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ABSTRACT

The emergence of the evolutionary game on complex networks provides a fresh framework for studying cooperation behavior between com-
plex populations. Numerous recent progress has been achieved in studying asymmetric games. However, there is still a substantial need
to address how to flexibly express the individual asymmetric nature. In this paper, we employ mutual cognition among individuals to elu-
cidate the asymmetry inherent in their interactions. Cognition arises from individuals’ subjective assessments and significantly influences
their decision-making processes. In social networks, mutual cognition among individuals is a persistent phenomenon and frequently displays
heterogeneity as the influence of their interactions. This unequal cognitive dynamic will, in turn, influence the interactions, culminating in
asymmetric outcomes. To better illustrate the inter-individual cognition in asymmetric snowdrift games, the concept of favor value is intro-
duced here. On this basis, the evolution of cognition and its relationship with asymmetry degree are defined. In our simulation, we investigate
how game cost and the intensity of individual cognitive changes impact the cooperation frequency. Furthermore, the temporal evolution
of individual cognition and its variation under different parameters was also examined. The simulation results reveal that the emergence of
heterogeneous cognition effectively addresses social dilemmas, with asymmetric interactions among individuals enhancing the propensity
for cooperative choices. It is noteworthy that distinctions exist in the rules governing cooperation and cognitive evolution between regular
networks and Watts–Strogatz small-world networks. In light of this, we deduce the relationship between cognition evolution and cooperative
behavior in co-evolution and explore potential factors influencing cooperation within the system.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0192619

Evolutionary game theory on networks has gained significant
attention for investigating cooperative behavior within groups.
We propose utilizing mutual cognition among individuals in
society to characterize the asymmetry in their interactions. The
reciprocal influence between game strategies and mutual cogni-
tion facilitates co-evolution, ultimately leading to heterogeneous
cognition and stable cooperative outcomes. Additionally, per-
spectives from network topological property and the degree of
cognition evolution provide possible explanations for the sim-
ulation results based on two types of networks. Our work may
offer new insights into forms of reflecting asymmetry in game
interactions.

I. INTRODUCTION

Cooperation plays a significant role in human society and
biology,1,2 a concept seemingly incongruent with the theoretical

framework put forth by Charles Darwin.3,4 The question of why self-
interested individuals are willing to bear the cost to benefit the group
remains without a definitive solution. Explaining the cooperative
behavior of self-interested individuals in a system continues to pose
a challenge.5 Evolutionary game theory, designed to solve biologi-
cal problems, has aroused wide interest in economics,6,7 physics,8–10

and psychology,11 providing a powerful and feasible framework
for studying cooperation in this situation.12 Nowak has explained
human cooperative behavior from the perspective of game the-
ory, forming five basic theories: kin selection, direct reciprocity,
indirect reciprocity, network reciprocity, and group selection.13,14

Among them, the prisoner’s dilemma game (PDG)15 and the
snowdrift game (SDG)16,17 are often mentioned as examples to
describe pairwise interactions. In addition, complex networks
provide a new way to study this problem. Evolutionary games
on different network populations have been widely proposed,
including small-world,18 lattice,19,20 and scale-free networks.21
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Furthermore, the study of evolutionary games on multilayer
networks,22,23 higher-order networks,24 and temporal networks25

have been recent extensions.
It is widely acknowledged that the presence of spatial structure

facilitates the emergence of cooperative clusters in PDG,19 thereby
countering the invasion of defectors. However, for SDG, it should
be noted that the spatial structure sometimes inhibits the emer-
gence of cooperation.17 Within a group, individuals may pursue their
self-interests; yet if everyone adopts an identical strategy, it can ulti-
mately lead to resource depletion or even extinction for the entire
group. This phenomenon could be commonly observed in vari-
ous social contexts such as resource overexploitation, environmental
degradation, and misuse known as the “tragedy of the commons.”
To solve these issues, numerous mechanisms26,27 that can pro-
mote cooperation, such as reward,28,29 punishment,30,31 multi-person
group interactions,32 different social roles,33,34 and reputation,35,36

have been extensively studied within the framework of spatial evo-
lutionary game theory.

In conventional models of evolutionary game theory, all par-
ticipants are considered homogeneous, irrespective of their sta-
tus or cognitive relationship, and they employ the same game
matrix.12,37 However, it is widely acknowledged that no two indi-
viduals in the world are identical. There always exist variations
among individuals, and even slight disparities can exert a significant
impact on the outcome of their interactions. Numerous experi-
mental studies have demonstrated that interactions between indi-
viduals often display asymmetry, which is also observed in natural
settings among individuals or populations.38,39 Moreover, exten-
sive investigations have been conducted on asymmetric interactions
influenced by individual characteristics or heterogeneous resource
distribution.40,41 However, the complexity of interactions between
individuals requires further understanding. Over the past few years,
there have been studies that focused on the effect of variable proper-
ties of game payoff on the evolution of cooperation.42–44 To capture
the ever-changing environment, Su et al. considered a model of
evolutionary dynamics with game transitions,45 which reveals that
simple game transitions can promote prosocial behaviors. Zeng et
al. proposed a stochastic payoff game matrix that makes each indi-
vidual’s payoff follows a specific probability distribution with a
fixed expectation,46 finding the impact of the changing payoff on
cooperation.

However, a disparity exists between the content above and
our grasp of reality, with the heterogeneities of these individu-
als traditionally regarded as immutable attributes in an idealized
context. It is widely recognized that individual traits are dynamic,
and factors like height, weight, position, and education, among
others, are subject to change over time.47 Therefore, it becomes
imperative to aptly depict dynamic properties that encapsulate the
diverse characteristics of individuals. In such instances, the flex-
ible alteration of heterogeneous features in individuals gives rise
to corresponding variations in asymmetric interactions.48 Actu-
ally, even colleagues in identical positions can exhibit asymmetric
cognition and interaction. Whatever the status, distinct individu-
als nurture varied perceptions of the same person, encapsulating
the essence of “Ten people, ten minds.” In consideration of the
preceding discussions, this paper introduces an asymmetric snow-
drift game originating from the variable heterogeneous cognition

among individuals. We forego the direct delineation of individual
characteristics and, instead, reflect the characteristics of individu-
als through inter-individual cognition, where intricate interactions
within a system can engender evolution in cognition among indi-
viduals. This interaction can manifest as alterations in individual
traits or as other forms of moral human behavior distinct from
cooperation.49 For instance, individuals may extend help to others
driven by self-interest, be it material rewards or spiritual satisfac-
tion. Furthermore, when individuals receive assistance, a sense of
gratitude often emerges toward their helpers, fostering the evolution
of heterogeneous cognition. Throughout this process, participants
experience an elevation in renown or material prosperity, signify-
ing a transformation in their individual attributes. We formalize this
process by introducing the concept of favor value, which is a param-
eter possessed by individuals and can be reciprocally contributed
and received from others. Concurrent with gaming, favor value
circulates among individuals, depicting diverse interactions. Ulti-
mately, the variation in favor value contribution intensity between
individuals signifies heterogeneous cognition. Furthermore, this
heterogeneity in cognition influences both sides of an interaction,
where those who are perceived as more respected or powerful
by their counterparts may potentially gain more benefits through
cooperation. Building upon this foundation, we investigate here
alterations in cooperation within systems on both Watts–Strogatz
small-world and regular networks following the incorporation of
asymmetry. Subsequently, we examine the impact of varying the
intensity of giving favor value on the cooperation trend. Lastly, we
observe the distribution of favor values within the network under
diverse circumstances and provide potential explanations for the
results.

The rest of this paper is structured as follows. In Sec. II, we
mainly describe the rules of heterogeneous cognition among indi-
viduals and the asymmetric characteristics of SDG. In Sec. III, we
present the main simulation results and discussion. In Sec. IV, we
conclude our work and present some future outlooks.

II. MODEL

In practical scenarios, cognitive disparities invariably emerge
among individuals, attributed to factors like status inequality, eco-
nomic disparities, or disapproval of each other’s conduct. However,
cooperative behaviors persist within this milieu. It is the very cog-
nitive distinctions that engender unequal outcomes in cooperative
efforts, with the more esteemed or influential individuals typically
securing greater payoffs. The outcome of the interaction also affects
individuals’ cognition of their diverse neighbors all the time, con-
tributing to intricate and pervasive asymmetric interactions in the
evolutionary dynamics of society.

To describe this phenomenon, in this section, we primar-
ily elaborate on our model from the perspective of heterogeneous
cognition. In Sec. II A, we provide the details of the asymmet-
ric characteristics of SDG, elucidating its mapping mode. Moving
on to Sec. II B, we expound upon the evolution method of het-
erogeneous cognition, putting forward the concept of favor value.
Subsequently, in Sec. II C, we introduce our novel fitness method
and its corresponding individual strategy evolution approach.
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A. SDG with asymmetric cost

Given the presence of heterogeneous cognition among individ-
uals, the result of their interactions frequently exhibits asymmetry.
In practical scenarios, individuals who offer greater assistance to
their neighbors tend to reap more payoff in cooperative efforts, i.e.,
fewer losses in SDG. Consequently, we initially considered a snow-
drift game characterized by asymmetric losses arising from the het-
erogeneous cognition among individuals. For the classical SDG, two
players decide to choose either cooperate (C) or defect (D) simul-
taneously. The reward R or punishment P will be received by both
players for mutual cooperation or defection. While one player coop-
erates and the other defects, the sucker’s payoff S will be obtained
by the cooperator and the temptation to defect T will be obtained by
the defector. These payoffs satisfy the rank T > R > S > P, where
the payoff matrix often described as T = b, R = b− r/2, S = b− r,
and P = 0, with the constraint 0 ≤ r ≤ b, and b is generally set to
1. When both players in the game adopt cooperation, they receive
equal benefits, which is contrary to the outcomes of interactions in
most real-world situations. To improve this lack, we use a parame-
ter 3 to reflect the asymmetry degree caused by mutual assistance
between individuals, while preserving the essence of the SDG. The
payoff matrix for individual i while playing the game with individual
j is

Gij =

(

1− r ·3ij 1− r
1 0

)

, (1)

where r is the cost and 3ij is the asymmetric parameter, with
0 ≤ 3ij ≤ 1. Similar to the symmetric SDG, when one of the indi-
vidual pair (i, j) chooses to cooperate, and the other defects, the
cooperator bears all the losses r and the defector gets all the bene-
fits. As i and j cooperate, they lose different costs due to the presence
of 3.

To better illustrate the asymmetric degree 3, we introduce the
concept of “favor value.” It serves as a parameter inherent to individ-
uals that can be reciprocally contributed and received from others.
It denotes a specific resource each individual possesses and, to some
extent, displays their distinctive characteristics. The total favor value
in the network is fixed, and in the initial case, each player has a
favor value of the same size, denoted by vinitial. Based on this, the
asymmetric parameter 3ij from i to j is defined as

3ij =











0 Aij − Aji > 1,
1−(Aij−Aji)

2
−1 ≤ Aij − Aji ≤ 1,

1 Aij − Aji < −1,

(2)

where Aij denotes the sum of favor value contributed by i to j over
time, which we expect to have a linear relationship with the asym-
metry degree between individuals. The range of 3ij is controlled
between −1 and 1 to ensure that individuals do not have a nega-
tive income. In instances where both participants in the game select
cooperation, their combined total payoff aligns with the symmetric
SDG, i.e., 2− r. When the total favor value contributed to each other
is close enough or identical, the parameter 3 gradually tends toward
1/2, leading to the situation that the two individuals are engaged in
an approximately symmetric game.

B. Evolution of heterogeneous cognition

As favor value also plays a vital role in delineating the process of
inter-individual cognition formation, in our model, the mutual con-
tribution of favor value between individuals forms heterogeneous
cognition, which affects the payoff of individuals in the asymmet-
ric game. Its specific formation and evolution process is described
as follows, first, for a randomly selected node i, calculate its current
favor value vi:

vi = vinitial +
∑

k∈Ω

(Aki − Aik), (3)

where vinitial denotes the initial favor value that each node has and
Ω indicates the set of the neighbors of i. Then, i randomly selects
its neighbor j after playing the asymmetric SDG for one time. For
the single payoff spij of i that only gets from playing the asymmetric
SDG with j, we define the single fitness sfij from i to j,

sfij = vi · spij. (4)

After that, individual i hypothesizes the situation in the symmetric
SDG through the current strategy and knows the potential sin-
gle payoff sp′ij, thus getting the potential single fitness sf ′ij = vi · sp

′
ij

through Eq. (4). According to the sfij and sf ′ij, i decides to contribute

favor value to j with a probability determined by the Fermi update
rule,

pi→j =
1

1+ e
(sfij−sf ′ij)/k

, (5)

where k > 0 is environmental noise. It is noteworthy that v and k
represent the uncertainty to make the decision. ε is the contribution
intensity, which represents the favor value that i could contribute to
j in a time step. As i contributes its favor value of size ε to j, there
would be the following changes: vi = vi − ε and vj = vj + ε. Partic-
ularly, when ε = 0, individuals play a symmetric SDG. According to
the simulation, nodes whose payoff is less than the assumed payoff
will be more inclined to help others and contribute their favor value.
For nodes whose payoff is greater than the assumed payoff, there is
still a probability that they will continue to help others, but with the
increase in the payoff, the trend of giving favor value to others will
be gradually suppressed, thus reducing the occurrence of extreme
cases. Also for this reason, we set a minimum boundary with a value
equivalent to ε for each node’s favor value, a node is restricted from
contributing further when its favor value falls below this designated
minimum.

C. Strategy evolution

In our model, the game strategy and favor value co-evolve
within the network. Owing to the mutual contribution of favor
values among individuals, we consider employing favor value as a
metric for individual fitness. In particular, we define the fitness of
node i as

fi = vi · pi, (6)

where pi denotes the accumulated payoff of i only in the current step.
There is a linear relationship between individual fitness and its favor
value. Node i modifies its strategy and concurrently updates by emu-
lating a randomly selected neighbor j. The probability of adopting
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the strategy of the randomly selected neighbor node j is based on the
Fermi update rule,

Wi←j =
1

1+ e(fi−fj)/s
, (7)

where fi and fj are the fitness of node i and node j, respectively, and
s > 0 represents the external noise in the decision-making process.
This implies that individual strategies are shaped not only by self-
interest and current resources but also by environmental factors.

To better describe our co-evolution model, in Fig. 1, we illus-
trate the instantaneous transformation of a network with a contri-
bution intensity of ε = 0.01. In Sec. III, we will present simulation
results derived from this model.

III. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present the simulation method of our model,
show the findings, and conduct relevant analysis. We considered
two types of networks: (i) The grid lattice network with periodic
boundary is a well-known example of a simple regular network in
which all nodes have the same degree. Building upon the grid lattice,
the Moore grid incorporates additional connecting edges between
each node and its diagonal counterparts, i.e., each node is con-
nected with eight surrounding nodes. (ii) The structure of the WS
small-world network lies intermediary between a regular network
and a random network, capturing the phenomenon of six degrees
of separation observed in reality.50 Hence, our simulation results are

derived within the context of the Moore grid and WS small-world
network, unless explicitly stated otherwise. Specifically, in the sim-
ulation process, we initially focus on examining the impact of the
game cost r and contribution intensity ε on the cooperative behav-
ior in the system. Subsequently, we analyze the temporal evolution
of the strategy distribution at the microlevel within the Moore grid
lattice. Finally, we investigate the distribution of favor values across
various parameter pairs and provide a thorough discussion of the
simulation outcomes.

The simulation is carried out in Python. At the beginning of
each simulation, N = 1296 players are embedded into the WS small-
world network or the 36× 36 Moore grid with periodic boundary.
In the initial stage of each simulation, the same number of coopera-
tors and defectors is randomly distributed in the network, and their
favor value is set to 1. At the same time, the environmental noise
during interaction k = s = 0.15. Except for experiments that pay
attention to evolutionary processes, all results are obtained on the
iterative T = 5000. To eliminate the chance of experimental results
and obtain more accurate results, the final results of each group of
parameters were averaged over ten independent experiments.

A. Heatmaps of effect of parameter pair (r , ε) on

cooperation frequency

First, we analyze the effects of SDG cost r and contribu-
tion intensity ε on cooperation evolution on different network

FIG. 1. An example for co-evolution of cognition and strategy. Cooperative nodes are represented in blue, while defectors are depicted in red. This process with the contribution
intensity of ε = 0.01. (a) denotes the initial status of a network. The favor value belonging to each node is indicated adjacent to it. The black arrows elucidate the favor value
income of node n1. Nodes play the asymmetric SDG with current strategies and receive the corresponding payoff at this moment. (b) illustrates the cognition evolution on
the network, with nodes contributing the favor value, depicted by the orange arrows. Simultaneously, (c) displays the strategy evolution process. (d) shows the co-evolution
result that combines (b) and (c).
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FIG. 2. Cooperation frequency for contribution strength ε and cost r . (a)–(c) correspond to the experimental results of the model on the two-dimensional Moore grid lattice,
the regular triangular lattice, and the WS small-world network. In Moore grid and regular triangular lattice, the cooperation frequency increases with the increase of ε. In the
WS small-world network, the frequency of cooperation is reversed with ε. But all three are higher than for ε = 0 (the model is a symmetric SDG).

architectures. As a common regular network, the regular triangu-
lar lattice is also introduced in this experiment with a size of 1296
nodes and periodic boundary conditions. According to the above
content, when ε = 0, the model is a traditional symmetric interac-
tion, thus we can study whether the asymmetric interaction caused
by heterogeneous cognition can promote cooperation behavior. The
simulation results are illustrated in Fig. 2.

Figure 2(a) gives the experimental results of the model on the
Moore grid. Compared to the symmetric interaction, higher coop-
eration frequency in the case of asymmetry is maintained for a
large range of r. The results also verify the relationship between
cooperation density and contribution intensity ε. When ε gradually
increases from 0.01 to 0.09, the cooperation frequency is promoted
to some extent. For a regular triangular lattice, the corresponding
simulation results are shown in Fig. 2(b). Cooperation increases with
different sizes of r when ε 6= 0. As ε increases from 0.01 to 0.04, there
is a notable upsurge in cooperation frequency. Subsequently, as
epsilon surpasses 0.04 and continues to ascend, the cooperation fre-
quency undergoes a more gradual transformation. The simulation
results on the WS small-world networks are displayed in Fig. 2(c).
With a smaller ε in the designated range, the system’s cooperation
density experiences a significant boost. Conversely, as the contribu-
tion intensity increases, it gradually diminishes. Nevertheless, the
simulations indicate that cooperation density still improves in the
context of asymmetric interactions.

In the Moore grid and the triangular lattice, approximately the
same change trend of cooperation is displayed. Under the same
cost r, the cooperation density on the regular triangular lattice is
higher than on the Moore grid. Notably, the trend of coopera-
tion density with ε changes in WS small-world networks exhibits
a reversal compared to the Moore grid and the triangular lattice.
A possible explanation for this phenomenon is closely tied to their
distinct network structures. The Moore grid and triangle lattice are
regular networks, while the WS small-world network

represents an intermediary structure between a
regular and a random network.

B. Snapshots on the Moore grid lattice

Snapshots offer a comprehensive and static perspective for
investigating evolutionary games on complex networks. It proves
advantageous for observing the node behavior at the microscopic
level. To intuitively examine the impact of complex group inter-
actions on cooperative behavior in spatially structured populations
and the variations in group cooperative behavior with changes in
giving strength ε, we conducted an observational analysis of charac-
teristic strategy snapshots in the Moore grid lattice. This exploration
was carried out under different parameter pairs (r, ε), specifically
(r, ε) = (0.6, 0.03), (0.6, 0.01), and (0.5, 0.01), at time points T of 0,
2000, 4000, and 5000, respectively. The observations are shown in
Fig. 3(a). The simulations, conducted with three sets of parameters,
beginning with identical initial random conditions, where coopera-
tors are represented by the color blue and defectors by the color red.
The distribution of cooperators and defectors stabilizes after 2000
iterations.

The changing trend of cooperation density aligns with the
results of previous experiments. With parameters set at r = 0.5 and
ε = 0.01, the cooperators gradually become dominant and resist
the defector’s invasion. As r = 0.6 and ε = 0.01, the number of
defectors rises, leading to mutual resistance of two sides and the
formation of multiple clusters. As ε increases to 0.03, while main-
taining r at 0.6, the frequency of cooperators further rises, with
more distinct cluster features. This indicates that within the Moore
grid, an increase in the contribution intensity leads to the forma-
tion of larger cooperation clusters, effectively enhancing the density
of cooperators. It is widely recognized that an increased cost r
inhibits the emergence of cooperation. However, a comprehensive
understanding of the impact of variations in the contribution
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FIG. 3. Characteristic snapshots and distribution of favor value for different (r , ε) parameter pairs. (a) illustrates the characteristic snapshot of nodes’ strategy under different
(r , ε) parameter pairs in the Moore grid lattice. From top to bottom, the parameter pairs are set as (0.5, 0.01), (0.6, 0.01), (0.6, 0.03), and from left to right, the time is set
as T = 0, 2000, 4000, 5000. Blue represents cooperators, and red represents defectors. With the advance of time, the cooperators and defectors resist each other and form
multiple clusters. The changing trend of cooperation density is consistent with the results of previous experiments. As the game cost r increases, the frequency of defectors
increases as well. When the contribution intensity ε increases, cooperators in the lattice gradually dominate. (b) displays the distribution of favor values corresponding to
different parameter pairs at various times. The blue, orange, and green lines show the distribution of favor value when T is 2000, 4000, and 5000, respectively. The distribution
of favor values shows a generally similar trend under different conditions.

intensity on cooperative behavior necessitates an exploration of the
distribution of favor values within the system.

Figure 3(b) illustrates the distribution of favor value corre-
sponding to different (r, ε) parameter pairs at various time points.
The blue, orange, and green lines show the distribution of favor
value when T is 2000, 4000, and 5000, respectively. It can be observed
that the flow trend in favor value becomes more pronounced over
time. Despite the initial setting, where individuals with a favor value
equal to 1 constitute the majority, this proportion diminishes over
time, and the range of favor values also expands. This indicates a
gradual widening of the gap in favor values in the network. At a fixed
time, the evolution of favor values exhibited a nearly identical trend
in both cases when ε = 0.01. With r = 0.6, a higher ε leads to the
emergence of more individuals with favor values near the minimum
limit. The kurtosis of favor value decreases and the positive skew-
ness increases. Additionally, the maximum favor value attainable by
individuals is higher under elevated ε.

In asymmetric interactions, both partners in cooperation
exhibit a tendency to contribute higher favor values, aiming to

maximize their respective benefits. Furthermore, there exists a
probability that defectors may receive favor values from their neigh-
bors. As evolution progresses, individuals possessing lower favor
values may show a tendency to imitate strategies from those with
higher favor values in their connections, given the associated fit-
ness advantages. Consequently, clusters of cooperators or defectors
emerge, gravitating around individuals with elevated favor values.
Simultaneously, the escalating contribution intensity aligns with
individual proclivities, fostering a more obvious flow of favor value.
Meanwhile, with an increase in the cost r, individuals with lower
favor values become less inclined toward cooperation, displaying a
greater propensity for betrayal. This leads to a reduction in cooper-
ation frequency and alterations in cluster dynamics.

C. Evolution of the distribution of favor value over

time

Based on the aforementioned simulation results, the tempo-
ral evolution of favor values exhibits a regular pattern. To further
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FIG. 4. Distribution of favor value over time with fixed parameters. (a) and (b) display the situation in the Moore grid and WS, respectively. The simulation is performed with
a parameter pair of (r , ε) = (0.8, 0.01) and observed every 1000 time steps until T = 5000. Over time, the trend in favor value dynamics intensifies, and the distribution of
favor values in the WS network exhibits stronger extremity compared to that of the Moore grid.

investigate the influence of distinct network architectures on the
favor value evolution, we examine the favor value distribution for
a specific parameter pair within both the Moore grid and the WS
small-world network over time. The simulations were performed
with a parameter pair of (r, ε) = (0.8, 0.01). We extend the time step
to T = 5000 and observe the distribution of favor value every 1000
time steps. These observations are illustrated in Fig. 4. Given that
we set the minimum favor value of each individual, the distribution
features a left boundary equivalent to ε = 0.01.

Figure 4(a) illustrates the temporal evolution of the favor value
distribution in the Moore grid, consistent with observed trends from
previous experiments in Sec. III B. Over time, while individuals with
a favor value of around 1 continue to constitute the majority, their
proportion is gradually diminishing. As T ranges from 1000 to 5000,
the modal peak of the distribution exhibits a decline, diminishing
from above 1.2 to approximately 0.7. Concurrently, the maximum
favor value that an individual can attain is rising. The right tail of
the distribution expands from 2.25 to 3.5. The decreasing kurtosis
and the increasing positive skewness within the data further affirm
this. Furthermore, as the cooperation behavior stabilizes, the rate
of favor value evolution diminishes. Figure 4(b) displays the situa-
tion in the WS. Similar variations in statistical characteristics over
time, i.e., decreasing kurtosis and rate of evolution, increasing pos-
itive skewness, are observed as mentioned above. The mode of the
distribution decreased from 0.31 to 0.19, and concurrently, the right
boundary expanded from 8.3 to 20. This indicates an ongoing flow
of favor values in the WS network as well.

However, for an equivalent time step, the trend in favor value
dynamics is more pronounced under identical contribution inten-
sity in the WS network compared to the Moore grid. Significantly
lower kurtosis and substantially higher positive skewness validate
this. This phenomenon is also evident in Fig. 4, where the favor

value distribution exhibits a stronger dispersion in the WS net-
work. Furthermore, there is a notable leftward shift in the median
favor value, accompanied by an increasing extreme favor value
on the right side indicating that the favor value of quite a few
nodes reaches the lowest, further corroborating the extreme distri-
butions. We speculate that distinct network structures contribute to
more extreme distributions on WS. It is known that the system’s
cooperation density achieves stability at T = 2000 in the preceding
simulation. However, the exchange of favor values persists beyond
this point. This strengthens the asymmetric degree among nodes,
thereby establishing a relatively stable state of mutual cooperation
or defect.

D. Effect of different parameter pairs on the

distribution of favor value

Given that the evolution of cooperation varies across dis-
tinct network structures with changing parameters, and asymmetric
interaction promotes cooperation in the system, following up the
evolution of favor values under different parameter pairs is neces-
sary. We maintain a constant time step and investigate the impact of
various parameter pairs (r, ε) on the distribution of favor value. The
simulation results are shown in Fig. 5. The blue and red lines corre-
spond to scenarios with game costs r = 0.8 and r = 0.7, respectively.
The solid and dotted lines denote cases where the contribution
intensity is ε = 0.01 and ε = 0.03, respectively.

Figure 5(a) depicts the simulation results in the Moore grid. For
r = 0.7 and ε = 0.01, the modal peak in the favor value distribution
attains 1.12, and the right boundary is 2.40. With an increase in ε to
0.03, the modal peak diminishes to 0.7, and the right boundary rises
to 3.15. Simultaneously, the kurtosis decreases, while positive skew-
ness and dispersion exhibit an increase. With ε held constant at 0.01,
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FIG. 5. Distribution of favor value over with different parameter pairs. (a) and (b) show the situation in the Moore grid and WS, respectively. The blue and red lines show the
situation of the game cost r = 0.8 and r = 0.7. The solid and dotted lines represent cases where giving strength ε = 0.01 and ε = 0.03, respectively. When T and r are
fixed, a larger ε will make the flow trend of favor value more obvious. In Moore grid, at a higher r , individuals are more willing to get more benefits by giving help, and the
increase of ε makes this willingness stronger. However, in WS, when r is relatively high, as the ε increases, even if the interaction between individuals reduces the number
of individuals with a favor value around 1, no individual with a greater favor value appears.

the modal peak decreased to 0.87, and the right boundary increased
to 2.77 as r escalated from 0.7 to 0.8. Concurrently, positive skewness
and the degree of dispersion also increased, while kurtosis exhibited
a decrease. All alterations in the favor value distribution induced by
variations in r or ε during the simulation adhere to the aforemen-
tioned two principles. The results in WS are presented in Fig. 5(b).
The distribution exhibits stronger extremeness compared to the sit-
uation in the Moore grid. When r = 0.7 and ε = 0.01, the modal
peak of the distribution is 0.33, and the right boundary is 13. As ε

increases to 0.03, its modal peak decreases to 0.21, while the right
boundary increases significantly to 42. Its kurtosis decreases, while
positive skewness and dispersion increase. Meanwhile, a similar sce-
nario unfolds when ε is held constant and r is increased. With
ε = 0.01, as r rises from 0.7 to 0.8, the modal peak of the distribution
decreases from 0.33 to 0.26, and the kurtosis diminishes. The right
boundary of the distribution ascends from 12 to 15, accompanied by
an increase in positive skewness and dispersion.

In the Moore grid, at a higher r, individuals are more willing
to get more benefits by giving help, and the increase of ε makes
this willingness stronger. However, in WS, as r = 0.8, when the ε

increases, even if the asymmetric interaction reduces the frequency
of individuals with a favor value around 1, the maximum favor value
that an individual can have does not grow much. Even the maximum
favor value when r = 0.7, ε = 0.03 is much bigger than the situa-
tion when r = 0.8 and ε = 0.03, which does not match the situation
in the Moore grid. A possible explanation for this phenomenon
is rooted in the distinct network characteristics. As the contribu-
tion intensity ε increases, individuals in WS are more concerned
about the consequences of providing assistance. Consequently, they
exhibit a more cautious approach to prevent substantial losses in

favor value and payoff resulting from defecting. This is in contrast
to the dynamics observed in the Moore grid. The variation trend of
the cooperation frequency with changes in ε is thus resolved in both
regular and WS small-world networks.

IV. CONCLUSION AND OUTLOOK

In this paper, we studied a snowdrift game with asymmetric
costs arising from heterogeneous cognition. We delineate the gen-
eration and evolution of cognition, defining fitness based on this
attribute. To realize the co-evolution of cognition and cooperation,
we introduced the favor value. Specifically, individuals are endowed
with favor value as an attribute, and they establish heterogeneous
cognition by contributing or obtaining favor value with a fixed con-
tribution intensity each time. This cognitive relationship leads to
unequal payoffs in the interactions between individuals in the game.
We conducted simulations to examine the impact of SDG cost (r)
and contribution intensity (ε) on the system’s cooperation behavior
and unearthed distinct patterns of cooperation evolution on both
WS and regular networks. Following this, we examined the strategy
distribution at the microlevel on the Moore grid lattice to identify
the internal factors influencing cooperation. The presence of asym-
metry enables both partners who cooperate to attain higher fitness,
resist defection behaviors, and consequently, foster the emergence of
cooperation. To further observe the role of favor value in evolution,
we discuss its distribution in the system over time and for different
parameter pairs (r, ε). We find that the contribution of favor value
serves to stabilize the asymmetry within the system, consequently
contributing to the stability of cooperative outcomes. In the con-
text of WS, owing to its inherent network structure, the distribution
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of favor values exhibits stronger extremity and dispersion. Simulta-
neously, with an increase in donation intensity, individuals in the
WS demonstrate heightened concern regarding the repercussions of
extending aid. Consequently, they adopt a more cautious stance to
forestall significant losses in favor value and reciprocation result-
ing from defection. This is in contrast to the dynamics observed in
the Moore grid. Such disparities offer a potential explanation for the
variations in cooperation within the network.

The asymmetric properties proposed in our study stem from
the behavior of individuals contributing certain properties to each
other. This dynamic allows for a fluctuation in the asymmetry degree
among individuals. However, the impact of diverse manifestations
of heterogeneous cognition on the asymmetry degree, such as non-
linear mapping, and whether they yield similar outcomes or induce
distinct phenomena, remains a focal point for our future research.
We anticipate that this investigation will inspire future studies aimed
at probing the effects of properties that can flexibly represent indi-
vidual characteristics in the systems. It encourages the exploration
of structured groups through empirical validation experiments and
endeavors to contribute to their further development for addressing
social dilemmas.
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