van Ittersum et al., 2013) and the suitability of different technologies, such as cultivars (Couédel
et al., 2021). Areas with similar climate and soil conditions show similar yield responses to variations in weather
conditions, which can be monitored and reported using representative sites (Gommes et al., 2016). D. Liu
et al. (2020) have identified the most limiting climate variable(s) across global crop production areas, finding that
temperature has generally a higher impact on crop yields than precipitation for maize, rice, soybean, and wheat.
Climate change is projected to alter climate conditions in many agricultural regions substantially (Franke
et al., 2022; Jagermeyr et al., 2021; Ruane et al., 2018). Kummu et al. (2021), for example, find that substantial
shares of these areas may be driven out of a climatic envelope suitable for agricultural production. Projections of
future climate change demonstrate high levels of agreement on global mean temperature trajectories for given
forcing scenarios, such as the “Shared Socioeconomic Pathways with Representative Concentration Pathways”
(SSP-RCPs) framework (Tebaldi et al., 2021), but are subject to high levels of uncertainties when it comes to
spatial and seasonal changes in temperatures and especially precipitation (e.g., Hawkins & Sutton, 2011; Monerie
et al., 2020; Wu et al., 2022). Analyzing the sensitivity of cropping systems to changes in individual climate
variables can thus help understand their fragility under changing climate.

Process-based crop models are widely accepted tools to project crop yields under changing climatic or man-
agement conditions and can help to inform decision making in direct or indirect ways. Crop models are employed
at field to global scale and a large variety of crop models exists (e.g., Asseng et al., 2019; Miiller et al., 2017).
Model intercomparison projects, such as the Agricultural Model Intercomparison and Improvement Project
AgMIP (Rosenzweig et al., 2013) have shed light on the inter-model uncertainty (Asseng et al., 2015; Palosuo
et al., 2011; Rosenzweig et al., 2014; Ruane et al., 2017), leading to and following up on a call for a general
overhaul of crop models (Rotter et al., 2011). Model development efforts since have led to various improvements
of crop models (e.g., T. Li et al., 2017; Maiorano et al., 2017; Olin et al., 2015; von Bloh et al., 2018),
disagreement between individual crop models remains high (Asseng et al., 2019; Jigermeyr et al., 2021; Kostkova
et al., 2021; Miiller et al., 2021).

Local environmental conditions determine how individual crops are affected by changes in individual drivers.
However, owing to the multiple interactions of drivers and processes in yield formation (Schauberger et al., 2016)
and the incomplete implementation of processes in crop models (Boote et al., 2013), models can be expected to
differ in crop yield projections and sensitivities to individual drivers. Still, regions with severe drought conditions
should show substantial sensitivity to changes in water supply and regions with very little nitrogen availability
should be sensitive to changes in nitrogen inputs. AgMIP's Global Gridded Crop Model Intercomparison
(GGCMI) has set out to intercompare GGCMs in order to evaluate model performance, describe model un-
certainties, identify inconsistencies within the ensemble and underlying reasons, and to ultimately improve
models and modeling capacities (Elliott et al., 2015). The GGCMI Phase 2 experiment provides simulation data
from a large, structured simulation experiment with regular perturbations of four different drivers of yield for-
mation (atmospheric carbon dioxide concentrations (C), temperature (T), water (W), and nitrogen(N)), referred to
as CTWN. The CTWN experiment is very well suited to study models' responses to changes in individual or
combined driver dimensions. Modeled yield responses to such regular perturbations in drivers can be used to
describe crop yield response types, which vary in space (water is a more important driver in arid environments
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than in humid ones) and among models. If there were no model uncertainty, crop yield response types would
determined by genotype, environment and management (G X E X M) characteristics of each farming system and
could be identified with a single crop model. Under given model uncertainty, crop yield response types are,
however, a function of the local cropping conditions, but also of model design, functionality, and parameteri-
zation (Folberth et al., 2019). Consequently, crop yield response types can describe differences in model behavior
and spatial disagreement and can thus help identifying functional differences between models that can guide
further model development. Tao et al. (2020) conducted a model intercomparison study with eight barley models
for two sites and eight different simulation settings, combining offsets in air temperature, precipitation, irradiation
and atmospheric CO,. They find that the models' disagreement from different sensitivities to changes in tem-
peratures and CO, was largest and could identify modeled dynamics of leaf area index as a process that is
responsible for model divergence with respect to simulated evapotranspiration, above ground biomass, and yield.
In this study, we are conducting a global analysis of GGCMs sensitivities to individual drivers of crop yields,
deriving classes of model response types that allow for intercomparing models and regions, aiming to better
understand sources of uncertainties in future crop yield projections with crop models.

2. Methods
2.1. The GGCMI Phase 2 Model Output Data Set

The GGCMI Phase 2 experiment is a structured input sensitivity test (Franke et al., 2020a, 2020b) with a modeling
protocol that asked for up to 1,404 31-year global simulations at 0.5 arc-degree spatial resolution to assess models'
sensitivities to changes in atmospheric carbon dioxide concentrations (C; 4 levels) temperature (T; 7 absolute
offset levels, including zero), water supply (W; 9 relative offset levels, including zero), and nitrogen (N; 3 levels),
the so-called CTWN experiment (see Table A1) (Franke et al., 2020a, 2020b). A fifth dimension in the CTWN
Experiment on Adaptation (A) was not considered here, that is, we only used the simulation sets that assumed no
change in cultivars (n = 756). Previous work has used emulators trained on the CTWN experiment (Franke
et al., 2020a, 2020b) to explore the contribution from crop models to overall uncertainty in crop yield projections
driven by climate change projections (Miiller et al., 2021) and to explore the role of adaptation to future agri-
cultural production (Zabel et al., 2021) and the latitudinal shifts in breadbasket regions (Franke et al., 2022). We
also focused on rainfed growing conditions only, ignoring the settings with unlimited irrigation (W;,,;). Of the 12
participating modeling groups, only four supplied all 756 simulation sets (EPIC-TAMU, LPJ-GUESS, LPJmL,
and pDSSAT), but five additional modeling groups provided sufficient data to allow for emulation of their yield
responses (CARAIB, GEPIC, JULES, PEPIC, and PROMET) and we used the emulators that were build on these
simulations (Franke et al., 2020a, 2020b) to gap-fill missing simulation sets that were not provided. The
remaining models (APSIM-UGOE, EPIC-IIASA, and ORCHIDEE-crop) are only shown here in the overview
figure for completeness, but are not included in the following analyses. The scarcity of simulations provided by
these modeling teams (33—44 of 756, see Table 1) does not allow for in-depth analysis and also led to exclusion of
these models from the emulator training (Franke et al., 2020a, 2020b). The GGCMSs' baseline simulations
(C =360, T =0, W = 0 for rainfed and W = inf for irrigated, N = 200) have been used to evaluate model
performance, even though uniform N application rates and atmospheric CO, concentrations of 360 ppm are not
realistic representations of the current systems. Despite the uniform management assumption, Franke
et al. (2020a, 2020b) show that the GGCMI Phase 2 model ensemble is capable of reproducing some of the
observed yield variability, especially in top-producer countries (see reproduced Figure S2 in the Supplementary
Information), but also at the global aggregation level (Figures S3-S6 in the Supplementary Information).
GGCMs' skills in reproducing observed yield variability at the grid-cell level varies across GGCMs and crops but
shows roughly similar skill to the GGCMI Phase 1 model ensemble tested by Miiller et al. (2017).

2.2. Data Analysis

The analysis conducted here aims at understanding differences in models' sensitivities of simulated crop yield (y)
to the CTWN drivers across crops and regions as well as understanding differences among models. We considered
current crop-specific cropland extent, making use of the MIRCA2000 cropland data set Portmann et al. (2010). To
avoid distortions of marginal production areas, we only considered grid cells (0.5° by 0.5° longitude/latitude,
equivalent to 55 km by 55 km at the equator) with at least 200 ha of crop cultivation (rainfed and irrigated area).
Spring and winter wheat are not separated in the MIRCA2000 data so we considered total wheat areas for both.
MIRCA2000 data were also used for data aggregation to the global scale, using the provided crop-specific
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Table 1
Number of Global Simulation Sets of Crop Yield (y) Included in the Global Gridded Crop Model Intercomparison Phase 2
Archive per Model and Crop for the Simulation Set

Model Maize Soybean Rice Winter wheat Spring wheat Nitrogen
CARAIB* 252 252 252 252 252 No
EPIC-TAMU" 756 756 756 756 756 Yes
JULES® 252 252 252 - 252 No
GEPIC! 430 430 430 430 430 Yes
LPJ-GUESS® 756 - - 756 756 Yes
LPJmL' 756 756 756 756 756 Yes
pDSSAT® 756 756 756 756 756 Yes
PEPIC" 149 149 149 149 149 Yes
PROMET! 261 261 261 261 261 Yes
Totals 4,368 3,612 3,612 4,116 4,368 7

not included

APSIM-UGOE/ 44 44 44 = 44 Yes
EPIC-IIASA* 39 39 39 39 39 Yes
ORCHIDEE-crop' 33 = 33 33 = Yes

Note. Some models do not account for nitrogen dynamics, as indicated in column “Nitrogen.” Not all models provide data for
all crops (indicated by “—” in the respective columns), but always supply the same simulation sets across all crops provided.
“Dury et al. (2011). ®Jzaurralde et al. (2006). “Osborne et al. (2015), K. Williams and Falloon (2015), and K. Williams
et al. (2017). 7. Liu et al. (2007) and Folberth et al. (2012). °Lindeskog et al. (2013) and Olin et al. (2015). fyon Bloh
et al. (2018). 2Elliott et al. (2014) and Jones et al. (2003). "W. Liu, Yang, Folberth, et al. (2016) and W. Liu, Yang, Liu,
et al. (2016). ‘Mauser and Bach (2015), Hank et al. (2015), and Mauser et al. (2009). jKeating et al. (2003) and Holzworth
et al. (2014). *Balkovi¢ et al. (2014). Valade et al. (2014).

harvested areas as aggregation weights. Globally, there were 21,262 grid cells included for maize, 9,165 for
soybean, 11,452 for rice, 17,032 for spring wheat, and 17,032 for winter wheat. With the sheer amount of data of
the GGCMI Phase2 experiment (up to 4,368 global simulations, see Table 1), a visual representation of variations
in model response is not helpful. We thus structured the analysis to condense the information in a meaningful way
so that different response types can be identified and discussed.

2.2.1. Impact Response Surfaces

Impact Response Surfaces (IRSs) have been used to describe crop model behavior under changes in two driver
dimensions (e.g., temperature and precipitation) (e.g., Pirttioja et al., 2015) and Fronzek et al. (2018) have used
IRS to identify different model response types. Zabel et al. (2021) used IRSs to describe isolines for comparison
of adapted and non-adapted global production systems. Here, we were interested in regional differences and thus
constructed IRSs for each grid cell i, GGCM g, crop ¢, and each paired combination of two drivers d1 and d2 of
the four CTWN dimensions (i.e., T~ W, T~N,C~T,W ~N,C~ W, C ~N). IRSs display yield changes (Ay;,,
o) for any grid cell i or aggregation of grid cells for combination of any two drivers (d1 and d2) in relation to the
,i’g’c) as described by Equation 1, where d1* and d2*
describe the full set of elements in d1 and d2 respectively. We used the average yield (of each respective IRS)
rather than the yield at default conditions (y; , . c360,70,wo,n200) s the default conditions were not always directly
supplied by all models g.

average yield across all cases included in the IRS (ydl*ydz*

Ay arige = Jaidise 1009 (1)

Y1+ ,d2+ i.g.c

The other two dimensions, not displayed in the IRS are kept at their default setting (C: 360 ppm, T: 0°C, W: 0%,
N: 200 kg ha™"). The atmospheric CO, concentration of 360 ppm refers to approximately the value of 1,995, the
middle of the simulation period 1980-2010 of the GGCMI Phase2 experiment.
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Figure 1. Illustrative example of crop model Impact Response Surfaces (IRS), here for maize and the temperature (T) and water (W) dimensions with atmospheric CO,
(C) at 360 ppm and fertilizer input (N) at 200 kg ha™'. All crop model simulations provided by the modeling groups are displayed as colored rectangles in the IRS. Colors
indicate relative yield changes compared to the mean across all data points of the respective IRS. White spaces indicate missing simulation sets. The simulations for
“W —40%” and “T + 5” were not requested per protocol (Franke et al., 2020a, 2020b).

Depending on the global extent of cropland, 9,165 (soybean) to 21,262 (maize) of such IRS sets were constructed
per CTWN dimension and crop, which cannot be displayed or interpreted as visuals. For illustrative purposes,
Figure 1 shows IRS for the T ~ W responses of globally aggregated maize yield.

2.2.2. Dominant Response Dimensions

IRSs show the response of projected yields for any two drivers (d1 and d2, e.g. T'and W). The classification of IRS
as proposed by Fronzek et al. (2018), which distinguishes nine cases of maximum yield location per IRS and the
strength of the response per dimension, is still too complex for our purposes here, especially if extended from two
(TW) to four (CTWN) dimensions of drivers. For a simpler metric to describe the characteristics of IRS, we
identified the dominant response dimension, using response ratios (RR). Response ratios describe the relationship
of the gradients along the two dimensions, based on minimum and maximum values, that is, ignoring the shape of
these gradients (i.e., it does not matter if the minimum (or maximum) is at either end of the row or column). In
contrast to the illustrative IRSs, the reference yield j cancels out in the computation of RRs, so we computed RRs
based on actual yields (y) rather than yield changes (Ay). Any distortion that may be introduced by using the IRS’
mean value rather than a standard simulation set thus does not affect any quantitative analysis here. In order to
determine which of the two drivers dominates over the other, we selected the data slice from the CTWN cube that
spans the full range of the drivers of interest (d1 and d2) at the default conditions of the other two drivers (e.g.,
[T_.. Tyl vs. [P_sq.. Po30] at Cs¢o and Nyg). Across that selected surface, we computed the range of simulated
yields (y) for each grid cell i, model g, crop c for each element j1 of d1 across all elements j2 of d2, computing the
average response to those drivers (e.g., Ry and Ry, in Figure S1) by dividing by the number of elements n,, and
ng. The average response of the two drivers d1 and d2 are computed as described in Equations 2 and 3 and their
combination to compute the response ratio RRy; 4 ; . . is described in Equation 4. RR ranges between 0 and 1 and
describes the contribution of the first driver to the yield variation across both drivers. If these are perfectly
balanced, RR is 0.5, if the first driver is the only driver of yield change, RR is 1, if it has no effect, RR is zero. All
data processing and plotting was done in R, version 4.1.2 (R Core Team, 2021).
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252 max (Vi g.e) = MN(Vijog.c)
Rdl,i,g,c = n (2)
d2

L max (Vi1 g.c) = min(yiji )
Rpige = o 3)

Ryjioe
dl,i,g,c (4)

RRjiwige =
T Ravige + Ravige

We describe the different RR values with the median value and the skewness of their distribution. Skewness was
computed with R version 4.1.2 (R Core Team, 2021) with the skewness function of the moments R package,
version 0.14.1, using Equation 5, with x for the data and » for the number of data points 7 in x and X for the mean
of x.

%2;;1 (% — 2)3 (5)
, — 216/
[ﬁzm(xi - x)z]

skewness =
Skewness values range between positive and negative infinity and values outside the [—0.4, 0.4] interval can be
considered skewed, that is, data are distributed asymmetrically (Doane & Seward, 2011).

2.2.3. Cluster Analysis

RRs take continuous values in the interval [0, 1] and were computed for all six combinations of any two drivers of
the CTWN data cube (T~ W, T~N,C~T,W ~N, C~ W, C ~ N). In order to structure RRs into Crop Yield
Response Types (YRTs), we use hierarchical clustering, separating RR combinations into clusters so that at least
90% of the overall variance in the total sample is explained by the separation into clusters. The resulting YRT
describe differences across models and environments simultaneously. This allows for comparing regions and
GGCMs with respect to their sensitivities to changes in the CTWN drivers under the full range of global crop
growing conditions. In order to include all GGCMs with sufficient data provision, independent of their ability to
provide data on responses to variation in N input (see Table 1), we also conducted the same analysis for the CTW
data cube with 3 different combinations of any two drivers (T ~ W, C ~ T, C ~ W), which we refer to as CTW-
YRT. We used R version 4.1.2 (R Core Team, 2021) with R-package Rclustercpp.hclust (version 0.2.6) for large
data sets with standard settings, that is, using euclidean distances and the ward method. For describing the
characteristics of the individual clusters, we make use of the median and interquartile range of each RRs dis-
tribution within each cluster.

3. Results
3.1. Distribution of RR

The GGCMs show different distributions of RR across all crop-specific cropland. There are differences in the
median values, but also in the shape — and skewness — of the distributions. Most RR values per GGCM are not
normally distributed but highly skewed or bi-modal (see illustrative Figure 2). The differences in median values
illustrate differences between models, as the distributions always refer to the same spatial sample (all grid cells
with at least 200 ha crop-specific harvested area, according to Portmann et al. (2010)). Median values range
substantially across GGCMs, but also across crops.

Maize yield simulations of CARAIB show very little response to changes in water supply in comparison to
changes in temperature with a median RR; y, value of 0.84, which is in line with the vertical stripe pattern seen in
the IRS for CARAIB in Figure 1. JULES maize yield simulations, on the other hand, show the opposite behavior
with a median RR value of 0.26. Specific regional characteristics can also already be detected here. EPIC-TAMU,
pDSSAT, and PROMET show a spike in the highest RR bin, indicating that there is a substantial number of grid
cells (about 1,000 for EPIC-TAMU, >2,500 for pDSSAT, >2,100 for PROMET), in which changes in water
supply have basically no effect in comparison to changes in temperature on simulated yields. JULES and LPJmL
hardly have such maize-growing grid cells where water supply matters little in comparison to changes in
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Figure 2. Distributions of maize Response Ratios for the temperature (T) versus water (W) domains (RR;.,) of the nine different Global Gridded Crop Models
(GGCMs), showing the importance of T in comparison to W at default C (360 ppm) and N (200 kg ha™"). Values approaching unity indicate higher sensitivity to T than
to W, while values approaching zero indicate higher sensitivity to W than to T (see Equation 4). Green vertical lines show the median value, which is also given in the
title of each panel. Bottom right-hand panel shows the distribution across all GGCMs. Results are shown for currently cultivated maize cropland.

temperature. Some distributions are highly skewed or show bi-modal patterns, which is most prominent in the
combined distribution across all nine GGCMs. There are too many RR and crop combinations to show all dis-
tributions as histograms in figures and we thus present results of variation in median and skewness values in
Tables 2 and 3. Table 2 shows the range of median RR values across GGCMs, crops and driver combinations.
Median values range between 0.06 (importance of C in comparison to N for maize in GEPIC data) and 1.0
(importance of C in comparison to N for soybean in GEPIC data). For all crops analyzed here, many RRs show a
very broad range across GGCMs with differences between min and max values often well above 0.5 (Table 2).
One exception is RR ;- of the C3 crops (other than spring wheat), where the range is only 0.3 or lower. Large
differences between GGCM's RRs are particularly pronounced for RRy, 5 and RR. 5, for all crops other than the N-
fixing leguminous crop soybean.

3.2. Crop Yield Response Types

Identifying crop yield response types (YRT') can help to illustrate the similarities and differences between RR
combinations across GGCMs and regions. The hierarchical clustering combines elements (individual data points
(leaves) or clusters) by similarity and dendrograms illustrate the similarity of these elements (Figures S11-S20).
Three (e.g., soybean, Figure S23) to six (e.g., winter wheat, Figure S27) clusters were needed to explain at least
90% of the overall variance in the global crop-specific simulation sets.

As already suggested by the GGCM-specific distributions of RRs (Figure 2, Tables 2 and 3), some GGCMs show
substantially different YRTs than others, however, also the regional distribution of YRTs differs between indi-
vidual GGCMs (see Figures 3 and 4 for maize and Figures S21-S28 for the other crops). Since the clusters are
defined by similarity of RR combinations, the interpretation depends on the RR distributions within clusters, as
displayed in Figure 3 for maize CTW responses (corresponding to Figure 4). As the C4 crop, maize sees no direct
stimulation of photosynthesis through elevated atmospheric CO, concentrations, but only improvements in water-
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Table 2

Median Values of RR Across Crops and Driver Combinations

Crop Drivers CARAIB EPIC-TAMU GEPIC JULES LPJ-GUESS LPImLL pDSSAT PEPIC PROMET All Min Max
Maize ™ 0.84 0.42 0.5 0.26 0.54 0.39 0.7 0.53 0.57 051 026 0.84
WN NA 0.39 0.37 NA 0.18 0.75 0.56 0.22 0.76 047 0.18 0.76
CcwW 0.81 0.38 0.14 0.19 0.43 0.25 0.19 0.32 0.57 032 0.14 0.81
TN NA 0.33 0.32 NA 0.21 0.64 0.76 0.23 0.82 047 021 0.82
CT 0.48 0.42 0.14 0.35 0.5 0.33 0.08 0.26 0.37 033 0.08 0.5
CN NA 0.18 0.06 NA 0.09 0.3 0.16 0.11 0.92 0.16 0.06 092
Rice ™ 0.66 0.6 0.68 0.44 NA 0.69 0.75 0.72 0.56 0.64 044 0.75
WN NA 0.35 0.29 NA NA 0.58 0.31 0.19 0.81 041 0.19 0.81
CcwW 0.54 0.48 0.49 0.44 NA 0.66 0.49 0.5 0.5 051 044 0.66
TN NA 0.52 0.36 NA NA 0.79 0.45 0.27 0.87 0.6 027 0.87
CT 0.42 0.36 0.33 0.55 NA 0.46 0.37 0.37 0.44 041 033 0.55
CN NA 0.23 0.16 NA NA 0.52 0.21 0.15 091 033 0.15 091
Soy ™ 0.84 0.49 0.62 0.37 NA 0.47 0.49 0.72 0.9 057 037 09
WN NA 0.9 0.98 NA NA 0.99 0.9 0.89 0.56 093 056 099
CcwW 0.75 0.4 0.42 0.37 NA 0.45 0.4 0.65 0.89 048 037 0.89
TN NA 0.91 0.99 NA NA 0.99 0.9 0.96 0.9 095 09 0.99
CT 0.44 0.41 0.33 0.53 NA 0.53 0.41 0.4 0.41 045 033 0.53
CN NA 0.81 1 NA NA 0.99 0.9 0.9 0.91 093 081 1
Spring wheat ™ 0.68 0.31 0.45 0.35 0.74 0.47 0.42 0.51 0.39 047 031 0.74
WN NA 0.52 0.45 NA 0.22 0.78 0.61 0.31 0.85 051 022 0.85
CcwW 0.72 0.25 0.18 0.35 0.7 0.45 0.32 0.41 0.47 043 0.18 0.72
TN NA 0.43 0.41 NA 0.46 0.77 0.57 0.3 0.83 053 03 0.83
CT 0.58 0.42 0.24 0.51 0.69 0.5 0.39 0.38 0.56 049 024 0.69
CN NA 0.26 0.12 NA 0.38 0.59 0.38 0.19 0.93 037 0.12 093
Winter wheat ™ 0.65 0.31 0.45 NA 0.62 0.49 0.42 0.35 0.51 048 031 0.65
WN NA 0.39 0.44 NA 0.19 0.7 0.64 0.35 0.82 044 019 0.82
CcwW 0.68 0.32 0.33 NA 0.68 0.47 0.2 0.35 0.54 045 02 0.68
TN NA 0.21 0.31 NA 0.33 0.68 0.55 0.22 0.84 038 021 0.84
CT 0.54 0.51 0.44 NA 0.63 0.49 0.33 0.5 0.45 0.5 033 0.63
CN NA 0.15 0.17 NA 0.32 0.52 0.24 0.19 0.92 029 015 092

Note. CARAIB and JULES did not supply data for different N levels, LPJ-GUESS did not supply data for rice or soybean, JULES did not supply data for winter wheat.
These missing data points are indicated by “NA” (not available).

use efficiency. Still, some GGCMs display substantial shares of maize growing areas where C is more dominant
than changes in T and similar to changes in W (cluster#2; Figure 4). Temperature dominance (cluster#4, as well as
clusters #1 and #3, in which T is dominant or on par with the other drivers) is particularly important in pDSSAT,
GEPIC, PEPIC, and LPJmL, even though patterns differ (Figure 4).

For rice simulations, the distribution of different CTW-YRTs is more balanced across GGCMs (Figures S21 and
S22), with JULES and PROMET showing little presence of cluster #4 (T dominance and C dominance over W,
Figure S21) and LPJmL with little presence of cluster #2 (W dominance and balanced C vs. T response). Spatial
patterns show some similarities with respect to cluster #4 (other than in JULES and PROMET) in the tropics and
cluster #2 (other than LPJmL) in more arid regions of Asia, Africa, and south America.

Soybean CTW data are only clustered in three different CTW-YRTs (Figures S23 and S24), where JULES and to
some lesser extent LPJmL are mostly characterized by cluster #2 (W dominates and C vs. T is balanced).
CARAIB and PROMET show larger shares of cluster #3 (dominance of T and of C over W). There is larger
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Table 3

Skewness of RR Distributions Across Crops and Driver Combinations

Crop Drivers CARAIB EPIC-TAMU GEPIC JULES LPJ-GUESS LPJmL pDSSAT PEPIC PROMET All Min Max
Maize ™ —1.42 0.5 0.12 1.45 0.15 0.75 —0.27 0.05 —0.01 0.1 —1.42 1.45
WN NA 0.39 0.68 NA 1.44 —0.53 0.01 1.14 —1.09 0.1 —1.09 1.44
CwW —1.09 1.29 1.71 3.02 0.51 3.76 1.59 0.91 0.29 0.76 —1.09 3.76
TN NA 0.9 1.05 NA 2.13 —0.11 —0.45 1.32 —1.31 0.17 —1.31 2.13
CT =0.77 0.77 1.8 0.48 —0.39 0.28 2.11 0.94 0.27 0.33 =0.77 2.11
CN NA 1.42 2.15 NA 2.46 0.54 1.14 1.67 -2.14 0.88 -2.14 2.46
Rice ™ —0.26 —0.1 —0.52 0.73 NA —0.54 —0.66 —0.55 0.16 —0.21 —0.66 0.73
WN NA 0.53 1.13 NA NA —0.01 0.9 1.4 —2.24 0.28 —2.24 1.4
CcwW 0.09 0.47 0.16 0.87 NA —0.24 0.24 0.23 0.92 0.26 —0.24 0.92
TN NA 0.3 1.05 NA NA —0.29 0.63 1.35 —4.06 —0.07 —4.06 1.35
CT —0.07 1.34 141  -0.75 NA —0.75 —0.76 1.19 0.58 0.32 —0.76 1.41
CN NA 1.14 1.54 NA NA 0.42 1.82 1.38 —3.62 0.47 -3.62 1.82
Soy ™ —0.87 0.43 —0.22 1.58 NA 0.45 0.34 —0.45 -1.07 0.11 —1.07 1.58
WN NA —1.62 —2.45 NA NA —14.08 —1.45 =0.77 0.02 —1.45 —14.08 0.02
CwW —0.46 1.13 0.7 1.53 NA 1.32 0.63 —0.12 —0.66 0.47 —0.66 1.53
TN NA -2.12 —7.01 NA NA -3.27 =2 —4.03 —6.18 —3.52 =701 =2
CT —0.29 0.92 1.22 0.43 NA —0.56 —0.05 0.71 —0.12 0.16 —0.56 1.22
CN NA —-1.72 —1.53 NA NA —5.54 —1.49 —-2.98 —2.46 -3.07 —=5.54 —1.49
Spring wheat ™ -0.29 1.11 0.34 1.25 —0.61 0.51 0.52 0.15 0.82 0.33 —0.61 1.25
WN NA 0.02 0.4 NA 1.22 —0.78 —0.17 0.69 =2.77 0.02 =2.77 1.22
CcwW —0.34 1.91 1.26 2.12 —0.06 1.37 0.89 0.65 0.43 0.36 —0.34 2.12
TN NA 0.28 0.56 NA 0.46 —0.48 —0.04 1 —2.46 0.06 —2.46 1
CT —0.93 0.46 1.18 0.05 —1.69 0.21 0.4 0.64 —0.13 —0.06 —1.69 1.18
CN NA 0.64 1.41 NA 1.18 0.04 0.48 1.16 —2.27 0.45 =2.27 1.41
Winter wheat ™ -0.3 0.93 0.2 NA —0.1 0.1 0.39 0.73 0.08 0.18 —0.3 0.93
WN NA 0.39 0.51 NA 1.34 —0.41 —0.22 0.72 —-1.37 0.28 —-1.37 1.34
CwW —0.21 1.88 0.98 NA 0 1.05 1.41 0.64 0.42 0.26 —0.21 1.88
N NA 1.34 0.75 NA 0.84 —0.2 0.07 1.25 —1.88 0.41 —1.88 1.34
CT —0.46 —0.04 0.11 NA —0.35 0.04 0.28 —0.1 0.38 —0.12 —0.46 0.38
CN NA 2.05 1.13 NA 1.27 0.18 0.73 1.2 —1.96 0.75 —1.96 2.05

Note. CARAIB and JULES did not supply data for different N levels, LPJ-GUESS did not supply data for rice or soybean, JULES did not supply data for winter wheat.
These missing data points are indicated by “NA” (not available).

agreement (n = 6) on presence of cluster #2 CTW-YRT in Europe and parts of North America and moderate
agreement for South America, and parts of Africa.

CTW-YRTs for spring wheat are more mixed (Figures S25 and S26). CARAIB, LPJ-GUESS and LPJmL show
mostly clusters #1 (W with little importance and C vs. T balanced, Figure S25) and #2 (all balanced), but
CARALIB has these two in approximately equal shares, while LPJ-GUESS has substantially more #1 and LPJmL
substantially more #2. EPIC-TAMU, GEPIC and JULES are substantially more sensitive to W, JULES with
mostly #3 (W dominates, C vs. T is balanced), GEPIC with mostly cluster #4 (C with little importance and T vs. W
balanced). Spatial patterns are also mixed, with little pockets of multi-model agreement across all continents.

Also for winter wheat CTW-YRTs show a mixed picture with 6 distinct clusters (Figures S27 and S28). Here, a
divide can be seen along the importance of C: only in four of the eight GGCMs (EPIC-TAMU, GEPIC, pDSSAT,
PEPIC), cluster #6 can be found (in which C is of little importance and W dominates T), while cluster #2 (C
dominates and T vs. W is balanced) is basically absent in these GGCMs. Cluster #2 is particularly widespread in
CARAIB and LPJ-GUESS. Spatial patterns show little consistency across GGCMs.

MULLER ET AL.

9 of 21

85U8017 SUOWWOD SAIESID 3(dedl|dde auy Ag peuseob 8e sppiie O ‘88N JO S8|nJ 0 A%IqIT 8UIIUO AB]1/M UO (SUOIPUOD-PLE-SW.BH W00 A8 1M AR1q Ul |Uo//Sdhy) SUORIPUD pue swie | 8Ui8sS *[720z/e0/yT] uo Ariqiauljuo AB|IM ‘Z49 Wepsiod wniusz-zoyweH Aq £22£0043€202/620T 0T/10p/uiod A8 imAreiq1jeuljuo'sgndnBe;/sdny wo.y papeojumod ‘€ ‘v20 ‘LLZv8ZET



A
MM\I
ADVANCING EARTH

AND SPACE SCIENCES

Earth's Future

10.1029/2023EF003773

A A clustertt

1

2

1.0

00 02 04 06 08

J——

B
B

J——

BTvssW BCvssW OCvs. T

® T dominant ® W dominant ® C dominant

balanced

Figure 3. Distribution of RRs within CTW-YRT clusters. Within each cluster (colored boxes), three boxplots describe the
distribution of RRs for T versus W (dark gray, left boxplot), C versus W (gray, middle boxplot), C versus T (light gray, right
boxplot). Horizontal lines indicate the median value, boxes extent across the interquartile range (IQR). Whiskers extend to
the most extreme value within 1.5 times the IQR, outliers beyond this threshold are omitted. Colored dots on top of each

cluster box indicate what drivers dominates: red for T dominance, blue for W dominance, purple for C dominance, and gray
for no dominance. We rate drivers as balanced (i.e., no dominance) if the median RR is between 0.4 and 0.6.
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Figure 4. Spatial distribution of Crop Yield Response Types (YRT's) for each of the nine Global Gridded Crop Models (GGCMs) for maize, considering the C, T, and W
dimensions, but without consideration of the N dimension, because this was not supplied by all GGCMs. The stacks in the bottom right-hand corner show the grid cell
frequency distribution of the YRT clusters for each GGCM. The RR combinations characterizing each cluster are shown in Figure 3 above.
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Figure 5. As Figure 3 but now for the full CTWN set with nitrogen and six combinations of any two drivers (gray shadings of
boxplots, ordered from left to right).

If including the N dimension, the number of GGCMs is reduced to at most seven (Table 1), while the number of
combinations of any two drivers increases to six. Still, the hierarchical clustering finds similar number of clusters
with the threshold of 10% of overall variance within the clusters. The two models that show very little sensitivity
of maize yields to water (CARAIB) or very high (JULES) did not provide any data along the N dimension, but
within the reduced ensemble with N, there are again two models that show opposite behavior (Figures 5 and 6):
LPJ-GUESS has a very strong response of maize yields to N either in combination with strong response to W
(clusters #2) or with combination with strong response to T (cluster #4), while PROMET has little response to N
either with strong sensitivity to W (cluster #1) or T (cluster #5). LPJmL and pDSSAT maize yields are dominated

LPJ-GUESS
St

PEPIC
PROMET

Figure 6. Spatial distribution of Crop Yield Response Types (YRT's) for each of the seven Global Gridded Crop Models (GGCMs) for maize including all four response
dimensions (i.e., C, T, W, N). The stacks in the bottom right-hand corner show the grid cell frequency distribution of the YRT clusters for each GGCM. The RR
combinations characterizing each cluster are shown in Figure 5 above.
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by clusters #3 (with balanced responses, but T, W, and N all dominate C) and #1 (with mostly water dominance
and little importance of N). Also GEPIC maize yields show large shares of cluster #3, but in combination with
cluster #4. PROMET shows very little sensitivity to N also in rice yields (Figures S29 and S30) with almost all
pixels being clustered in cluster #1, while all other GGCMs show strong importance of N in clusters #3 and #4,
except for LPJmL, which has basically no occurrence of cluster #3 but of cluster #2 (where dimensions are more
balanced but T dominates W and N), which is not very predominant in all other GGCMs. Spatial patterns of EPIC-
TAMU, GEPIC, pDSSAT, and PEPIC rice sensitivities show some consistency, including LPJmL for Asia. For
soybean, all six GGCMs that provided data, see little importance of N (with soybean being an N-fixing legu-
minous crop). PROMET soybean yield simulations are mostly in YRT cluster #3 (dominance of T and C), which is
basically absent in GEPIC and LPJmL simulations (Figures S31 and S32). These two GGCMs find mostly
clusters #2 (everything balanced, unless if compared to N) and #4 (T and C dominance). W and C dominance as in
YRT cluster #1 is rare, but there is some cross-GGCM agreement on the regional occurrence of this YRT in SE-
Europe and northern USA/Canada. Spring wheat YRTs are more mixed across GGCMs and regions. PROMET
shows again little sensitivity to N with clusters #4 (W dominates and little importance of N otherwise) and #5 (T
and C dominate). LPJmL also shows large shares of #4, but in combination with #1 (W and N dominate) and #2 (N
and C dominate). YRT clusters #1 and #2 are also predominant for spring wheat YRTs of EPIC-TAMU, GEPIC,
and PEPIC. For winter wheat YRTs, PROMET yield simulations shows also little sensitivity to N (clusters #3 with
W dominance and #4 with T and C dominance), whereas LPJ-GUESS is most sensitive to N (cluster #1 with N
dominance and all others balanced). Cluster #3 with W dominance is also found to some larger extent in LPJmL
simulations, whereas all other GGCMs show large shares of cluster #2 with W and N dominance.

3.3. Emergent Functional Relationships

There are also different emergent functional relationships among GGCMs, that is, changes in functional responses
that can be observed (emergent) but that we cannot attribute to actual model code structure or parameterization.
Making use of the median RRs, we analyze how these change as a function of the other driver dimensions. Owing
to the complexity of the data set, we constrain this analysis to median RR;.y, responses to changes in C and N
(Figure 7 for spring wheat, Figures S27-S40 for the other crops).

In some models and crops, the median RR7yy, is hardly affected by increasing C (e.g., CARAIB, EPIC-TAMU,
GEPIC, pDSSAT for spring wheat, Figure 7), whereas there are more pronounced changes in the median spring
wheat RR;,, with changes in C for the other models. Similarly, the median RR;y, changes only little under
different levels of N supply for some GGCMs (e.g., EPIC-TAMU, LPJ-GUESS, LPImL, pDSSAT, PROMET for
spring wheat, Figure 7) but more strongly in others. Also the direction of change varies across GGCMs. While
some show an increasing importance of T versus W with increasing N supply (e.g., EPIC-TAMU, GEPIC, PEPIC
for spring wheat, Figure 7), others see the opposite (decreasing importance of T vs. W with increasing N supply)
or mixed cases. The combination of changes in C and N can lead to different emergent functional relationships,
too: PEPIC spring wheat simulations show an increasing importance of T versus W with increasing C under high
N supply, but a substantially lower importance of T versus W at low N supply and also a decreasing trend with
higher C. Similar emergent functional relationships can be observed for the other crops analyzed here, but there
are also crop-specific differences for some individual models. CARAIB shows always high median RR;.y, values
with little to no effect from changes in C across all five crops. EPIC-TAMU, GEPIC, and PEPIC all show very
strong responses in median RR7y, to changes in N supply for rice (Figure S38), but much less so for winter wheat
(Figure S40). LPJmL and PROMET see increasing median RR.y, with C for winter wheat (Figure S40), but less
so for other crops (PROMET also increasing values for maize, Figure S37).

4. Discussion

We find that the crop models contributing to the GGCMI Phase 2 experiment (Franke et al., 2020a, 2020b) show
substantial differences in yield responses to drivers along the carbon dioxide (C), temperature (T), water (W), and
nitrogen (N) dimensions. These differences are caused by model structure and mechanisms as well as parame-
terization (Folberth et al., 2019). Because not all GGCMs provided the full set of CTWN simulations (Franke
etal.,2020a, 2020b) (see Table 1), we used the emulators developed on these simulation sets (Franke et al., 2020a,
2020b) to gap-fill missing elements. Even though the emulators show generally good skill in reproducing model
results, yield responses along the N dimension were particularly difficult to emulate with the low number of
experiments in that dimension (n = 3, see Table Al). Also the number of simulations that needed to be
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Figure 7. Spring wheat median RR ., values under different levels of atmospheric CO, (x-axis) and N supply (colors). CARAIB and JULES did not supply data at
different levels of nitrogen supply, their generic N response in shown in gray.

supplemented by emulated responses affects how well "true’” GGCM responses can be reproduced by the emu-
lators. However, PEPIC, which supplied the smallest number of simulations of the ensemble considered here
(Table 1) is in relatively good agreement with the other EPIC-based GGCMs considered here. This mechanism
could also be a possible reason for the low N sensitivity of PROMET, which had also supplied only a small
number of simulation sets for different N levels (Franke et al., 2020a, 2020b). The selection of the CTWN drivers
does not cover the full range of climatic drivers of crop yield change (Schauberger et al., 2016) and albeit these are
important, further research on additional drivers, such as irradiation as included in the study of Tao et al. (2020),
would be helpful (Ruane et al., 2022).

Median RRs show a broad range of values, but some of this is expected. So is the role of CO, fertilization not very
strong for maize as a C4 plant or the role of N inputs is relatively small for soybean, which can acquire atmo-
spheric N via biological N fixation. The extreme soybean RR values for driver combinations with N (Table 2) can
thus be explained by model design, but also indicate that more complex implementations should be implemented,
as for example, done in a later LPJ-GUESS version than the one used here (Ma et al., 2022). Apart from such
general responses of little C importance for maize yield simulations or little N importance for soybean yield
simulations, large differences in the sensitivity to different drivers exist between models.

The skewness of RR distributions is in part determined by the environmental conditions of the spatial sample, that
is, the actual crop-growing areas, yet model differences are also dominant here. In some cases, some models find
highly negatively skewed distributions, whereas others find highly positive skewed distributions (e.g., —1.42 for
CARAIB vs. 1.45 for JULES for the distribution of maize RRy,y, or —1.69 for LPJ-GUESS vs. 1.18 for GEPIC for
spring wheat RR 7). While we cannot expect normally distributed RR values as the cropland sample may not
reflect normally distributed growing conditions, differences in skewness across GGCMs are only attributable to
model functionality as they all use the same spatial sample here.
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The clustering of RR values to YRTs illustrates that differences in response types can be larger between GGCMs
than between regions. The arbitrary choice of leaving 10% of overall variance within clusters led to a small
number of clusters (n < 7) that allow for qualitative description of their characteristics and interpretability.
Even though this threshold does not follow any formal definition of the optimal number of clusters, we argue
that it is important to only have a small number of clusters for discussing regional and GGCM-specific dis-
tributions of YRTs. The dendrograms (Figures S11-S20) show that the number of clusters is not very sensitive
to smaller variations of the 10% threshold but that the number of clusters dramatically increases at thresholds
<5%. Some models show consistent behavior across different crops (e.g., PROMET is typically not very
sensitive to changes in N compared to changes in any other driver and CARAIB is not very sensitive to changes
in W compared to other drivers). LPJ-GUESS shows greater sensitivity to C than other models for spring
wheat, but greater sensitivity to N than any other model for winter wheat, where CARAIB shows the greatest
sensitivity to C. PROMET also shows greatest sensitivity to C of winter wheat, but only from the ensemble that
also supplied data on the N dimension, even though it tends to be rather insensitive to N in general. Similarity
in spatial patterns of YRTs across some GGCMs and crops suggest that growing environments can be the
dominant determinant of model sensitivities, as should be expected for perfect models. Differences in spatial
patterns can stem from smaller differences along cluster borders that result in different clusters and suggest
significant differences (classification problem) or differences in regional parameterizations, as applied by some
GGCMs (Folberth et al., 2019), reflecting how sparsely the global diversity in farming systems (e.g., Jarvis
et al., 2008) is reflected in crop models. Nonetheless, differences in spatial patterns across GGCMs suggest that
differences in models' sensitivities to environmental drivers needs further attention from model development
and application.

It can be expected that crop yields show interacting responses to simultaneous changes in CTWN drivers. If, for
example, N limitation is lifted, W limitation may show more clearly and vice versa. The EPIC model has a
maximum function approach and only considers the most severe from several stressors in daily biomass gains
(Sharpley & Williams, 1990; J. R. Williams, 1990) and indeed, the EPIC-based GGCMs (EPIC-TAMU, GEPIC,
PEPIC) show substantial differences in RR;, under different N levels, except for soybean (as an N-fixing plant)
and only to some limited extent for winter wheat. The GGCMs of the GGCMI Phase2 ensemble show a range of
emergent functional relationships, varying between no effect (e.g., pPDSSAT for soybean, Figure S39), layered but
flat effects (e.g., GEPIC for maize, Figure S37), increasing (e.g., LPJmL for winter wheat, Figure S40) or
decreasing (e.g., LPJ-GUESS for spring wheat, Figure 7). While it is quite possible that these emergent functional
relationships should differ between crops, because of their physiological traits (e.g., C3 vs. C4 photosynthesis)
and where they are grown, there should not be substantial differences in the overall RR level or in the direction of
change under variations in additional drivers. We here only analyze highly aggregated data (global and temporal
aggregation), but aggregation typically leads to more balanced responses with extremes canceling out so that even
stronger differences can be expected at the more detailed level (individual sites and years).

We find that in a standard model evaluation, focusing on reproducing grain yield as for example, by Miiller
et al. (2017) (see Figures S2-S10), model differences are not as prominent as in response types and functional
relationships. As such, crop models need to be evaluated not only with respect to reproduce observed yield
dynamics, because final yields are affected by a multitude of processes and drivers (Schauberger et al., 2016) and
Zhu et al. (2019) showed that error compensation in maize simulations can lead to accurate yield estimates.
Different emergent functional relationships have been reported also for model intercomparison studies at site
scale (Tao et al., 2020) and for other crops (e.g., E. Wang et al., 2022) and can originate from model parame-
terization (e.g., through different calibration methods), choice of subroutines (e.g., for potential evapotranspi-
ration (Cammarano et al., 2016; Folberth et al., 2019)) or modeler choices (Albanito et al., 2022; Folberth
etal.,2019; E. Wang et al., 2022). Fronzek et al. (2018) attempt to relate process implementation with IRS classes,
identifying evapotranspiration models, soil water modules, and heat stress modules as important determinants of
similarity between crop models.

Data availability for crop model evaluation on aspects other than yields is still a strong limitation, especially at
large-scale applications. Remote sensing products may fill this gap to some extent (e.g., Cetin et al., 2023; Jiang
et al., 2023; Jin et al., 2018; Yue et al., 2023).

Testing models for emergent functional properties, as also requested by Tao et al. (2020) could be an alternative
approach to model evaluation, which requires knowledge on functional relationships and structured model

MULLER ET AL.

14 of 21

85U8017 SUOWWOD SAIESID 3(dedl|dde auy Ag peuseob 8e sppiie O ‘88N JO S8|nJ 0 A%IqIT 8UIIUO AB]1/M UO (SUOIPUOD-PLE-SW.BH W00 A8 1M AR1q Ul |Uo//Sdhy) SUORIPUD pue swie | 8Ui8sS *[720z/e0/yT] uo Ariqiauljuo AB|IM ‘Z49 Wepsiod wniusz-zoyweH Aq £22£0043€202/620T 0T/10p/uiod A8 imAreiq1jeuljuo'sgndnBe;/sdny wo.y papeojumod ‘€ ‘v20 ‘LLZv8ZET



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Earth's Future 10.1029/2023EF003773

experiments, such as the GGCMI Phase2 experiment (Franke et al., 2020a, 2020b), even though experimental
design targeted to identifying specific functional relationships should drastically reduce the computation demand
that was associated with the GGCMI Phase2 experiment. There are some examples of testing model for emergent
functional properties (e.g., Schauberger et al., 2017), and dedicated efforts for model evaluation on aspects other
than yield (e.g., Kimball et al., 2019, for maize evapotranspiration) but this is typically not integrated into standard
model evaluation exercises. Schneck et al. (2022) provide an assessment of the emergent property water-use
efficiency of their land surface model across different precipitation and temperature regimes (sampled from a
global simulation rather than a stylized experiment design). The Earth System Modeling community has
established standards for model evaluation (e.g., ESMValTool v2.0 Eyring et al., 2020), which can provide
guidance from a technical and conceptual perspective. Yet, the climate system is described (and evaluated) by
many different variables in contrast to the focus on the single end-of-season variable yield in crop modeling,
limiting the comparability of evaluation standards in the two research domains. Horak et al. (2021) suggest a
process-based evaluation of Intermediate Complexity Atmospheric Research Models that is based on stylized
modeling experiments to help models become right for the right reasons. This approach is likely easier to transfer
to crop modeling and we suggest that the idea of process-based model evaluation from targeted simulation ex-
periments is pursued in future crop model evaluation efforts. The sensitivity of models to calibration (e.g., E.
Wang et al., 2022) and parameterization (e.g., Folberth et al., 2019; E. Wang et al., 2017) indicates that model
evaluation needs to be conducted continuously and cannot be substituted by references to model description
papers or earlier evaluation efforts. The approach by Brown et al. (2018) to identify standard tests and include
these into the user interface of the crop model APSIM to facilitate better model development is a promising
approach. Such easy to access standard tests based on specific experiments can guide model development, but
may be more limited for testing different case-specific model parametrizations. While the approach Brown
et al. (2018) is model specific, such standard tests can be generalized to crop models in general, as demonstrated
by efforts on general model benchmarking in global vegetation modeling (Kelley et al., 2013). Better efforts in the
crop modeling community for model testing and evaluation are needed. At the same time, model deficiencies that
have been identified by testing models, such as by Y. Li et al. (2019), who found that an ensemble of GGMCs
(Miiller et al., 2017, 2019) fails to reproduce the observed yield penalties under extremely wet conditions, need to
incentivize model development. Global-scale crop model applications for high-end climate scenarios can expose
crop models to input data combinations that have never been used during model development and may lead to
unwanted model behavior. GGCMI data are thus tested for implausible data ranges (see quality check scripts at
https://github.com/AgMIP-GGCMI/phase3_quality_check), but functional model test could test for plausibility
in response to different drivers, such as.

+ along a broad nitrogen supply gradient, crop yields should first increase and then level off;

« along a soil water content gradient from dry to very wet, crop yields should first increase and then decrease
(e.g., Y. Lietal., 2019);

e exposure to canopy temperatures above lethal temperature thresholds should lead to an abort of crop growth.

5. Conclusions

The diversity in RR indicates that GGCMs have very different sensitivities to different climatic drivers and ni-
trogen supply. This has been discussed in the literature with a strong focus on the role of CO, on yield formation
(Toreti et al., 2020), as many studies had presented results with and without CO, fertilization effects (e.g.,
Rosenzweig et al., 2014), bringing attention to this particular effect. We find that changes in temperatures, water
or nitrogen supply yield similar strong differences when it comes to model sensitivities. Model evaluation should
advance to including emergent functional relationships that may tell more about model plausibility and skill than
only comparison with yield data from observations. For this, existing knowledge needs to be collected, tested for
generalizability, and translated into simple tests that models can be subjected to. Modeling protocols need to be
designed to enable such functionality tests rather than only comparisons with yield data. A community effort is
needed to bring together knowledge collection and formalization, model experiment design and model testing in
order to advance crop modeling toward reduced uncertainty in crop model applications.
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Appendix A: Additional Tables

The appendix contains a table with the overview of the Phase 2 Experiment simulation setup (Table A1) and a list
of DOIs for the Output Data Sets (Table A2).

Table A1

Global Gridded Crop Model Intercomparison Phase 2 Experiment Levels

Input variable Label Simulated levels Unit
Atmospheric CO, C 360, 510, 660, 810 ppm
Temperature T -1,0,1,2,3,4,6 °C
Applied nitrogen N 10, 60, 200 kg ha™!

Note. Temperature and precipitation values indicate the perturbations from the historical climatology, atmospheric carbon
dioxide (CO,) and nitrogen values indicate absolute levels used in the simulations. Simulations with unlimited irrigation
(W,,» and adapted cultivars (Al) are shown for completeness only, but were not considered in this analysis. NA, not
applicable.

Iiaslt)loj‘[;)zOIs for Global Gridded Crop Model Intercomparison Phase 2 Output Data Sets (Franke et al., 2020a, 2020b)
Model Maize Soybean Rice Winter wheat Spring wheat
APSIM-UGOE 2582531 2582535 2582533 2582537 2582539
CARAIB 2582499 2582508 2582504 2582516 2582522
EPIC-IIASA 2582453 2582461 2582457 2582463 2582465
EPIC-TAMU 2582349 2582367 2582352 2582392 2582418
JULES 2582543 2582547 2582545 - 2582551
GEPIC 2582247 2582258 2582251 2582260 2582263
LPJ-GUESS 2581625 - - 2581638 2581640
LPJmL 2581356 2581498 2581436 2581565 2581606
ORCHIDEE-crop 2582441 - 2582445 2582449 -
pDSSAT 2582111 2582147 2582127 2582163 2582178
PEPIC 2582341 2582433 2582343 2582439 2582455
PROMET 2582467 2582488 2582479 2582490 2582492

Note. The data URL can be constructed by replacing “XX” in “https://doi.org/10.5281/zenodo.XX” with the values in the
table for the data set of interest (e.g., https://doi.org/10.5281/zenodo.2582531 for maize data simulated by APSIM-UGOE).
The GGCMI Phase 2 data archive had to be split in several archives, because data sets were too large for hosting as one
data set.

Data Availability Statement

The simulation outputs of GGCMI Phase 2 output variables that we analyze here (Balkovic et al., 2019a, 2019b,
2019¢, 2019d, 2019e¢; Dury et al., 2019a, 2019b, 2019¢, 2019d, 2019¢; Elliott, 2019a, 2019b, 2019¢, 2019d,
2019e; Falloon & Williams, 2019a, 2019b, 2019c, 2019d; Folberth, 2019a, 2019b, 2019¢c, 2019d, 2019e;
Hoffmann & Koch, 2019a, 2019b, 2019c, 2019d, 2019e; W. Liu, 2019a, 2019b, 2019¢c, 2019d, 2019e;
Miiller, 2019a, 2019b, 2019¢, 2019d, 2019e; Pugh et al., 2019a, 2019b, 2019c; Reddy et al., 2019a, 2019b, 2019c,
2019d, 2019e; X. Wang & Ciais, 2019a, 2019b, 2019c; Zabel et al., 2019a, 2019b, 2019¢, 2019d, 2019¢) are
available on zenodo.org. See Table A2 for data DOIs. Due to data size, the archive had to be split in several
archives. All scripts used for processing the data in this analysis are available at zenodo.org (Miiller, 2024).
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