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A B S T R A C T

There has been fierce controversy in the literature over the long-run efficiency of the energy-only market (EOM)
design ever since its inception. In this paper, we provide novel insights to illuminate this historical controversy,
and we revisit it with a focus on contemporary issues and the profound changes brought about by the energy
transition. Specifically, we develop an analytical and modeling framework to quantitatively investigate how
EOM outcomes hinge on the underlying behavioral, informational and structural assumptions. We apply our
framework to a case study calibrated on Californian fundamentals that captures the key features of energy
systems under deep decarbonization. We characterize how EOM outcomes can substantially deviate from the
long-run optimum as soon as one assumption is relaxed compared to theoretical requirements. This leads to
pathways with higher electricity prices, lower security of supply and delayed decarbonization. In particular,
we highlight how market price signals alone are prone to a dynamic entry-exit coordination problem between
investment in low-carbon assets and the phaseout of fossil-fired assets. This calls for a market design reform
to complement price signals that accounts for realistic assumptions.
1. Introduction

The energy transition poses mounting challenges to energy sys-
tems across the world with various interrelated facets including de-
carbonization, renewables integration, energy efficiency improvement
and electrification. In practice, these ambitious aspirations translate
into different targets at different horizons. For instance, Senate Bill
100 in California mandates targets of 60% and 100% zero-carbon
electricity retail sales to end-use customers by 2030 and 2045, respec-
tively (California State Senate, 2018). The European Union Green Deal
and fit-for-55 policy package are another case in point, with the 2030
target of cutting greenhouse gas emissions by 55% below 1990 levels
and the objective of a net-zero economy by mid-century (European
Commission, 2019, 2022).

∗ Corresponding author at: EDF Lab Paris-Saclay, Électricité de France R&D – SYSTEME Department, France.
E-mail address: alexis.lebeau@edf.fr (A. Lebeau).

1 All authors were working at EDF R&D when the first version of this article was written.

In the electricity sector, generation expansion planning (GEP) mod-
els are often used to explore cost-efficient pathways to achieve decar-
bonization objectives. There is a rich literature discussing the underly-
ing optimization techniques and technological assumptions (e.g., inte-
gration of renewable energy sources, representation of short-term oper-
ations and seasonal storage) in such analyses (e.g., Alimou et al., 2020;
Abdin et al., 2022). There are also numerous applications that pro-
vide key insights on decarbonization pathways in given jurisdictions—
e.g., CPUC (2019) for California or RTE (2021) for France—or on the
role of specific technologies—e.g., hydrogen in Schulthoff et al. (2021).
This class of models offers a normative framework that is widely used
by academics, regulators, agencies, consultancies, investors and market
participants alike.

A crucial assumption of these models is that they take the per-
spective of a benevolent social planner. While this has the advantage
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of yielding normative results that hold independently of the institu-
tional or market framework, this turns into a blind spot when the
latter is to be studied and scrutinized. In particular, there is increasing
concern that the energy-only market (EOM) design,2 which has been
held up as the target design model in many jurisdictions since the be-
ginning of the deregulation era, may fall short of supporting necessary
investments to deliver decarbonization, reliability and affordability
objectives in a cost-efficient and timely manner (e.g., Roques and Finon,
2017; Newbery, 2018; Blaquez et al., 2020; Joskow, 2022; Keppler
et al., 2022).

The EOM paradigm rests on the principle that socially optimal
long-term entry and exit decisions can be decentralized in compet-
itive markets. Theoretical foundations can be traced back to Arrow
and Debreu (1954) in a general framework and to Caramanis (1982)
for a seminal application to the electricity industry.3 They are based
on the equivalence between optimality conditions of private agents
in a perfectly competitive market and those of a benevolent social
planner (also assuming private and social discount rates are equal).
From an investor perspective, this notably translates into the equality
between inframarginal rents and fixed costs at the optimum. Although
commonly presented for a representative year with annualized costs
under certainty (e.g., Joskow and Léautier, 2021), this result can be ex-
tended to a multi-year, stochastic framework by equating the expected
discounted sum of inframarginal rents with total fixed costs (e.g.,
Abada et al., 2017; Poncelet et al., 2019). Yet this equivalence holds
under ‘‘several strong simplifying hypotheses’’ (Rodilla and Batlle, 2012)
or ‘‘demanding conditions’’ (Newbery, 2018) that include perfect infor-
mation, full rationality, risk neutrality, and complete markets for risk
trading.4

Whether or not the tenability of these assumptions would com-
promise the practicability of the EOM paradigm has spurred heated
debates in the community since its very inception.5 At the dawn of the
deregulation era, Littlechild (1988) observed the disagreement, noting
that ‘‘mathematical models designed to prove that spot pricing is socially
optimal are unpersuasive’’—referring to the aforementioned ‘‘MIT mod-
els’’ of Caramanis (1982) and Schweppe et al. (1988). More skeptical of
the purported long-run efficiency of spot markets, others like Westfield
(1988) quite remarkably foreshadowed detrimental impacts on the cost
of capital that are front and center in current debates (e.g., Peluchon,
2021; Gohdes et al., 2022; Neuhoff et al., 2022; Newbery, 2023).6 Even

2 The traditional ‘energy-only’ terminology used in the literature can some-
imes be misleading as it may include a complete sequence of short-term
arkets (e.g., for adjustment and ancillary services) as well as derivatives

e.g., futures contracts) markets. In this paper, we use this terminology to refer
o fully deregulated market designs based on short-term wholesale markets and
ssociated derivatives markets.

3 It is worth recalling that Boiteux (1949, 1960) established seminal results
n marginal electricity pricing for a regulated utility under the assumption
f an optimal investment policy: ‘‘Provided there is an optimal investment policy,
hort-term pricing is also long-term pricing, and there is no longer any contradiction
etween the two’’. Similarly, Schweppe et al. (1988) also considered an energy
arketplace in a regulated environment. Acknowledging the investment de-

entralization result of their co-author (Caramanis), Schweppe et al. wrote
‘The spot price based energy marketplace is designed to operate in a regulated
nvironment [...]. This chapter only presents a set of basic ideas [...]. Since the
dvantages and disadvantages have not been quantified, we are not advocating
eregulation (i.e., we do not know whether there is ‘a lady or a tiger’ behind the
oor)’’.

4 These aspects are discussed in detail in Section 4.1.1. For instance, even
hen markets are complete, risk averse investors evaluate a risk-adjusted

xpectation of future inframarginal rents against total fixed costs.
5 This prolonged a similar controversy in the public utility pricing literature

n the conditions for the equivalence between short- and long-run marginal
ost pricing, see e.g. Andersson and Bohman (1985) and Section 4.1.

6 More generally on long-run efficiency, Westfield (1988) warned that ‘‘spot
arkets for electric power will not perform the miracles that perfect markets perform
2

m

though the theoretical controversy never settled, political impetus was
a critical driver for the liberalization of the industry (e.g., Joskow and
Schmalensee, 1988; Léautier, 2019). The implications of deregulation
for long-run efficiency also took a long time to materialize in practice,
notably because wholesale markets were implemented in relatively
mature power systems with a stable or contracting demand and little
need for new investments. The main focus was on short-run efficiency,
i.e. on harnessing market forces to ensure an efficient use of the existing
fleet (e.g., Pollitt, 2021; Cicala, 2022).7

Over the last decade or so, this controversy has been reinvigorated
in three phases with new variations. First, as documented in Bublitz
et al. (2019), security of supply and ‘missing money’ in liberalized
markets gradually became a focus of attention, with debates on the
need for and design of capacity remuneration mechanisms. Second, as
documented in Keppler et al. (2022), the energy transition shed a new
light on the debates due to the required profound changes in energy
system structures and generation mixes. In particular, the sheer scale
and speed of necessary low-carbon investments, their specificities and
capital-intensiveness, and various externalities (e.g., learning spillovers,
social and industrial preferences) generate a market design and regula-
tory conundrum. While these problems are now rather well delineated
at a conceptual level, there is scant literature offering quantitative
insights.8 Last but not least, the ongoing energy crisis further exposed
pre-existing design shortcomings and initiated a new wave of market
reforms, also putting the question of affordability at the core of the
debates (e.g., Fabra, 2023; Schittekatte and Batlle, 2023).

The objective of this paper is to provide novel quantitative ele-
ments to illuminate this historical controversy on electricity market
design and to revisit it with a focus on contemporary issues and
profound changes brought about by the energy transition. Specifically,
we develop an analytical and modeling framework to quantitatively
investigate how EOM outcomes are sensitive to theoretical assumptions
and characterize how they deviate from the long-run optimum when
these assumptions are relaxed. We apply our framework to a case
study capturing the key features of energy systems under deep de-
carbonization, which differ from those when short-term markets were
introduced and call for specific investigation. More precisely, we make
three contributions to the literature.

As a first contribution, we provide an analytical framework to un-
pack the underlying assumptions that govern the efficiency of an EOM
design in the long run. Specifically, we clearly delineate the behavioral,
informational and structural assumptions that are conducive to an
optimal energy mix in a pure EOM. In particular, we emphasize the
dynamic nature of entry-exit decisions and the crucial roles of risks,
hedging and anticipations. Compared to the existing literature that
has looked into these assumptions at a conceptual level (e.g., Joskow,
2008; Rodilla and Batlle, 2012; Newbery, 2018) or with a focus on
specific assumptions (e.g., Kraan et al., 2019; Fraunholz et al., 2023;
Tao et al., 2021, 2023), our framework is synthetic and unified. This
in turn allows us to relax assumptions separately in order to isolate and
compare the effects of doing so.

in the economic theory textbook. Many of the gains achievable through centralized
coordination will be lost ’’.

7 Back then the context and policy objectives were markedly different
rom those that prevail today for the energy transition. The focus was on
mproving the efficiency of mature systems and on replacing old coal-fired
lants with modern gas-fired plants as peaking units (financing needs were
odest because of CCGT’s low fixed costs relative to variable costs). See

lso Section 5 in Keppler et al. (2022) for a short historical perspective and
iscussion.

8 To our knowledge, there are two exceptions: (Kraan et al., 2019), who
ind that an EOM does not give sufficient and stable investment signals to
ustain a renewable, reliable and affordable power system; Zimmermann and
eles (2023), who find that carbon neutrality cannot be achieved only through
arket-based investments in France.
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As a second contribution, we develop a modeling framework com-
bining optimization and simulation models in a novel way in order to
operationalize the above analytical framework. Specifically, our core
simulation model uses System Dynamics (SD) as a modeling approach
to consider a representative agent and capture the aggregate market
impact of relaxing each assumption. Compared to the literature that has
used this or similar modeling approaches to analyze agent behavior and
market design issues (see Section 2.1 for a detailed literature review),
our SD market simulation model has key distinguishing features. First,
it has a linkage with a GEP model that can be used to define the
anticipations of the representative agent.9 The outcomes of the GEP
model are also used as a normative benchmark against which the
performances of simulated EOM outcomes are evaluated. Second, it also
has a linkage with an optimization-based merit-order dispatch model
to represent short-term operations and determine future wholesale
electricity prices that are the only source of remuneration for assets in
an EOM. Third, it solves for both investment and retirement decisions
simultaneously in conventional, renewable and storage technologies.

As a third contribution, we combine these two frameworks and
provide quantitative illustrations in the context of the energy tran-
sition. Specifically, we build a case study on the basis of a stylized
representation of Californian fundamentals over 2025–45. We select the
Californian system because of public data availability and reliability,
and because it presents the key characteristics of power systems under
decarbonization in a relatively simple setting.10 This facilitates the
modeling and the interpretation of the results, whose identified trends
are relevant for all power systems in transition. These characteristics
are a commitment to eliminate emissions that requires massive invest-
ments in non-dispatchable renewable energy sources along with storage
solutions, an existing fleet with a sizable share of fossil-fired plants
that will partly be phased out before the end of their lifespans, and
an increasing demand at wholesale level driven by electrification.

Overall, our quantitative results illustrate how the theoretical as-
sumptions needed for an EOM to deliver the long-run optimum can
hardly be met in practice. In particular, we highlight the high level
of informational and computational complexity associated with ratio-
nal decision-making and optimal anticipations of all relevant market
fundamentals and future entries and exits. Our results also reveal
that EOM outcomes can substantially deviate from the optimum when
we introduce limited anticipation sophistication or risk aversion that
affect expected revenue streams and asset profitability.11 This tends to
increase electricity prices, decrease security of supply and delay decar-
bonization. A crucial new insight is a coordination problem between
investment in low-carbon assets and the phaseout of fossil assets that
hinders the energy transition. For instance, under risk aversion, our
results go beyond the standard under-investment result established in
the literature. Specifically, risk aversion results in delays in both new
investment and fossil phaseout that mutually reinforce one another, and
thus delay decarbonization further.

The remainder proceeds as follows. Section 2 presents the modeling
approach in relation with the literature and describes the modeling

9 A similar approach is developed in Tao et al. (2021), who address
mportant methodological and modeling issues regarding agent anticipations.
n this article, we take stock of these methodological advances and leverage
hem to investigate market design issues.
10 For instance, imports and exports are relatively small, which makes the

solated single-zone assumption acceptable, and only two technologies – solar
V and battery storage – are envisaged as key transition drivers, attracting
he bulk of new capacity investments by mid century (around 95% in 2045
ccording to CPUC, 2019), which reduces the set of technologies one needs to
epresent. See also Section 3.1 for detail on open data sources.
11 As Section 4.1.1 will make clear, risk aversion is not a problem per se. It
nly distorts entry-exit decisions when markets are incomplete and all relevant
isks cannot be traded, which we implicitly assume is the case here.
3

framework, notably the SD model that simulates EOM outcomes. Sec-
tion 3 presents our case study, describes the model calibration and
characterizes the long-run optimum obtained with the GEP model. Sec-
tion 4.1 presents our analytical framework, examines the assumptions
under which the SD-EOM model replicates the GEP optimal outcomes,
and discusses the impacts of unit indivisibility. Section 4.2 explores
how simulated EOM outcomes deviate from the optimum when we
relax these assumptions. Section 4.3 summarizes our results and of-
fers implications for policy and market design. Section 5 concludes
and outlines how our modeling framework can be extended to assess
and compare alternative designs of long-term contracting mechanisms
currently contemplated as part of undergoing market reforms.

2. Modeling framework

In this section, we first provide an overview of our modeling frame-
work and place it within the related literature. We next describe its two
constituent models. Models were developed and coded in Python, and
the open-source codes are provided here: GitHub/ANTIGONE.

2.1. Literature review and model overview

Classes of models in the literature. For decades, electricity economists
and engineers have used a rich toolbox of complementary approaches
to model and get to grips with long-term power system issues. The
various modeling options are generally classified into three categories,
namely optimization, equilibrium, and simulation models (e.g., Ventosa
et al., 2005; Creti and Fontini, 2019) with distinct and complementary
areas of relevance:

• Optimization models are the original and traditional approach to
modeling the evolution of energy systems. The so-called gener-
ation expansion planning (GEP) models typically take the per-
spective of a central planner that seeks to determine the so-
cially optimal capacity development plan (i.e., that which min-
imizes system-wide investment and operating costs) given a vari-
ety of constraints (e.g., a cap on carbon emissions), see Kagiannas
et al. (2004) for a historical perspective. Over time, GEP models
have notably been extended to stochastic frameworks and are
still widely used today to analyze decarbonization pathways for
energy systems, see Weber et al. (2021) for a recent review.

• Equilibrium models simultaneously solve individual profit max-
imization problems for different types of agents (e.g., producers
with different technologies, intermediaries, consumers), finding
equilibrium solutions where no agent is better off deviating uni-
laterally (e.g., Fan et al., 2012). These models typically feature
uncertainty and risk aversion (e.g., Ehrenmann and Smeers, 2011;
Abada et al., 2017; Mays et al., 2019; Mays and Jenkins, 2022)
or imperfect competition (e.g., Hobbs and Pang, 2007; Acemoglu
et al., 2017).

• Simulation models can represent different decision-making rules
(i.e., beyond profit maximization) and degrees of agent’s sophis-
tication and rationality. There are two broad types of simulation
models: The first is agent-based modeling (ABM) that can feature
heterogeneous agents. The second uses system dynamics (SD)
and typically considers representative agents. dos Santos and
Saraiva (2021) and Tao et al. (2021) (resp. Teufel et al. (2013)
and Ahmad et al. (2016)) provide useful reviews of ABM (resp. SD
models) applied to energy systems.

Optimization models abstract the market realities away, and as
such, they provide insightful and normative results. In fact, linear/
convex GEP model results can be interpreted as the outcomes from
perfectly competitive markets with fully rational and informed agents.
While this constitutes a useful benchmark, it does not capture the

market environment in which agents trade and invest, the individual
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decision-making process of market participants (possibly with bounded
rationality, information or foresight) or the sequentiality of discrete
investment/divestment decisions over time (since all time steps are
solved simultaneously) – see also Section 4.1.1.

Equilibrium models allow modelers to represent and assess the im-
pacts of the market structure and heterogeneous agents and behaviors.
This notably endogenizes key decisions and model variables (e.g., risk
trading and the associated cost of capital). Yet these models rely on
solvers whose results do not lend themselves to a straightforward
interpretation of the mechanisms leading to the equilibrium, and they
are typically solved in steady state, which does not unveil the dynamic
nature of investment/divestment decisions. Additionally, by design
these models cannot account for out-of-equilibrium situations, which
are acknowledged to be common and deserve more attention (e.g., de
Vries and Heijnen, 2008; Léautier, 2019).

Compared to equilibrium models, simulation models give more
latitude in making explicit assumptions about agents’ rationality, in-
formation and foresight levels, and in representing out-of-equilibrium
situations. Arguably, this strength may also be a weakness, in that
assumptions must be clearly spelled out and articulated with one
another in order to arrive at sensible modeling results. Although SD
models were first developed and applied to the electricity sector (e.g.,
Ford, 1983; Bunn and Dyner, 1996), both ABM and SD models have
since then been widely used, notably to study capacity markets and
more recently other market design issues in the context of the en-
ergy transition—see inter alia (Keles et al., 2016; Kraan et al., 2019;
Fraunholz et al., 2021, 2023; Tao et al., 2021, 2023; Anwar et al.,
2022) for ABM models, as well as Petitet et al. (2016, 2017), Ousman
Abani et al. (2018), Rios-Festner et al. (2019, 2020), Tang et al. (2021)
and Pourramezan and Samadi (2023) for SD models.

Modeling approach in this paper. We develop a modeling framework
consisting at its core of an SD model that we complement by a GEP
model. Given that we aim to assess the impacts of relaxing the assump-
tions underpinning the optimality of long-term decision-making in a
canonical energy-only market (see Section 4.1.1), the choice of an SD
model proceeds in two steps:

(1) We first opt for a simulation model because we wish to explicitly
represent and vary the assumptions about investor behavior (i.e., ra-
tionality, foresight, information, risk aversion) as well as quantify and
describe the temporal dynamics of the energy transition.

(2) We next select an SD model to focus on a representative investor
and isolate the impacts of relaxing said assumptions at an aggregate
level—i.e., possibly capturing the resultant of different agents’ deci-
sions, but without formally accounting for heterogeneous agents and
behaviors.

As discussed above, great care will be taken to motivate and de-
lineate our assumptions about investor behavior and describe how
we implement them in the following. To name but one key issue at
this stage, Tao et al. (2021) and Fraunholz et al. (2021) note how
simulation model results can be sensitive to (long-term) price projection
methods, and in particular to the way future capacity developments
are anticipated and impact future price formation – and in turn govern
investment decisions – thus exemplifying an issue of endogeneity we
will come back to in Section 2.2.

This is the main reason why we complement our modeling frame-
work with a GEP model. That is, we feed the SD model with two
relevant outcomes from the GEP model (see Fig. 1). First, some infor-
mation about future capacity developments from the GEP model can
be used in the SD model when the representative investor forms future
price and revenue anticipations (see Section 2.2). Second, because we
do not explicitly model the market for carbon emissions, the shadow
price associated with the annual constraint on emissions from the GEP
model is used as an exogenous carbon price signal in the SD model
(see Section 3). Finally and intuitively, the GEP model also constitutes
a valuable normative benchmark for optimal capacity developments
4

Fig. 1. Modeling framework overview.
Note: The linkage between the GEP and SD models represented by the orange arrow
is optional.

against which we will assess the (deviations in) outcomes resulting from
the SD model.12

The GEP model is a standard constrained pluriannual cost-
minimization problem.13 In short, its objective function is the expected
net present value of total systems costs (operating costs + investment
costs + cost of rationing non price-responsive consumers at the value of
lost load). Decision variables include short-term operations and long-
term entries and exits. Several constraints govern the market clearing,
various generation and storage asset operations, asset fleet dynamics,
and carbon emissions. The different technologies we represent are
described in Section 3. We now turn to the description of the SD model.

2.2. System dynamics market model

The SD market model simulates the evolution of the generation mix
as the result of successive market outcomes and stepwise investment
and decommissioning decisions over time. Compared to intertemporal
optimization or equilibrium problems that are generally processed by
a numerical solver computing optimal values for all current and future
decision variables simultaneously, this approach explicitly unpacks
both the agents’ decision-making process and the dynamics of capacity
development. While this has the potential to capture important behav-
ioral and transitory effects (e.g., path dependency), it also entails that
we have to explicitly address the issue of endogeneity (i.e., circularity
or co-determination) between current and future decisions, that is the
formation and adjustment of (long-term) anticipations.

Specifically, individual investment and decommissioning decisions
are determined endogenously and sequentially each year of the simu-
lation period on the basis of an economic profitability assessment for a
given set of investor behavior assumptions and range of future market
outcomes. The SD model is composed of three interconnected modules
to enable this assessment: First, an anticipation module that produces
reference scenarios for market fundamentals over time. Second, a dis-
patch module that generates market prices as well as generation and

12 This alleviates the somewhat arbitrary nature of the reference point often
used in simulations, and it establishes a bridge between the long-term market
design simulation literature and the prospective analysis literature.

13 Because the formulation of this problem is standard, its detailed
presentation is relegated to Appendix B.
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Fig. 2. Causal-loop diagram of the SD market model.
Note: Elements in blue are endogenously determined and updated at each iteration of the loop delineated by blue arrows. Inputs in orange can be taken from the GEP model,
whereas those in black are exogenously calibrated.
storage patterns in future years for given reference scenarios. Third,
a decision module that makes annual investment and retirement deci-
sions using information about costs and revenues from the first two
modules. The outcome of the decision module is then fed into the
anticipation module, adjusting reference scenarios and initiating an
iterative loop. The three modules and their linkages are graphically
shown in the causal-loop diagram in Fig. 2. We describe them in turn
below.

2.2.1. Anticipation module
The anticipation module produces reference scenarios on the basis

of two types of long-term market fundamentals that govern current
investment and decommissioning decisions. First, some parameters
such as future demand, fuel prices, and carbon prices are set and
calibrated exogenously (see Section 3.1). Second, anticipations must
also be formed on future endogenous variables (i.e., future investment
and decommissioning decisions that define the generation mix in the
long term) which affect investment and decommissioning decisions
today, and vice versa. This section focuses on the formation of the
second type of anticipations over a ‘prospective horizon’; namely, the
time period over which investment projects assessed in the current year
of the simulation operate and are remunerated (and equivalently for
retirement projects). Relatedly, note that the model embeds build times
that are set to zero in this paper.14 That is, we assume that there is no
investment delay and assets start operation as soon as the investment
decision is made. This assumption facilitates the capacity adjustment
process for merchant entry-exit decisions in an EOM and entails that
our results should be seen as an optimistic upper bound estimate of
EOM performance.

As a (rational) way of dealing with deep uncertainty and cognitive
limitations associated with their long-term decision-making, investors

14 This is a mild assumption in our case study since construction times are
fairly short for our panel of new entrant technologies, i.e. circa 1 year for solar
PV and battery storage (see IEA, 2020; NREL, 2023).
5

may use heuristics or rules of thumb to alleviate associated computa-
tional complexity and informational requirements (e.g., Simon, 1955;
Baumol and Quandt, 1964). For instance, heuristics can be utilized to
forecast future relevant factors (Brock and Hommes, 1997), such as
backward-looking adaptative expectations (Cepeda and Finon, 2011).
Alternatively, simplified models considering only variables of first-
order importance can be built (Gabaix, 2014), information that is
costly to obtain and process can be ignored (Reis, 2006), and planning
horizons can be truncated and sliding (Quemin and Trotignon, 2021).
Moreover, limited sophistication in forecasting future entries and exits
over the whole prospective horizon can be justified by the fact that
anticipating other agents’ decisions is complex, especially without com-
plete long-term markets that may allow for the coordination of agents
towards the first-best outcome (e.g., Williamson, 1975; Van Huyck
et al., 1990; Felder, 2002).

For expositional clarity, we consider two polar cases of anticipation
sophistication labeled ‘static’ and ‘dynamic’ anticipations. This notably
allows us to avoid using in-between ad-hoc anticipation heuristics or
rules that would make our results dependent on arbitrary modeling
choices. The two cases are graphically illustrated in Fig. 3 for a stylized
example of a fossil technology phaseout.

Static anticipation. The first and simplest case consists in not consider-
ing any future decisions throughout the prospective horizon. That is,
at a given point in time, the existing fleet is maintained online with
no new entries until existing assets reach the end of their lifespans
and retire without early economic exits. This simplifying assumption
of myopia, albeit somewhat extreme, is often (implicitly) made in the
related literature (e.g., de Vries et al., 2013; Chen et al., 2018). In Fig. 3,
in any given year of the simulation (here 2025), before any investment
or decommissioning decision is made on that year, installed capacity 0
inherited from the previous year is prolonged into the future to form
the anticipated trajectory A . Note that this trajectory is constant as
long as no unit reaches the end of its lifespan (as is the case here until
2028).
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Fig. 3. Illustration of static vs. dynamic anticipation of future decommissioning decisions.
Dynamic anticipation. The second case introduces sophistication in an-
ticipating the evolution of the generation mix over time. In line with
standard prospective analysis methodology utilized in practice to in-
form investment and retirement decisions, the GEP model is leveraged
to provide an optimal capacity development plan.15 Specifically, in a
given year, the GEP model is run from the current state of the fleet,
yielding optimal capacity trajectories by technology until the end of the
prospective horizon. Then, the anticipated evolution of the generation
mix is defined as per the optimal yearly capacity changes beyond the
current year, while entry and exit decisions for the current year are
left for the decision module to determine. This guarantees that in the
benchmark case (i.e., assuming perfect information, rationality and risk
neutrality) the decision module arrives at the optimal decisions for
the current year that are congruent with the entire optimal capacity
development plan derived from the GEP.16 This also constitutes a con-
servative assumption when assessing the deviations induced by moving
away from the benchmark case (Section 4). In Fig. 3, the GEP model
run from the initial conditions 0 yields the full optimal trajectory 1 ,
and the dynamic anticipation of future entries and exits B is obtained
by only keeping optimal decisions beyond the current year.17

Moreover, the anticipation module is designed to accommodate two
types of deviations from the above perfect dynamic anticipation case.
First, we can relax the perfect information assumption and introduce
various biases in the anticipation of future fundamentals, regarding
either the parameters used as inputs in the GEP model (e.g., demand
level, technology costs) or its outputs (e.g., carbon price, capacity
trajectories). The introduction and choice of these biases is arbitrary,
but this should be seen as a complement to our analysis that resorts
to two polar anticipation cases. Second, we can choose the frequency
at which the GEP model is called to update the anticipation of future
entries and exits. While annual updates would be ideal, in practice the

15 In practice, firms and investors can carry out such prospective analysis in-
house or have it provided by external consultancies. In most cases if not all,
this relies on GEP-style optimization tools (e.g., PROMOD by Hitachi Energy
or PLEXOS by Energy Exemplar).

16 This convergence result is verified in the simulations (see Section 4.1)
and arises by construction: in the spirit of a rational expectations equilibrium
framework, we seek the fixed point between equilibrium and optimal beliefs
about future capacity expansion. Importantly, note that this result also requires
the anticipation of the associated future prices and revenues over the entire
lifespan of all assets (see Section 2.2.3 and footnote 22).

17 At the start of the iterative decision loop (Section 2.2.3), anticipated tra-
jectories of installed capacities coincide with B . Once the loop has converged
to a final state, anticipated trajectories coincide with 1 if optimal entry-
exit decisions were made in the year considered, which is the case in the
benchmark case.
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associated cost and complexity of this exercise may only warrant an
update every couple of years or more.18

2.2.2. Dispatch module
The SD model embeds an economic dispatch module to repre-

sent short-term operations and market prices. This type of linkage,
first introduced in Dyner et al. (2011), is preferred over the ‘revenue
curve’ (e.g., Ousman Abani et al., 2018) and ‘scarcity rents curve’ (e.g.,
Kraan et al., 2019) approaches that exogenously define a direct re-
lation between the level of capacity and assets’ revenues. Although
computationally heavier, our approach allows for a more accurate
representation of key features of decarbonized power systems (notably
the time variations of weather-dependent generation and the dynamics
of storage), and consequently of the price and revenue distributions.
Below we first describe the module’s structure and main assumptions,
and then specify when and how it is utilized within the SD model
workflow.

The dispatch model is formulated as a standard short-term cost-
minimization problem whose objective function is the total operating
cost; i.e., the sum of variable costs and cost of rationing price-inelastic
consumers (set at the VoLL). We consider an hourly resolution and to
alleviate the computational burden, we divide the annual problem into
sub-problems with a rolling horizon and a ‘look-ahead interval’ (i.e., a
final or continuation period that is included in each sub-problem whose
solutions are discarded in the current sub-problem but utilized in the
subsequent sub-problem). We set these parameters to 1 month and 24 h,
respectively, and storage assets are dispatched over these optimization
steps assuming perfect foresight.

Implicitly, this representation of short-term operations assumes that
the sequence of short-term markets is frictionless and yields an optimal
outcome.19 This important assumption is deliberate, as we wish to zero
in on the long-term aspects of a canonical energy-only market that
would still prevail if current short-term markets were improved through
more integration and finer granularity. For the same reason as well as
for consistency with the case study presented in Section 3, we keep
the dispatch model as parsimonious as possible. Although this version

18 Given the relative monotonicity of our case study (i.e., stable trends in
our model inputs and outputs, see Section 3) and the relatively low degree of
stochasticity in the model (see Section 2.2.3), the optimal capacity trajectories
defining the dynamic anticipation are only computed once at the beginning of
the simulation period in this version of the model. This reduces computational
time substantially with negligible impact on our results. Appendix G.1 provides
a robustness check where we allow for optimal anticipation updates every two
years.

19 This notably implies the absence of market power and short-term
non-convexities.
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of the dispatch model does not represent short-term uncertainties,
seasonal storage, ancillary services and grid congestion, its generic
and modular implementation is amenable to such developments and
refinements.

Finally note that the dispatch module is called and run in two
different places in the SD model: First, it is primarily utilized to con-
vert long-term fundamentals from the anticipation module into future
market prices and revenues as well as generation, storage charging
and renewable curtailment patterns. This dispatch is dubbed ‘‘virtual
ispatch’’ (Tao et al., 2021) as it is run for future dates on the basis of
ifferent anticipations of the future state of the system. Second, once
nvestment and decommissioning decisions are made in a given year,
he dispatch module is run to simulate the (actual, not virtual) short-
erm market outcomes for that year, before moving on to the following
ear. This final run is notably used as a basis to compute different
etrics in Section 4.

.2.3. Decision module
The decision module consists of a loop that considers all possible

nvestment and retirement decisions and iteratively selects the most
rofitable one at each step in the simulation until none is left. Specif-
cally, economic profitability is assessed on an annual basis from a
epresentative investor perspective using a Net Present Value (NPV)
riterion per asset, possibly adjusted for risk aversion.20 The NPV
pproach is a well-established tool in the literature to appraise and
ompare the economic profitability of assets available for investment
nd retirement.21 The representative investor perspective is at the core
f the SD approach and has been motivated above (Section 2.1).

ecision criteria and loop. The NPV associated with each decision is
omputed using relevant costs (i.e., avoidable costs) and market rev-
nues over a certain time horizon that all depend on the nature of the
ecision or the underlying asset (e.g., investment or closure, existing or
ew asset).

• Costs: We consider two types of fixed costs, the investment cost
(CAPEX) and fixed Operations and Maintenance (O&M) costs.
CAPEX is a sunk cost that cannot be recovered when an existing
unit is retired. By contrast, fixed O&M cost is due when the unit
is in operation but can be saved by decommissioning it. Some
technologies also have a variable operating cost, that is fuel and
carbon costs for thermal assets or charging cost for storage assets.

• Revenues: Annual revenues accruing to all assets over their en-
tire lifespans are computed using the hourly virtual short-term
dispatch module (Section 2.2.2) with the long-term fundamentals

20 The per-asset NPV approach does not capture synergies across assets that
ould affect investment profitability and decision (e.g., through risk pooling)
hen considered from a portfolio perspective (e.g., Roques et al., 2008; Tietjen

t al., 2016). Here, we employ a per-asset NPV calculation for computational
implicity and because a portfolio-based calculation does not fit well with
ur representative investor approach (the portfolio would coincide with the
ntire asset fleet). We note this may provide an upper bound on entry-exit
istortions relative to the first best as the portfolio-based calculation would
etter approach the complete market setting. Yet we believe this is without
oss of generality for our results – if not the relevant situation to consider –
otably as Abada et al. (2017) argue that assessing investments in isolation is
n line with the currently prevailing project finance approach and ‘‘probably
est fits the current market situation where long-term hedging possibilities essentially
o not exist ’’.
21 Although there is an option value in deferring decisions to invest in new
ssets under uncertainty and investment irreversibility (e.g., Dixit and Pindyck,
994; Rios-Festner et al., 2019), our approach makes no arbitrage between
nvesting now or a few years later (i.e., no real-options valuation). However,
e implement a procedure that captures some optionality for decommissioning
ecisions (see below).
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from the anticipation module (Section 2.2.1) as inputs.22 What
matters is the stream of net revenues, that is short-term market
revenues minus variable costs.

• Horizon: The profitability of a potential investment in a given
year must be assessed over its whole lifetime. By contrast, the
timing of a potential retirement decision is more complex, as
temporary losses in the short term can be offset by larger gains
in the long term.23 To capture this, we implement a simplified
procedure whereby retirement occurs only if revenues do not
cover fixed O&M costs both in the current year and over the
asset’s remaining lifespan.

The NPVs of all potential decisions in a given year are computed
s described above and the investor picks up the one with the highest
PV per megawatt of capacity in absolute terms. The decision-making
rocess thus places investment and retirement decisions on an equal
ooting and treats both types of decisions simultaneously.24 Once a
ecision is made, the asset fleet is adjusted for the corresponding ca-
acity addition or withdrawal, which affects the economic profitability
f all other units – be they installed or under consideration. That is, at
ach iteration of the loop, expected market revenues and NPVs of all
ssets are updated on the basis of the iterative evolution of the asset
leet. Importantly, the profitability of all previous decisions made in
he current year is reassessed at each iteration: if an earlier decision
ecomes unprofitable because of some following decisions, it is called
ff; and only those decisions that stay profitable until the end of the
terative loop become firm and effectively materialize.

Additionally, note that we implement a standard modeling artifact
o account for those years in the profitability assessment that extend
eyond the simulation period. Specifically, we assume market revenues
arned in the last year of the simulation period are duplicated and re-
eated over the following years until the entire asset lifetime is covered
n the profitability assessment. Because the ‘edge effects’ induced by
his artifact become increasingly prevalent as the end of the simulation
eriod nears, our interpretation of the simulation results in Section 4
ill essentially focus on the time window where they are less distorted

i.e., in the first part of the simulation period).25

Finally, the iterative loop in a given year terminates when one of the
wo following conditions is met: either there is no profitable decision
eft, or a given state of the asset fleet (i.e., the number of units per
echnology, which is stored after each iteration) is reached for the
econd time—see Appendix C for an algorithmic description of the loop.
he second condition preempts infinite back and forth and addresses in-
eterminacy issues due to unit indivisibility. Indeed, Appendix D shows
hat the long-term profit of a marginal investment in a given technology
or a given state of the asset fleet can be interpreted as the total
ystem cost function’s gradient component with respect to installed
apacity for this technology. Because this function is continuous and
onvex by assumption, the tâtonnement process implemented through

22 It is by now clear that there are two layers of foresight in the model—one
for future entries and exits, another for future prices and revenues. Assuming
that the forward-looking anticipation of future inframarginal rents is not
truncated ensures that current investment and retirement decisions are optimal
from a system perspective in the case of perfect dynamic anticipation of future
entries and exits (see Section 2.2.1 and footnotes 16 & 17).

23 For simplicity, mothballing decisions are not considered. See Ous-
man Abani (2019) for these developments.

24 The related literature typically focuses on investment and retirement
issues in isolation, often effectively modeling only one. When both decisions
are endogenous, they are typically modeled sequentially, which is not incon-
sequential for market outcomes. Our framework circumvents and goes beyond
these issues.

25 Appendix G.2 shows that our results are robust to the choice of an
alternative modeling artifact whereby the years beyond the simulation period
are truncated (i.e., not accounted for in the profitability assessment).
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this iterative procedure belongs to the class of ‘steepest coordinate
descent’ methods, which ensure convergence close to the optimum
(closeness depends on the capacity step size that reflects investment
lumpiness, see Section 4.1.2).

Uncertainty and risk preferences. We adopt a simple approach to in-
troducing uncertainty around the reference scenario produced by the
long-term anticipation module (Section 2.2.1). We follow Neuhoff et al.
(2022) and bypass the explicit modeling of multifaceted uncertainty,
e.g. on demand, commodity prices, regulatory changes and so forth.26

That is, we consider an aggregate risk that bears directly on the
discounted sum of net revenues for a given asset that we compute
based on a run of the virtual dispatch module (Section 2.2.2) in the
reference scenario, denoted �̄�. Then we add exogenous noise around
these endogenous, asset-specific �̄� values. In our main case, we assume
that asset-specific net revenues are uniformly distributed between 0 and
2�̄�.27

In the face of uncertainty, we consider that the representative
investor can exhibit different degrees of risk aversion, including risk
neutrality. There are many reasons why investors and firms (or firms
acting on behalf of investors) de facto behave as if they were risk
averse, resulting in a higher utility from more stable profits. These
include, inter alia, hedging demand, corporate risk management poli-
cies (e.g., financial and operational constraints) or costs associated with
financial distress (e.g., Froot et al., 1993; Bessembinder and Lemmon,
2002; Willems and Morbee, 2010; Acharya et al., 2013; Jagannathan
et al., 2016). Additionally, in the electricity industry where assets
are often capital-intensive with long lifetime, investment decisions are
the result of careful profitability assessments, and one may intuitively
expect risk aversion to prevail (e.g., Vázquez et al., 2002; Neuhoff and
de Vries, 2004; Abada et al., 2019).

There are different approaches to representing risk aversion, in-
cluding risk-adjusted discount factors (e.g., in the spirit of the CAPM),
coherent risk measures (e.g., a linear mixture of expected surplus value
and conditional value-at-risk), and concave utility functions. Although
the first two approaches allow for a more detailed and state-of-the-
art analysis of risk impacts, they deploy a heavier machinery than the
third approach that is irrelevant given our rather crude representation
of uncertainty. We thus assume that the investor preference for stable
and secure profits is described by a concave von Neumann–Morgenstern
utility function  . Additionally, as is standard in the related litera-
ture (e.g., Petitet et al., 2017; Fraunholz et al., 2023), we consider that
risk aversion applies directly on the (distribution of the) asset-specific
discounted sum of net revenues.28

We choose a functional form that satisfies the property of constant
relative risk aversion. This property ensures that the coefficient of risk
aversion does not vary with the economic value of the decision under

26 This single risk can be thought of as the aggregate of all risks, but their
ross-effects are not captured. We cast our probability distribution around the
entral value �̄� that is endogenously determined in the model. This stands in
ontrast to Neuhoff et al. (2022) who set this value to be constant over time
nd in line with observed market prices for the last year for which liquid
utures contracts exist at the time of their analysis.
27 The distribution of net market revenues is bounded from below to 0 since
arkets are perfectly competitive and assets only produce when the market
rice is at least as high as their variable cost. Appendix E illustrates how our
ualitative results are unchanged when we vary the interval of the uniform
istribution or use another distribution.
28 This assumption is reasonable for our purposes, and it also allows us to
eep the model tractable given the other key modeling details and specificities
hat we need to account for. Specifically, we do not develop a recursive
tility model à la Kreps-Porteus or Epstein-Zin as the issue of intertemporal
ubstitution is of second-order consideration and applicability for the problem
t hand. There is thus no need to disentangle risk aversion from intertemporal
ubstitution, and we can apply risk averse preferences directly on the overall
iscounted net revenue streams.
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d

consideration, which typically is of a different order of magnitude
for investments and retirements. Specifically, following Petitet et al.
(2017),  is defined by

 (𝐫) =
{

1 − exp (−𝛼𝐫∕�̄�) for 𝛼 > 0

𝐫 for 𝛼 = 0

ith 𝛼 the coefficient of (constant relative) risk aversion, 𝐫 the random
iscounted sum of net revenues, and �̄� = E{𝐫} by definition.29 Under

risk neutrality (𝛼 = 0), the investor considers the mean of the net
revenues distribution E{ (𝐫)} = E{𝐫} = �̄� when computing the NPV
f a given asset. Under risk aversion (𝛼 > 0), the investor considers
he certainty equivalent of net revenues 𝑟⋆, that is the certain revenue

that yields the same utility as the expected utility over the random
distribution of revenues,  (𝑟⋆) ≡ E{ (𝐫)}. The certainty equivalent
𝑟⋆ is decreasing with 𝛼 and tends to �̄� in the limit as 𝛼 goes to zero.
Analytical details are relegated to Appendix E.

3. Case study

In this section, we introduce and document our Californian case
study. We first describe the fundamentals used to calibrate the model
(Section 3.1) and then present the optimal simulation results de-
rived from the GEP model (Section 3.2). All input data are available
here: Zenodo/Dataset.

Before we proceed, a short discussion on market design is in order.
In practice, the Californian system is composed of a nodal electricity
market with a soft offer cap at 1000 $/MWh, a mandatory resource ad-
equacy requirement with no formal capacity market, an emissions trad-
ing system (ETS), and a renewable portfolio standard (RPS) program.
However, we intend to leverage our stylized case study to represent a
canonical energy-only market (EOM). Bearing in mind that our study is
for illustrative purposes, we thus make several simplifications in terms
of implementation.

We consider a zonal market with an hourly resolution over a 20-
year time period, focusing only on wholesale electricity (i.e., ancillary
services are outside the scope of this paper). There is no offer price cap
and the single hourly price can go up to the VoLL set at 15,000 $/MWh.
Moreover, we model an isolated system (no interconnection) and do not
represent the internal network (‘copper plate’ assumption).30 Although
we do not formally account for the resource adequacy requirement, we
set load scenarios in line with the ‘one-in-ten’ regulatory criterion (e.g.,
Pfeifenberger et al., 2013; CPUC, 2022; CAISO, 2023). Likewise, we do
not represent the RPS program, but note that CPUC (2019) found the
RPS constraint to be non-binding (the associated shadow price is zero)
and decarbonization to be driven only by the constraint on emissions.
Finally, the ETS is not explicitly modeled but we endogenously set
annual carbon prices as the optimal shadow prices associated with
annual emission targets. In sum, this stylized setup allows us to capture
the essence of EOM outcomes and to purposely assess how they hinge
on investor behavior assumptions.31

29 One can easily check that constant relative risk aversion holds
(i.e., −�̄� ′′(⋅)∕ ′(⋅) = 𝛼) and that this functional form is bounded from above
o 1 for positive outliers.
30 Imports and exports are relatively small compared to domestic generation
nd consumption: imports cover 17% of total supply today (CAISO, 2022) and
ecline in CPUC’s scenario to a slight net exporter situation in the 2030s.
31 See Bruninx et al. (2020) and Osorio et al. (2021) for related modeling
pproaches that jointly represent these different markets. Although they also
ook into investment decisions in the electricity sector, their focus is on policy

esign assessment and interactions, and they assume perfectly rational agents.
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Fig. 4. Load assumptions (grid load = gross load – distributed solar generation).
3.1. Calibration

We use and adapt data from three open-data sources: the integrated
resource planning (IRP) exercise by the California Public Utilities Com-
mission (CPUC, 2019), Ninja Renewables (Ninja Renewables, 2021),
and historical data from the California Independent System Opera-
tor (CAISO, 2018, 2019). Below, we describe how we calibrate demand,
supply and decarbonization parameters for both the optimization (GEP)
and simulation (SD) models.

Demand. We consider that demand is fully inelastic to price variations
and does not adjust to installed capacity. While this simplifies the
model and its calibration, note that this is innocuous for the EOM
performance we aim to appraise. Indeed, price-inelastic demand does
not fundamentally alter the peak-load pricing logic inherent to the
EOM (e.g., Joskow and Tirole, 2007; Joskow and Léautier, 2021).32

Here, gross load is exogenously given and assumed to increase linearly
between two given data points given by CPUC (2019), namely 250 TWh
in 2025 and 360 TWh in 2045.33 Similarly, we assume that distributed
solar generation is increasing linearly between two given data points,
29 TWh in 2025 and 66 TWh in 2045, and we subtract it (on an hourly
basis, see below) from the gross load to obtain the grid load. The result
is graphically depicted in Fig. 4.

Next, we convert the above annual amounts into hourly time series.
To do so, we start from two historical years – 2018 and 2019 –
for which we obtain hourly load from CAISO (CAISO, 2018, 2019)
and hourly capacity factors for wind and solar from Ninja Renew-
ables (Ninja Renewables, 2021). These constitute our two representa-
tive scenarios capturing ‘short-term’ uncertainties (i.e., which resolve
as real time nears). Working with historical data allows us to infer and
then utilize realistic correlations between various sources of uncertainty
such as load and weather. We then set the hourly load profile so as
to reflect the ‘one-in-ten’ capacity adequacy criterion that applies in
California. We proceed in five steps: First, we normalize both time
series. Second, we set 2018 as the representative year for the one-in-
ten-years peak and 2019 as the representative average year. Third, we
scale the normalized 2018 profile homothetically in order to have a
demand peak that is 15% larger than that in 2019. Fourth, we give
a 10% and 90% probability to the processed 2018 and 2019 load
profiles, respectively. Fifth, we finally scale the two profiles so that
when weighted by their respective probabilities they sum up to the
annual amounts shown in Fig. 4.

Supply. There are two types of technologies: ‘exogenous’ technologies,
whose installed capacities are exogenously given and in line with
planned evolution over time (e.g., by mandate or regulation), and ‘en-
dogenous’ technologies for which entry and exit decisions are explicitly
modeled.

32 In other words, demand elasticity is not a theoretical requirement for
the EOM to yield optimal outcomes. With price-inelastic demand, demand is
curtailed when it exceeds capacity and the price is set at the VoLL.

33 Appendix G.3 provides a sensitivity with a flat load showing that our
qualitative results are unchanged.
9

The set of ‘exogenous’ technologies consists of Combined Heat and
Power (CHP), nuclear, existing and planned wind and solar (with short-
hand ‘E&P’), as well as geothermal, biomass and small hydro, which
we group into one category (labeled ‘Other RES’).34 Hourly availability
factors for these technologies are set on the basis of data from CPUC
(2019), which we translate into an hourly resolution using Ninja Re-
newables (2021) if necessary. Fig. 5 depicts the evolution of generation
volumes over time for these technologies.

The set of ‘endogenous’ technologies is further divided in two
groups on the basis of decisions available to the representative investor:
existing fossil-fired dispatchable technologies – Peaker and Combined
Cycle Gas Turbine (CCGT) – can only be decommissioned (i.e., no new
investment is possible), whereas Solar and Storage technologies can
also be invested into. The storage technology we consider is generic and
has the characteristics of a lithium-ion 6-hour Battery Energy Storage
System (BESS) with a 85% roundtrip efficiency. The technical and
economic parameters of these four technologies are given in Table 1.

We make several realistic or mild assumptions to streamline the
simulations and their interpretations. That is, they allow us to iso-
late the impacts of varying investor behavior assumptions and are
largely inconsequential for the qualitative nature of our results. First,
all ‘endogenous’ technologies have a common weighted average cost of
capital of 8%.35 Second, they have a common lifespan of 25 years that
is longer than the simulation horizon. Third, investments are realized
with no build time (i.e., new capacities are built and start operations on
the year the investment decision is made). Fourth, in our central sce-
nario, all technologies have a common investment/retirement step size
of 500 MW.36 Taken together, these assumptions essentially guarantee
that investment and retirement decisions are not structurally tilted
towards specific technologies. Taken individually, each assumption is
mild and simplifies the anticipation and decision modules introduced
in Section 2.2.37 Although the first three assumptions have relatively
straightforward and innocuous implications (e.g., the higher the WACC,
the lower the investment volume), Section 4.1.2 provides a sensitivity
analysis for the fourth assumption as a basis for a general discussion of
capacity unit discreteness/indivisibility for modeling outcomes.

Finally, we set the initial conditions – that is, the capacities installed
in 2025 – so as to start the simulations from an equilibrium state that
is congruent with the anticipation and decision modules described in
Section 2.2. Specifically, CCGT, Peaker and Storage capacities are deter-
mined by running the GEP model for the year 2025 alone—they amount

34 Solar technology on the supply side corresponds to grid-scale solar PV
(recall that distributed solar generation is accounted for exogenously on the
demand side).

35 For a literature review on the representation of the cost of capital in
energy system models and a discussion of the associated impacts on model
outcomes, see Lonergan et al. (2023).

36 This step size does not reflect the actual size of single projects, but
rather the volume of projects that triggers an anticipation update fol-
lowed by reconsideration of or potential adjustment in entry-exit decisions
(Section 4.1.2).

37 For instance, the second assumption implies that we do not have to
address the issues of refurbishing, repowering or closing the assets that are
built during the simulation period.
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Fig. 5. Annual generation of ‘exogenous’ technologies.
Table 1
Technical and economic parameters for ‘endogenous’ technologies.

Technology Available CAPEX Fixed O&M Variable cost Carbon intensity
decision [USD/kW-yr] [USD/kW-yr] [USD/MWh] [kgCO2/MWh]

Peaker D only 42.5 20 51a 610
CCGT D only 117 30 31a 370

Solar I & D 72 9 0 0
Storage I & D 108 13 – –

Note: The letters D and I refer to decommissioning and investment, respectively. For simplicity, Solar’s variable cost and carbon intensity are
assumed to be zero. In addition, all technologies are assumed to have no build time, the same weighted average cost of capital (8%), and the
same lifespan (25 years) that extends beyond the simulation duration.
a Indicates average values over the simulation period and the symbol.
– Denotes parameters whose measurement is not straightforward due to yield and intertemporal use issues.
to 11, 19 and 10 GW, respectively. ‘Endogenous’ Solar capacities for
2025 are initialized to zero since the existing and planned (E&P) fleet
is already accounted for in the set of ‘exogenous’ technologies.

Decarbonization. We consider that the emission externality associated
with electricity production is fully internalized through an annual
carbon price signal that we endogenously set as the optimal shadow
price associated with annual emission constraints derived from our
GEP model. In doing so, we follow CPUC’s modeling approach which
considers annual emission targets without intertemporal flexibility.
Specifically, we assume that the annual cap on emissions is decreasing
linearly over time and we calibrate it with a linear interpolation
between 2025 and 2045 emission levels. We compute the former as the
emission level resulting from the initial brownfield fleet (31 MtCO2)
while we get the latter from CPUC (12 MtCO2). Fig. 7 depicts the
resulting emissions cap trajectory (left panel) and associated optimal
price signal (right panel).

In our setup, the shadow price associated with the emission con-
straint is equivalent to the equilibrium price that would arise in a
perfectly competitive allowance market (Montgomery, 1972). Since we
do not explicitly model the ETS, we abstract away from intertemporal
flexibility through banking, which may induce second-order changes in
emission and price levels (e.g., Rubin, 1996; Schennach, 2000), as well
as from price containment mechanisms, which may have an impact on
investment decisions (e.g., Burtraw et al., 2022; Cason et al., 2023). Yet
because we set the carbon price at its optimal values resulting from
the GEP model, the deviations from cost-efficient entry-exit decisions
that we study in Section 4.2 will largely be driven by investor behavior
assumptions.38

3.2. GEP results (optimal trajectories)

We run the GEP model with continuous capacity adjustment to de-
termine the optimal capacity trajectories for ‘endogenous’ technologies
(Figs. 6–7). Regarding new developments, Solar and Storage reach 84
and 59 GW of installed capacity in 2045 respectively with a quasi-linear

38 See Ruhnau et al. (2022) for a review and comparison of carbon price
impacts in electricity market models.
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trend.39 Regarding existing assets, Peaker capacity is reduced by 6 GW
(down to 13 GW), whereas CCGT capacity remains unchanged. The
annual emissions constraint is satisfied and binding every year with the
shadow price of carbon rising over time (399 $/tCO2 in 2045).40

Interestingly, note that only a few hours of load rationing occur in
the first years and that they vanish afterwards, even as decarbonization
progresses (Fig. 9, dashed line). This adequacy result is specific to our
case study and is driven by the interplay between the massive build-
out in both new Solar and Storage capacities driven by decarbonization
targets, the presence of a brownfield fossil fleet with sunk CAPEX and
relatively low fixed OPEX to be covered to remain economically viable,
and a high value for the VoLL.41

One may rightly wonder how Peakers are able to recover their
costs in such conditions, i.e. in the absence of inelastic load rationing
events with prices reaching the VoLL. One must first recognize that
the formation of electricity prices (i.e., the system’s hourly marginal
values of electricity) in carbon-constrained systems with high shares
of renewables and storage is complex and ‘‘determined dynamically
by demand and intertemporal storage decisions, breaking the static logic
of ‘merit order’ with dispatchable generation’’ (Ekholm and Virasjoki,
2020). In particular, prices can settle above the highest conventional
generator’s variable costs because of storage’s roundtrip efficiency and
intertemporal arbitrage, possibly forming ‘‘price plateaus’’.42 Moreover,
prices can factor in long-term cost components when capacity additions
and retirements are endogenous in the model (e.g., Mallapragada et al.,
2023). In this context, all conventional generators (including Peakers)
pocket sufficient inframarginal rents to recover their fixed costs.

39 This trend is essentially driven by the input data and foreseen evolution
of load over time (Fig. 4).

40 As a quick sanity check, we compare our results to those of CPUC: Solar
and Storage capacities amount to 64.3 and 50.8 GW in 2045 respectively;
Peaker and CCGT capacities are reduced by 4.2 and 1.8 GW over 2025–45,
down from 8.6 and 16.2 GW respectively; and the carbon price is found to
reach 403 $/tCO2 in 2045. Although there are some quantitative deviations,
our modeling results for a stylized system are qualitatively very comparable
overall.

41 This adequacy result is again in line with CPUC’s where the shadow
price associated with the Reserve Margin constraint is 63 $/kW-yr in 2026,
0 $/kW-yr in 2030 (i.e., the constraint is not binding) and 1 $/kW-yr in 2045.

42 Recall that storage units are optimized over a one-month window with
perfect foresight.
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Fig. 6. Optimal capacity trajectories for endogenous technologies (GEP results).
Fig. 7. Annual CO2 targets and emissions (left) and shadow price (right) (GEP results).
Running the GEP model allows us to illustrate numerically how, in
line with theoretical principles, cost recovery is ensured for all assets
with no ‘excessive’ rents. Specifically, we compute the Cost Recovery
Ratio (CRR), i.e. the ratio of net market revenues (price – variable costs)
to fixed investment and operational costs.43 GEP column in Table 2
shows that each endogenous technology recovers exactly 100% of its
costs. Recall that the economic viability of the initially existing (brown-
field) assets only requires fixed O&M costs to be recovered (respectively
20 and 30 USD/kW-yr for peaker and CCGT) as CAPEX is sunk. This
explains why existing Peakers recover only 32% of their fixed costs,
which corresponds to the share of their fixed OPEX. Since Peakers are
at the margin regarding total capacity – i.e., Peaker capacity is adjusted
downward against new capacity additions – retained units just break
even, exactly recouping their fixed OPEX with no extra rent to cover
their CAPEX. By contrast, infra-marginal CCGTs recover 91% of their
total fixed costs, which is sufficient to cover the 20% share of fixed
OPEX but also to recoup a certain amount of CAPEX (albeit not in its
entirety).

4. Results and discussion

In this section, we present our simulation exercise and discuss the
results. First, we examine the conditions under which the SD energy-
only market (EOM) model is able to replicate the optimum as defined

43 Formally, with the notations of Appendix A, for a given vintage of a
technology 𝑡 invested in year 𝑦, one has

CRR𝑡,𝑦 =
min(# ,𝑢)

∑

𝑘=𝑦
𝛽𝑘−𝑦

∑

𝑤∈ 𝛱𝑤

[

∑

ℎ∈

[

𝑞𝑡,𝑘,ℎ
𝑛𝑘,𝑡𝑘𝑡

[

𝜆𝑘,ℎ − 𝑉 𝐶𝑘,𝑡
]

]]

𝐼𝐶𝑦,𝑡 + 𝑂𝐶𝑦,𝑡
.

Table 2 shows the CRR averaged over vintages, but note that CRR𝑡,𝑦 = 100%
holds for all vintages 𝑦 for endogenous technologies. In Section 4.2, we
compute and analyze CRR across vintages.
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𝑡,𝑦
in Section 3.2, and we discuss the impacts of unit indivisibility. Sec-
ond, we explore how the simulated EOM outcomes deviate from the
optimum when we relax these conditions.

Our quantitative analysis is based on the following indicators:

• Capacity trajectories to assess how investments and retirements
for each technology compare with the optimal ones over time,

• Carbon emissions to track the progress of decarbonization,
• Total cost as an overall cost efficiency indicator,
• Cost recovery ratios (CRR) as technology-specific capacity remu-

neration indicators,
• Average marginal cost, interpreted as an average price, as an

affordability indicator,
• Loss of load expectation (LOLE) as a system-wide capacity

adequacy indicator.

Since some simulation or sensitivity cases are computationally de-
manding (notably as we reduce the investment/retirement step size,
see Section 4.1.2), we run simulations and present results only over the
2025–35 horizon. Yet note that this is largely innocuous for the validity
of our analysis beyond this window given the relative ‘monotonicity’
of our case study, as evidenced by the quasi-linear trends for capacity
trajectories in the optimal case over the 2025–45 horizon (Fig. 6).

4.1. EOM outcomes with idealistic assumptions

4.1.1. Definition of idealistic assumptions
As discussed in the Introduction, it is often regarded as well-

established that the long-run optimum can in principle be decentralized
through competitive market prices. Although the prerequisites are
regularly stated in general and concise terms (e.g., ‘perfect markets’,
‘Arrow–Debreu economy’), some authors including Rodilla and Batlle
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(2012), Newbery (2018) and Joskow (2008, 2022) establish more
detailed lists that we transcribe below44:

1. Agents (i.e., buyers and sellers) are anonymous, atomistic and
fully rational (i.e, price-taking and non-strategic behavior);

2. Agents have convex cost and utility functions (no non-
convexities, no economies of scale);

3. Capacity, generation and consumption levels can be adjusted
continuously (no lumpiness);

4. There is perfect information with well-informed agents and no
asymmetries;

5. There is a complete set of markets covering all relevant contin-
gencies and over all relevant timescales, including markets for
insurance;

6. Agents have risk-neutral preferences.

Let us translate these canonical assumptions to our modeling frame-
work. The first is satisfied by construction since we consider one repre-
sentative investor who behaves non-strategically and makes investment
and retirement decisions on the basis of a competitive profitability
assessment. The second is met by ruling out cost non-convexities and
because we do not represent the demand side formally. The third does
not hold since capacity increments and decrements are discrete by
implementation in the SD model. As capacity indivisibility also holds
in practice, its impacts on market outcomes are analyzed and discussed
below (Section 4.1.2).

Next, because the decision-making process crucially hinges on avail-
able information, we break down the fourth assumption into two
sub-assumptions:

A1. Agents have perfect information on all exogenous parameters
over the whole horizon (e.g., demand, generation costs). In
particular, the carbon price is assumed to coincide with the
optimal shadow price from the GEP model (see Section 3.1).

A2. Agents have perfect information on endogenous future invest-
ments and retirements (see the anticipation module defined in
Section 2.2.1).

Finally, we merge the fifth and sixth assumptions into a single
one. This serves as an alternative equivalent formulation to the fifth
assumption in our model that does not formally represent long-term
and insurance markets (which are acknowledged to be incomplete or
‘missing’ for electricity in e.g., Rodilla et al., 2015; Newbery, 2016;
Abada et al., 2019; Keppler et al., 2022; Wolak, 2022). Specifically, we
follow Newbery (2018) who argues – drawing on Newbery and Stiglitz
(1981) – that the theoretical requirement of market completeness can
be substituted by the combination of rational expectations and risk-
neutrality. In our framework, the merged assumption below thus allows
us to capture both risk aversion and market incompleteness:

A3. Agents have risk-neutral preferences.

As explained in Section 2.2, when A1, A2 and A3 hold, the rep-
resentative investor behaves rationally with perfect information, fully
anticipates its future decisions and understands the interplay with
its current decisions, and implements the optimum in the spirit of a
rational expectations equilibrium. Before relaxing A1, A2 or A3, we
turn to the issue of capacity indivisibility.

4.1.2. EOM outcomes with capacity indivisibility
To explore the impacts of discrete vs. infinitesimal capacity unit

sizes, we run sensitivities with respect to the unit step size around
the reference of 500 MW used in the main analysis (Section 4.2).
Specifically, we assume that A1–A3 hold and consider step sizes of 250,

44 These authors do not claim to be exhaustive, and neither do we.
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750 and 1000 MW. These should not necessarily be seen as the typical
sizes of single investment projects – especially for renewables which
are usually smaller – but should rather be interpreted as the volumes of
disclosed projects that induce market participants to update their long-
term anticipations and adjust their investment and retirement decisions
accordingly, our subject of study in this paper.

Fig. 8 depicts the simulated capacity trajectories. Intuitively, the
smaller is the capacity step size, the closer the simulated trajectories
for an EOM are to the optimal GEP solution on average. As the step
size increases, the deviation from the optimum is characterized by a
delay in Solar and Storage investments and in the fossil fleet phaseout.
Indicators given on average in Table 2 or on an annual basis in Fig. 9
further reveal that a larger step size is conducive to larger total system
cost, wholesale prices, emission levels and loss of load.45

Indivisibility issues in the electricity industry have long been rec-
ognized and analyzed in the literature, already in the seminal contri-
butions by Boiteux (1949, 1960) and Williamson (1966) as well as
in ensuing discussions (e.g., Andersson and Bohman, 1985). Yet they
address these issues in a regulated utility environment and mainly
focus on practical pricing policy considerations. More recently, Kep-
pler (2017) reviews the literature and discusses the implications of
indivisibility in a market context, observing that it leads to under-
investment when coupled with inelastic demand. Our results add to
this literature by illustrating how indivisibility also hampers the joint
dynamic of fossil phaseout with investment in renewable and storage
units to achieve decarbonization.

In fact, this reveals a coordination (or circularity) issue between
new entrants and existing (and possibly exiting) assets. Recall how
the SD model’s decision module proceeds, gradually selecting the most
profitable available asset entry or exit up to an end state characterized
by a zero-profit condition (Section 2.2.3). Incentives thus decrease in
size as the iterative process progresses, and coordination issues start to
materialize as the end state nears. For instance, in the neighborhood
of optimal capacity, a potential new entry without a simultaneous exit
typically leads to over-capacity that deters the actual entry decision.
This is notably true for Storage that has a large contribution during
scarcity hours if Peakers are not retired in a coordinated way. In turn,
this further affects Solar that has to be associated with Storage to
mitigate the revenue cannibalization effect.

Importantly, the materiality of this effect depends on the sensitivity
of the entry and exit signals near the optimum rather than on the
capacity step size relative to the overall size of the system. As men-
tioned in Section 2.2.3, the long-term profit of a marginal investment
in a given technology can be interpreted as the total cost function’s
gradient component with respect to the installed capacity for this
technology. Because these gradients are steep and asymmetric in the
neighborhood of the optimal capacity, this effect remains tangible even
in relatively large systems.46 As is the case here, this effect translates
into extreme price sensitivity around optimal capacity, with prices
jumping from a few hundreds to a few thousands $/MWh in some peak
hours. This echoes previous results in the literature highlighting that
the EOM is intrinsically prone to ‘‘erratic’’ (Cramton and Stoft, 2005)
price movements or ‘‘discontinuity ’’ (Kraan et al., 2019).

It is worth making one final observation regarding computational
time, which increases steeply as capacity step size decreases. Specif-
ically, in our setup, reducing step size from 1000 (resp. 500) to 500

45 The LOLE increases but remains within acceptable bounds as per regu-
lations in liberalized electricity markets (usually between 2 and 4 hours per
year in expectation). Yet the increase in the LOLE explains part of the increase
in average wholesale prices: as a rule of thumb, one hour of VoLL pricing at
15,000 $/MWh is tantamount to an increase in the annual average baseload
price in the order of 2 $/MWh (see e.g. Fig. 9).

46 To capture this, Anderson and Zachary (2023) use an approximation
whereby total costs increase exponentially for under-capacity vs. linearly for

over-capacity around optimal capacity. See also National Grid (2022).
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Fig. 8. Capacity trajectories with different capacity step sizes (EOM with A1, A2 & A3).
Note: Although capacity trajectories are not perfectly ordered by capacity step size (they intersect for some years), the ordering holds on average (in terms of distance to the GEP
trajectory). Beware of the scale for Peakers.
Fig. 9. Annual indicators with different capacity step sizes (EOM with A1, A2 & A3).
Table 2
Average indicators with different capacity step sizes (EOM with A1, A2 & A3).

GEP Capacity step size

250 MW 500 MW (ref) 750 MW 1000 MW

Annual total cost [109 USD/yr] 8.71 8.74 8.75 8.76 8.77
Marginal cost [USD/MWh] 84.5 87.7 89.1 90.4 92.2

Annual emissions [MtCO2/yr] 26.1 27.5 28.1 28.4 29.4
LOLE [h/yr] 0.39 1.67 1.85 2.20 2.37

CRR peaker [%] 32 36 56 43 48
CRR CCGT [%] 91 97 108 105 115
CRR PV [%] 100 101 105 101 104
CRR storage [%] 100 102 108 105 112
(resp. 100) MW increases computational time by a factor of 3 (resp. 5).
In a loose sense, this illustrates how the tâtonnement process is com-
putationally demanding, especially as capacity step size gets smaller to
approach GEP-style optimization with continuous capacity adjustment.

4.2. EOM outcomes with relaxed assumptions

Let us now relax assumptions in turn and separately, keeping the
capacity step size constant at 500 MW, and compare simulated EOM
outcomes with those in our reference case where A1–A3 jointly hold.
For brevity, the case where we drop A1 (Case 1) is relegated to
Appendix F. Indeed, the impacts of downward biased anticipations of
future carbon prices in Case 1 are qualitatively similar to those when
we consider risk aversion and drop A3 below (Case 3). Table 3 contains
the definition of the different cases and the associated assumptions.

4.2.1. Case 2: Biased anticipation of future entries and exits (only A2 does
not hold)

In Case 2, we drop A2 while retaining A1 and A3. That is, we con-
sider that investors and asset owners make incorrect anticipations about
13
future investment and retirement decisions. Specifically, we consider
three cases. In the first case, labeled ‘static’, there is no anticipation
of future entries and exits (see Section 2.2.1). In the other two cases,
future entries and exits are anticipated but in contrast to the perfect
reference case, anticipations deviate from the optimal capacity tra-
jectories: in the ‘overestimate’ (resp. ‘underestimate’) case, we skew
positively (resp. negatively) the optimal future dynamics of Solar and
Storage development, all else being equal. For illustration, we choose
a + (resp. –) 40% factor bias on annual capacity additions.47

The ‘static’ and ‘underestimate’ cases exhibit faster development
for Solar and Storage early on relative to the perfect anticipation case
(Fig. 10). This is because the anticipation of no or lower future capacity
additions magnifies expected future market revenues and in turn the
incentive to invest today. That is, future capacity additions that will

47 Notice that the ‘static’ case can be seen as an extreme version of the
‘underestimate’ case. Moreover, the size of the bias only affects the quantitative
nature of our results.
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Fig. 10. Capacity trajectories with different entry-exit anticipations (EOM with A1 & A3).
Fig. 11. Cost recovery by vintage with different entry-exit anticipations (EOM with A1 & A3).
Table 3
Definition of studied cases and associated assumptions.

Reference Case 1 Case 2 Case 3
(Section 4.1.2) (Appendix F) (Section 4.2.1) (Section 4.2.2)

A1: Perfect information on exogenous
parameters

✓ ✗ ✓ ✓

A2: Perfect information on endogenous
future investments and retirements

✓ ✓ ✗ ✓

A3: Risk-neutral preferences ✓ ✓ ✓ ✗
have a dampening effect on the whole price distribution and number
of scarcity hours are not accounted for in full when assessing future
asset earnings. As a result, cost recovery is lower than initially expected
and than in the perfect case for all assets, and realized total costs
are also higher (Table 4). This situation also illustrates a coordination
issue across investors that is inherent to an EOM (e.g., implicit herding
behavior when investment conditions are good overall, difficulty to
anticipate competitors’ investment decisions) and possibly conducive
to boom-and-bust cycles (e.g., Arango and Larsen, 2011; Hill, 2021).48

Over-investment is particularly salient for the first investment vin-
tages (i.e., in the first years of the period) while the deviation is then
gradually reduced over time with capacities being close to their optimal
levels in the final year (Fig. 10). Note that this convergence results
from a modeling edge effect due to the model’s finite horizon (see
Section 2.2.3): as the end of the simulation horizon nears, ever less
future decisions have to be anticipated, which mechanically reduces

48 Despite initial over-investment, a cycle does not emerge in our case study,
notably because demand is structurally growing over time. This strongly miti-
gates potential under-profitability of assets normally linked to over-investment,
and reinforces a natural asymmetry between investment and retirement deci-
sions – the former is evaluated against both fixed OPEX and CAPEX whereas
the latter only against fixed OPEX (i.e., economic conditions must turn out to
be asymmetrically worse than expected to justify decommissioning). Finally
note that excess entry occurs here although we neglect build times. In practice,
build times exacerbate investment coordination failure and the associated
‘contagion’ effect (as it takes some years for new plants to come online and to
alter fundamentals).
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Table 4
Average indicators with different entry-exit anticipations (EOM with A1 & A3).

GEP Future entry-exit anticipation

perfect
(ref)

static underestim. overestim.

Annual total cost [109 USD/yr] 8.71 8.75 8.90 8.75 8.87
Marginal cost [USD/MWh] 84.5 89.1 74.1 79.4 99.9

Annual emissions [MtCO2/yr] 26.1 28.1 20.2 24.3 31.0
LOLE [h/yr] 0.39 1.85 0.30 0.30 4.21

CRR Peak [%] 32 56 44 44 72
CRR CCGT [%] 91 108 92 97 120
CRR PV [%] 100 105 100 103 106
CRR storage [%] 100 108 102 104 111

the impact of the anticipation bias. Hence, our results can only be
meaningfully interpreted in the beginning of the simulation period.
Although carbon emissions are reduced early on as a by-product of
initial over-investment in low-carbon assets (Fig. 12), we emphasize
that this leads to higher system costs and creates a risk of economic
unsustainability further down the road (as the first investment vintages
turn out not to recoup cost in full due to biased anticipation, see
Fig. 11).

Symmetrically, the ‘overestimate’ case exhibits slower development
for Solar and Storage early on relative to the perfect anticipation case
(Fig. 10). Anticipating inflated capacity additions in the future reduces
expected future prices and weakens investment incentives today, hence
the under-investment. But because actual capacity development hap-
pens to be lower than anticipated, cost recovery ratios are well above
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Fig. 12. Annual indicators with different entry-exit anticipations (EOM with A1 & A3).
100% for new assets (Fig. 11). At the same time, under-investment
threatens security of supply (the LOLE reaches close to 10 h/yr) and
drives up prices (Table 4). Under-investment is also not conducive to
reducing emissions, jeopardizing decarbonization targets.

4.2.2. Case 3: Risk aversion (only A3 does not hold)
In Case 3, we drop A3 while retaining A1 and A2. That is, we

consider that investors and asset owners are averse to risk about future
revenues and apply the certainty-equivalent decision-making criterion
presented in Section 2.2.3.49 Specifically, we consider that future mar-
ket revenues 𝐫 are uniformly distributed between 0 and 2�̄�.50 Because
we lack empirical guidance to discipline the selection of a relevant risk
aversion coefficient 𝛼, we follow Petitet et al. (2017) and consider a
range of integer values for 𝛼 between 0 and 3, where 𝛼 = 0 coincides
with risk neutrality whereas 𝛼 = 3 is deemed to capture a high degree
of risk aversion.51 As we will see, the value of 𝛼 affects our quantitative
results monotonically, hence not their qualitative nature.

Capacity trajectories in Fig. 13 exhibit a pattern of under-investment
in Solar and Storage in conjunction with a delay in fossil phaseout.
Risk aversion also has a noticeable impact on total system cost, ranging
from + 3% (𝛼 = 1) to + 14% (𝛼 = 3). Closely looking into the central
case 𝛼 = 2 shows that the delay in investment and retirement yields
net savings on fixed costs (both fixed OPEX and CAPEX) of –18%, but
increased fossil generation hikes total variable cost by 20% and the cost
of rationing rises by + 4%, totaling a net total cost increase by circa 7%.

Table 5 shows other important insights for an EOM under risk aver-
sion. First, decarbonization is delayed. This is because demand, which
is rising over time because of electrification in our case study, remains
in an inadequate part served by fossil units instead of low-carbon units.
Second, security of supply deteriorates, with both under-investment
and the LOLE increasing with the degree of risk aversion (LOLE ≥
10 h/yr for 𝛼 ≥ 2). Third, price spikes (including hours of VoLL
pricing) entail significant financial transfers between consumers and
producers. Higher prices for consumers also result from risk premiums
that producers need to secure to run operations.

The effect of risk aversion has been studied in the literature with
numerical models, essentially with a focus on security of supply and
under-investment, and in turn on the scope and design of capacity

49 Recall that our approach to modeling risk aversion is in part grounded on
the absence of sufficient, adequate hedging instruments (see Section 4.1.1).

50 Appendix E shows that our results are qualitatively unaltered when we
change the variance and the type of the probability distribution. One may
also conjecture that our results would be amplified if we considered stronger
forms of uncertainty and corresponding preference representation theorems.
Deep uncertainty indeed prevails in the long run, especially in the context of
decarbonization where the long-term energy mix, market conditions and price
distributions remain largely elusive for now (e.g., Keppler et al., 2022).

51 Following an applied study by RTE (2018) for France, we consider 𝛼 = 2
as a central value.
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Table 5
Average indicators with different risk aversion degrees (EOM with A1 & A2).

GEP Risk aversion degree

𝛼 = 0 (ref) 𝛼 = 1 𝛼 = 2 𝛼 = 3

Annual total cost [109 USD/yr] 8.71 8.75 8.98 9.33 9.61
Marginal cost [USD/MWh] 84.5 89.1 108 125 136

Annual emissions [MtCO2/yr] 26.1 28.1 33.5 36.1 37.4
LOLE [h/yr] 0.39 1.85 5.67 10.0 13.4

CRR Peak [%] 32 56 80 214 301
CRR CCGT [%] 91 108 163 243 290
CRR PV [%] 100 105 120 146 170
CRR storage [%] 100 108 129 162 182

remuneration mechanisms (e.g., Petitet et al., 2017; Ousman Abani
et al., 2018; Tao et al., 2020; Fraunholz et al., 2023). Our results
support previous findings and add to the literature on decarbonization
aspects. Specifically, under-investment in low-carbon assets resulting
from risk aversion hinders the existing fossil fleet phaseout which,
especially when combined with growing demand for electricity, tends
to delay decarbonization further.52

4.3. Summary of modeling results and policy implications

Practical limits of price-based coordination. Several conclusions emerge
from our modeling approach and results. First, the implementation and
unpacking of the EOM framework clarify the assumptions needed to re-
produce the optimal long-run outcome from a GEP model. By contrast,
these theoretical assumptions and their practical implications are often
implicit or remain elusive in the literature. Notably, we highlight the
high level of informational and computational complexity associated
with optimal anticipations of all relevant future market fundamentals
and future entry and exit decisions. Assuming optimal anticipations, ra-
tional decision-making and risk neutrality, we further illustrate how the
convergence of the EOM outcomes towards the optimum occurs only
when the capacity step size is small enough – ideally infinitely small –
and highlight the issue of lumpy investment and retirement decisions.
While the total system cost is not very sensitive to unit indivisibility,
this causes a coordination issue between new low-carbon investments
and the phaseout of fossil assets that affects carbon emissions more
markedly.

52 One may also conjecture that capturing the feedback loop between price
and demand dynamics in the long run (not represented in our framework)
would exacerbate the shortcomings of the EOM for decarbonization. For in-
stance, high or volatile electricity prices could be detrimental to electrification,
either directly by deterring investment in electrical equipment or indirectly
by limiting public support if low-carbon generation investment does not keep
pace.
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Fig. 13. Capacity trajectories with different risk aversion degrees (EOM with A1 & A2).
Fig. 14. Capacity trajectories with vs. without optimal phaseout (EOM with A1, A2 & A3).
Table 6
Summary of average indicators across simulations (range of values is provided).

GEP Simulated case

Reference Case 2 Case 3
(indivisibility) (biased anticipation) (risk aversion)

Annual total cost [109 USD/yr] 8.71 8.74–8.77 8.75–8.90 8.98–9.61
Marginal cost [USD/MWh] 84.5 87.7–92.2 74.1–99.9 108–137

Annual emissions [MtCO2/yr] 26.1 27.5–29.4 20.2–31.0 33.5–37.4
LOLE [h/yr] 0.39 1.67–2.37 0.30–4.21 5.67–13.4

CRR peaker [%] 32 36–48 44–72 80–301
CRR CCGT [%] 91 97–115 92–120 163–290
CRR PV [%] 100 101–104 100–106 120–170
CRR storage [%] 100 102–112 102–111 129–182
In the second part of our analysis, we relax these assumptions in
isolation and find significant deviations (see Table 6 for a summary of
quantitative indicators). Intuitively, the direction of the deviation in
investment depends on the direction of the bias in the anticipation of
future market entries—an upward bias relative to the optimum leads to
a downward bias in anticipated market revenues that delays investment
decisions, and vice versa. Moreover, on top of the standard result of
under-investment when investors are risk averse, our joint modeling of
entry and exit decisions shows how decarbonization risks being delayed
if the existing fossil fleet is not pushed out of the market economi-
cally by low-carbon entrants in due time w.r.t. targets or cost-efficient
pathways.

Potential benefits of complementary quantity-based coordination. Our
modeling framework constitutes a good basis for extensions to explore
changes in market design that could improve long-run coordination and
risk-sharing mechanisms (e.g., Joskow, 2022; Keppler et al., 2022). Dif-
ferent add-ons such as a long-term contracting module could be plugged
into our core model, of which a variety of designs could be assessed
and compared. To illustrate, let us consider the case where assumptions
A1–A3 hold and the optimal fossil phaseout is exogenously enforced,
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although we do not specify at this stage through which mechanism it is
implemented. A cursory examination of the results in Fig. 14 shows that
capacity trajectories are closer to the optimum. Importantly, this holds
not just for Peakers whose phaseout is exogenously driven, but also for
Solar and Storage. This shows how explicit coordination through quan-
tities has the potential to complement implicit coordination through
prices and improve on market efficiency in the long run.

Of course, the extent to which this potential can be tapped into
depends on the implementation mechanism. One may for instance think
of a situation where the regulator steers the decommissioning trajectory
through an auction scheme, similarly to what is done in Germany (e.g.,
Tiedemann and Müller-Hansen, 2023). But various alternatives could
also be investigated, notably regarding the form of compensation pay-
ments awarded in the auction or the type of planning used to define
the phaseout path enforced by the regulator—in a bid to avoid the
pitfall of substituting ‘imperfect’ market mechanism by ‘imperfect’ reg-
ulation. Similar crucial design options also exist in the case of long-term
contracting mechanisms for investment, be they government-backed
contracts issued through public auctions or private contracts stimulated
through the provision of public guarantees or through an obligation on
retailers—see CEPR (2023) and the Conclusion for short reviews.
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5. Conclusion

In these times of renewed debates on electricity market design in
the context of decarbonization, the EOM has often been criticized for
various, at times dubious reasons. For instance, the increasing share of
generation with (near) zero short-term marginal cost has been blamed
for reducing prices and (expected) asset profitability. However, this
merit-order effect is either transitory (Antweiler and Muesgens, 2021)
or caused by inadequate policy choices (Brown and Reichenberg, 2021)
rather than reflective of a limitation inherent to the EOM. In fact, price
distributions are more likely to change in shape than to be lowered on
average (e.g., Ekholm and Virasjoki, 2020; Mallapragada et al., 2023).
Rather, our results suggest that a key issue with the EOM paradigm is
that long-run efficiency holds only under a set of idealistic assumptions.
When one of these preconditions is not met, entry-exit coordination
through market price signals alone is insufficient and deviations from
the optimum occur (see Section 4.3 for a summary). This notably
leads to higher electricity prices, lower security of supply, and delayed
decarbonization w.r.t. cost-efficient transition pathways.

Our paper offers several promising avenues for future research.
First, our modeling framework can be enriched by activating or de-
veloping new features, such as build times or a finer-grained repre-
sentation of long-run uncertainties. Second, it can also be extended
in various ways to inform ongoing policy debates about electricity
market design reform options. For instance, assessing and comparing
design alternatives for a long-term contracting module – as delineated
e.g. in Joskow (2022), Keppler et al. (2022), Wolak (2022) and Fabra
(2023) – would be particularly relevant. This includes various ap-
proaches to auction design (e.g., Iossa et al., 2022; Fabra and Montero,
2023), contract design (e.g., Billimoria and Simshauser, 2023; New-
bery, 2023; Schlecht et al., 2024) and planning (e.g., Corneli, 2020;
Anderson and Zachary, 2023). In this respect, accounting for realistic
behavioral, informational and structural assumptions will be of the
essence.
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Appendix A. Notations and units

This Appendix lists the notations and parameter or variable units
used throughout the paper (see Table A.1).

Appendix B. Description of the GEP model

This Appendix describes and interprets the equations and con-
straints of the generation expansion planning (GEP) optimization
model. We use the notations given in Appendix A.

The objective function is the expected discounted total cost over the
planning horizon, that is

min
{𝑛,𝑛+ ,𝑛− ,𝑞,𝑓 ,𝑐}

∑

𝑦∈
𝛽𝑦

{

∑

𝑤∈
𝛱𝑤

∑

ℎ∈

[

∑

𝑡∈
𝑉 𝐶𝑦,𝑡 ⋅ 𝑞𝑡,𝑦,𝑤,ℎ + VoLL ⋅ 𝑓𝑦,𝑤,ℎ

]

+
∑

𝑡∈

[

𝑂𝐶𝑦,𝑡 ⋅ 𝑛𝑦,𝑡 + 𝐼𝐶𝑦,𝑡 ⋅ 𝑛
+
𝑦,𝑡 ⋅

min(𝓁𝑡 ,#−𝑦)
∑

𝑖=0
𝛽𝑖
]}

where # denotes the cardinality of set  . This formulation accom-
odates: conventional dispatchable generation units characterized by

ariable generation costs and availability profiles; variable renewable
nits with zero variable cost and hourly capacity factors; short-term
torage units with power and energy components linked by duration
nd round-trip efficiency parameters. Storage units are modeled deter-
inistically and dispatched across time steps assuming intertemporal

rbitrage with perfect foresight. Each technology is represented by
iscrete homogeneous units (i.e., the decision variables are expressed
n terms of number of units).

The first set of constraints (B.1)–(B.4) represent the hourly dispatch,
hat is ∀𝑦 ∈  , 𝑤 ∈  ,

ℎ ∈ ,
∑

𝑡∈
𝑞𝑡,𝑦,𝑤,ℎ + 𝑓𝑦,𝑤,ℎ = 𝐷𝑦,𝑤,ℎ +

∑

𝑠∈
𝑐𝑠,𝑦,𝑤,ℎ, (B.1)

ℎ ∈ , 𝑡 ∈  , 𝑞𝑡,𝑦,𝑤,ℎ ≤ 𝑘𝑡𝛼𝑡,𝑤,ℎ𝑛𝑦,𝑡, (B.2)

ℎ ∈ , 𝑠 ∈  , 𝑠𝑜𝑐𝑠,𝑦,𝑤,ℎ ≤ 𝑘𝑠𝑑𝑠𝑛𝑦,𝑠, (B.3)

ℎ ∈ ⋆, 𝑠 ∈  , 𝑠𝑜𝑐𝑠,𝑦,𝑤,ℎ = 𝑠𝑜𝑐𝑠,𝑦,𝑤,ℎ−1 + 𝜌𝑠𝑐𝑠,𝑦,𝑤,ℎ−1 − 𝑞𝑠,𝑦,𝑤,ℎ−1∕𝜌𝑠, (B.4)

here (B.1) imposes load balance, (B.2) imposes the upper limit on
eneration (for simplicity dynamic generation constraints such as ramp-
p rates are not represented), (B.3) imposes the upper limit on stored
nergy, and (B.4) reflects the storage dynamics with round-trip effi-
iency.

The second set of constraints (B.5)–(B.6) represent the fleet dynam-
cs, that is

𝑦 ∈ ⋆, ℎ ∈ , 𝑡 ∈  , 𝑛𝑦,𝑡 = 𝑛𝑦−1,𝑡 + 𝑛+𝑦,𝑡 − 𝑛−𝑦,𝑡, (B.5)

∀𝑦 ∈  , 𝑡 ∈  , if 𝑦 + 𝓁𝑡 ≤ # ∶
#
∑

𝑖=𝑦
𝑛−𝑖,𝑡 ≥ 𝑛+𝑦,𝑡, (B.6)

where (B.5) tracks the number of units per technology over time and
(B.6) imposes that each endogenous investment can be associated with
a decommissioning decision during its lifespan.

https://github.com/alexis-lebeau-research/ANTIGONE
https://zenodo.org/record/8177393
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Table A.1
Model notations and units.

Sets and indices

 Set of hours in a year, indexed by ℎ
 Set of years, indexed by 𝑦
 Set of weather scenarios, indexed by 𝑤
 Set of conventional dispatch technologies, indexed by 𝑔
 Set of variable renewable energy technologies, indexed by 𝑣
 Set of storage technologies, indexed by 𝑠
 Set of all technologies ( =  ∪  ∪ ), indexed by 𝑡
𝑡 Set of units of technology 𝑡, indexed by 𝑢

Parameters and variables

𝛽 Discount factor
𝛥 Time step duration (here, one hour)
𝛱𝑤 Probability of weather scenario 𝑤
𝐷𝑦,𝑤,ℎ Load in year 𝑦, weather scenario 𝑤 and hour ℎ [MW]
𝜆𝑦,𝑤,ℎ Marginal cost of electricity in year 𝑦, weather scenario 𝑤 and hour

ℎ [USD/MWh]
𝑂𝐶𝑦,𝑡 Annual fixed O&M cost for technology 𝑡 [$/MW/yr]
𝐼𝐶𝑦,𝑡 Investment cost annuity for technology 𝑡 [$/MW/yr]
𝑉 𝐶𝑦,𝑡 Variable cost for technology 𝑡 [$/MWh]
𝛾𝑡 Carbon intensity of technology 𝑡 [tCO2/MWh]
𝑄𝑦 Annual CO2 emissions cap [tCO2]
𝓁𝑡 Lifespan of technology 𝑡 [yr]
𝑢 Year of initially scheduled closure of unit 𝑢
𝑦,𝑢 Net market revenues in year 𝑦 for unit 𝑢
𝑛𝑦,𝑡 Number of operating units in year 𝑦 for technology 𝑡
𝑛+𝑦,𝑡 Number of developed units in year 𝑦 for technology 𝑡
𝑛−𝑦,𝑡 Number of closed units in year 𝑦 for technology 𝑡
𝜅𝑦,𝑡 Total installed capacity in year 𝑦 for technology 𝑡 [MW]
𝛼𝑡,𝑤,ℎ Hourly availability of technology 𝑡 [%]
𝑘𝑡 Power capacity of technology 𝑡 [MW/unit]
𝑞𝑡,𝑦,𝑤,ℎ Production of technology 𝑡 in year 𝑦, weather scenario 𝑤 and hour

ℎ [MW]
𝑐𝑠,𝑦,𝑤,ℎ Power charged into technology 𝑠 in year 𝑦, weather scenario 𝑤 and

hour ℎ [MW]
𝑠𝑜𝑐𝑠,𝑦,𝑤,ℎ State of charge of technology 𝑠 in year 𝑦, weather scenario 𝑤 and

hour ℎ [MWh]
𝜌𝑠 Charging and discharging efficiency of technology 𝑠 [%]
𝑑𝑠 Storage duration for technology 𝑠 [h]
𝑓𝑦,𝑤,ℎ Lost load in year 𝑦, weather scenario 𝑤 and hour ℎ [MW]
VoLL Value of Lost Load [$/MWh]

Third, constraint (B.7) imposes an annual cap on CO2 emissions
hose trajectory {𝑄𝑦}𝑦 is exogenously given, that is

𝑦 ∈  ,
∑

𝑤∈
𝛱𝑤

∑

𝑡∈

∑

ℎ∈
𝛾𝑡 ⋅ 𝑞𝑡,𝑦,ℎ ≤ 𝑄𝑦. (B.7)

Each decision variables can be constrained in an ad-hoc manner with
an upper/lower bound or with a specific value. This feature is used to
model the existing fleet for which 𝑛 can be fixed at the beginning of
the simulation (the initial fleet described in Section 3) and 𝑛+ can be
constrained to 0 afterwards if the technology is not available for new
developments.

Finally, all decision variables (i.e., 𝑛, 𝑛+, 𝑛−, 𝑞, 𝑓 , 𝑐) have non-
negativity constraints.

Appendix C. Description of the decision algorithm

This Appendix sketches the structure of the investment and de-
commissioning decision algorithm for the representative agent in our
System Dynamics market simulation module.

Appendix D. Convergence of the simulation model

This Appendix lays out some theoretical considerations regarding
the convergence of the simulation model. For clarity and without loss of
generality, we consider a simplified setup with one representative year,
one weather scenario, continuous capacity adjustments, full availabil-
18

ity, no storage and no fixed O&M costs. This simplified case helps build
Algorithm 1 Decision module in the SD market simulator
1: for 𝑦 ∈  do
2: Remove all units reaching the end of their lifespan
3: Initialize empty array 𝑈decom to store decommissioned units

during decision loop
4: Initialize empty array 𝑈invest to store invested units during

decision loop
5: Initialize empty array 𝑆 to store successive states of the fleet
6: Form the set of anticipations for representative agents (see

Section 2.2.1)
7: continue = True

8: while continue do ⊳ decision loop
9: Create an empty array 𝐷 to store NPV of all possible

decisions

0: for 𝑡 ∈  do ⊳ assess new investment options
1: if 𝑡 is eligible for investment then
2: Compute NPV of a new project over its whole

lifespan, including full CAPEX
3: if 𝑁𝑃𝑉 > 0 then
4: Store NPV value associated with this investment

decision in 𝐷

5: for 𝑡 ∈  do ⊳ assess decommissioning decision for units in
existing fleet

6: if 𝑡 is eligible for decommissioning then
7: Compute net revenues 𝑦,𝑡 in year 𝑦 (infra-marginal

rent minus fixed OPEX)
8: if 𝑦,𝑡 < 0 then
9: Compute NPV over the remaining lifespan, consid-

ering avoidable costs (i.e., fixed OPEX)
0: if 𝑁𝑃𝑉 < 0 then
1: Store NPV value associated with this decomis-

sioning decision in 𝐷

2: for 𝑢 ∈ 𝑈decom do ⊳ assess postponing closures decided in
previous iterations

3: Compute NPV of running the asset for one extra year,
considering avoidable costs (i.e., fixed OPEX and not CAPEX)

4: if 𝑁𝑃𝑉 > 0 then
5: Store NPV value associated with this closure post-

ponement in 𝐷

6: for 𝑢 ∈ 𝑈invest do ⊳ assess renouncing to investments decided
in previous iterations

7: Compute net revenues 𝑦,𝑢 in year 𝑦 (infra-marginal rent
minus fixed OPEX and annualized CAPEX)

8: if 𝑦,𝑢 < 0 then
9: Compute NPV over the remaining lifespan, including

full CAPEX
0: if 𝑁𝑃𝑉 < 0 then
1: Store NPV value associated with this investment

renouncement in 𝐷

2: if 𝐷 is not empty then ⊳ stopping criterion
3: Pick and implement decision with highest NPV in

absolute terms
4: if new state of the fleet is already in 𝑆 then
5: continue = False
6: else
7: Store the state of the fleet in 𝑆
8: else
9: continue = False
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intuition, and its logic and resolution extend to more complex cases. If
we consider the representative year as a steady state, our optimization
problem can be interpreted as a long-term cost-minimization problem
that writes

min
𝜅𝑡},{𝑞𝑡,ℎ},{𝑓ℎ}

(𝜅𝑡, 𝑞𝑡,ℎ, 𝑓ℎ) =
∑

𝑡∈
𝐼𝐶𝑡 ⋅ 𝜅𝑡 +

∑

ℎ∈

[

VoLL ⋅ 𝑓ℎ +
∑

𝑡∈
𝑉 𝐶𝑡 ⋅ 𝑞𝑡,ℎ

]

subject to

𝑓ℎ +
∑

𝑡∈
𝑞𝑡,ℎ = 𝛥 ⋅𝐷ℎ (𝜆ℎ), and

𝑡,ℎ ≤ 𝛥 ⋅ 𝜅𝑡 (𝜇𝑡,ℎ), 𝑞𝑡,ℎ ≥ 0 (𝜈𝑖,ℎ), 𝑓ℎ ≥ 0 (𝜉ℎ), 𝜅𝑡 ≥ 0 (𝜋𝑡),

here the variables within parentheses denotes the constraints’ dual
ariables.

For any given positive values of {𝜅𝑡}𝑡 > 0 (i.e., not necessarily
ptimal), the gradient component with respect to 𝜅𝑡 of the Lagrangian
unction (of all primal and dual variables) is given by
𝜕
𝜕𝜅𝑡

= 𝐼𝐶𝑡 − 𝛥 ⋅
∑

ℎ∈
𝜇𝑡,ℎ.

If we minimize  for these given {𝜅𝑡}𝑡 (i.e., we solve the dispatch
problem for a given capacity vector), we can define the set of hours
+

𝑡 where technology 𝑡 is infra-marginal and we get from the dispatch
problem’s KKT conditions
∑

ℎ∈
�̃�𝑡,ℎ =

∑

ℎ∈+
𝑡

(�̃�ℎ − 𝑉 𝐶𝑡).

Combining the above equations, it comes
𝜕
𝜕𝜅𝑡

= 𝐼𝐶𝑡 − 𝛥 ⋅
∑

ℎ∈+
𝑡

(�̃�ℎ − 𝑉 𝐶𝑡) = −𝐿𝑇𝑃 ,

where 𝐿𝑇𝑃 is the long-term profit. We thus see that the normal-
ized long-term profit calculated for a given technology in an out-of-
equilibrium state – in terms of installed capacity – corresponds to
the Lagrangian functional’s gradient component with respect to the
capacity installed for this technology. Therefore, the iterative procedure
underpinning the simulation model in Appendix C can mathematically
be interpreted as a ‘steepest coordinate descent’ algorithm in an ideal
case (see Boyd and Vandenberghe, 2004; Nesterov, 2012). While it is
not the most computationally-efficient approach to solve this linear
problem, it does have the merit to be meaningful from an economic
point of view as it simulates the tâtonnement (groping) process of
merchant entry-exit decisions. In practice, its level of accuracy depends
on the number of iterations, the step size and the lower bound of the
absolute value of the first derivative (i.e., the Lipschitz constant) that
can be high (and asymmetric) close to the equilibrium, notably because
of the high value of the VoLL.

Importantly, the GEP model and the optimization solver we use to
run it allow us to determine the optimal outcome that can in principle
be obtained with our simulation model. In Section 4.1.2, when all
assumptions A1–A3 jointly hold, we can verify that total system costs
decrease with the capacity step size (see Table 2) and are always close
the optimum—namely, +0.34% with a 250 MW step size (the smallest
one we manage to run with practically reasonable computational time)
and +0.46% with a 500 MW step size (the reference case).

Appendix E. Certainty-equivalent formulation

This Appendix describes the approach and calculation of the cer-
tainty equivalent used in the decision module under risk aversion with
uncertain net market revenues 𝐫 (Section 2.2.3). By definition, the
certainty equivalent 𝑟⋆ is the certain revenue that yields the same
utility as the expected utility over the random distribution of revenues,
i.e.  (𝑟⋆) ≡ E{ (𝐫)}. With the functional form for  defined in
Section 2.2.3, we can compute  (𝑟⋆) and infer 𝑟⋆ assuming specific
probability density functions 𝑓𝑅 for 𝐫. The overall approach is sketched
19

in Fig. E.1.
We consider two cases as in Neuhoff et al. (2022). For the cen-
tral case of a uniform distribution with finite support [0, 2�̄�] used in
ection 4.2, we get

(𝑟⋆) =∫

+∞

−∞
 (𝐫)𝑓𝑅(𝐫)d𝐫 = 1 +

exp(−2𝛼) − 1
2𝛼

⇒ 𝑟⋆

= − �̄�
𝛼
⋅ ln

(

1 − exp(−2𝛼)
2𝛼

)

.

Alternatively, we consider a normal distribution with finite mean 𝜇
and variance 𝜎2. In this case, we have that  (𝑟⋆) = 1−E{exp (−𝛼𝐫∕�̄�)},
where the second term on the right-hand side is the mean of a log-
normal distribution. We thus have

 (𝑟⋆) = 1 − exp
(

−𝛼 + 1
2

(𝛼𝜎
�̄�

)2
)

⇒ 𝑟⋆ = �̄� − 𝛼
2�̄�

𝜎2.

Next, we explore numerically how the certainty equivalent varies
with the degree of risk aversion and the variance for both types of
distribution. Fig. E.2 shows that the certainty equivalent to expected
revenue ratio 𝑟⋆∕�̄� decreases with 𝛼, and that it is always larger in the
case of a uniform distribution. This implies that considering a normal
distribution would amplify the results with a uniform distribution in
Section 4.2, especially for high values of 𝛼.

Additionally, a higher variance in the sense of a mean-preserving
spread is conducive to a lower 𝑟⋆∕�̄� ratio. Specifically, we consider the
case where the variance varies by a factor of four. For the uniform
distribution, this is tantamount to reducing the support by a factor
of two: the variance is �̄�2∕3 with the [0, 2�̄�] support vs. �̄�2∕12 with
the [�̄�∕2, 3�̄�∕2] support. For the normal distribution, we simply adjust
the variance parameter accordingly. With this calibration, Fig. E.2
illustrates that the qualitative nature of the results in Section 4.2 is
unaltered by the type and variance of the probability distribution for
aggregate market revenues.

Appendix F. Biased carbon price anticipation (Case 1)

This Appendix provides additional simulations for the case of down-
ward biased anticipations of future carbon prices. Case 1 is appended
because the results are qualitatively similar to those with risk aversion
(Case 3 in Section 4.2.2), at least in the first years in the simulation
before the ‘edge effect’ materializes. Case 1 also relies on a more
arbitrary, less micro-founded modeling choice.

In Case 1, we drop A1 while retaining A2 and A3. That is, we con-
sider that investors and asset owners make conservative carbon price
forecasts relative to the optimal trajectory satisfying annual emissions
targets. Motivations for this assumption are threefold. First, prices in
existing carbon markets have by and large been too low or volatile
to convey robust long-term investment signals in line with these tar-
gets (e.g., Tvinnereim and Mehling, 2018; Perino et al., 2022). Sec-
ond, market imperfections or regulatory distortions including limited
foresight, excessive discounting or insufficient policy credibility may
distort price formation and anticipation downwards in the short to
mid term (e.g., Fuss et al., 2018; Quemin and Trotignon, 2021). Third,
carbon price formation may be driven by various factors other than
fundamentals, making it difficult to predict future prices (e.g., Friedrich
et al., 2020; Quemin and Pahle, 2023).

We consider that for each year in the simulation, the current price
coincides with the optimal one from the GEP model, but that the
representative agent anticipates that the price will grow at a lower rate
than in the optimal trajectory. Specifically, we consider three cases for
the anticipated annual growth rate of the carbon price (CAGR) – namely
0, 2 and 4% w.r.t. the reference case with an optimal growth rate of
around 6%. Fig. F.1 shows that the lower the CAGR is, the more entries
and exits are delayed. We found similar results by increasing the degree
of risk aversion in Section 4.2.2, but the driver is different. Here, the
delay originates from a biased anticipation of competitive advantage
tilted towards fossil plants and against solar and storage assets.
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Fig. E.1. Certainty equivalent calculation when revenues 𝐫 are uniformly distributed over [0, 2�̄�].
Fig. E.2. Certainty equivalent to expected revenue ratio under different modeling
assumptions.

Table F.1
Average indicators with different anticipation biases (EOM with A2 & A3).

GEP CAGR

0% 2% 4% 6% (ref)

Annual total cost [109 USD/yr] 8.71 8.84 8.80 8.76 8.74
Marginal cost [USD/MWh] 84.5 98.3 95.2 90.9 87.9

Annual emissions [MtCO2/yr] 26.1 30.6 29.7 28.5 27.1
LOLE [h/yr] 0.39 3.79 3.22 2.33 2.02

CRR peaker [%] 32 68 64 58 56
CRR CCGT [%] 91 118 114 109 106
CRR PV [%] 100 106 105 105 104
CRR storage [%] 100 110 109 108 106

Additionally, note that by the same token as in Case 2 (Sec-
tion 4.2.1), all the capacity trajectories converge towards the reference
case with unbiased carbon price anticipation at the end of the horizon
due to a factitious edge effect (i.e., anticipations are by construction
less and less biased the nearer the end of the simulation period due to
the modeling artifact whereby the last year of the simulation period is
repeated until assets’ lifetimes are covered in whole). To illustrate this
further, whereas emissions are equal across all CAGRs on the last year
of the simulation period (because the installed asset fleet and market
conditions are the same), the delay induced by a lower CAGR results
in higher emissions over the whole period (Table F.1).

Finally, the cost recovery analysis reveals extra revenues for all
asset types, which are increasing with the size of the anticipation
bias (i.e., decreasing with the CAGR). This is because the realized
carbon price happens to be higher than anticipated, which increases
20
the realized price of electricity on average and is overall economically
beneficial across the whole fleet. Intuitively, Fig. F.2 shows that this
effect is more pronounced early on in simulation period (i.e., when a
given anticipation bias has a greater impact on entry and exit decisions,
all else being equal).

Appendix G. Robustness checks

This Appendix provides three sensitivity checks to ensure that our
results are robust to two modeling assumptions—namely, the frequency
of anticipation updates with the GEP module (G.1) and the treatment
of years beyond the simulation horizon (G.2) – and to one specific
characteristic of our case study – namely, the shape of the long-term
load trend (G.3).

G.1. Frequency of anticipation updates

Here, we assess the impact of the update frequency of long-term
entry-exit anticipations with the GEP module (Section 2.2.1). Specifi-
cally, we compare simulated capacity trajectories without anticipation
updates (as is the case in the main text) and with biennial anticipation
updates (based on a new run of the GEP starting from the simulated
contemporaneous state of the asset fleet) in the reference case where
assumptions A1 to A3 jointly hold with a capacity step size of 500
MW. Results are shown in Fig. G.1 and exhibit second-order absolute
differences, respectively 0.31%, 0.01% and 2.89% for Peakers, Solar
and Storage in relative terms on average across years.

G.2. Treatment of years beyond the simulation horizon

Here, we assess the impact of the modeling artifact used to deal with
those years beyond the simulation horizon. Specifically, we compare
simulated capacity trajectories with duplication of the anticipated net
revenues earned in the last year of the simulation period (as in the main
text, see Section 2.2.3) vs. truncation of the years beyond the simulation
horizon (i.e., de facto assuming that total net revenues exactly offset
amortized fixed costs over those years). Fig. G.2 shows the results in the
reference case where assumptions A1–A3 jointly hold with a capacity
step size of 500 MW. Differences are small, respectively 0.71%, 0.14%
and 0.30% for Peakers, Solar and Storage in absolute relative terms on
average. Moreover, as a sanity check, we observe that both methods
yield the same outcome in the final year where they are equivalent by
construction.
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Fig. F.1. Capacity trajectories with different anticipation biases (EOM with A2 & A3).
Fig. F.2. Cost recovery by vintage with different anticipation biases (EOM with A2 & A3).
Fig. G.1. Capacity trajectories without vs. with anticipation update (at a two-year frequency).
G.3. Increasing vs. flat load trend

Here, we assess the impact of the shape of the long-term load trend
with different capacity step sizes. Specifically, we compare simulated
capacity trajectories with a linearly increasing load as calibrated in
Section 3.1 (Fig. 4) vs. flat (Fig. G.3) load over time. Quantitatively
speaking, the overall picture is of course fundamentally different with
21
a flat load from that with a relatively strong increase in load pushed
by electrification as in the main text. In particular, the overall volume
of optimal investment is lower for each technology (12 vs. 30 GW for
Solar, 9 vs. 24 GW for Storage). Qualitatively speaking, however, our
qualitative results are unaltered with a flat load. Specifically, when
assumptions A1–A3 jointly hold, simulated capacity trajectories are
closer to the GEP-optimal ones as we reduce the capacity step size
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Fig. G.2. Capacity trajectories with last-year duplication vs. truncation at simulation horizon.
Fig. G.3. Capacity trajectories with a flat load, risk neutrality and different capacity step sizes.
Fig. G.4. Capacity trajectories with a flat load and risk aversion (𝛼 = 2).
(Fig. G.3). Additionally, dropping A3 (i.e., assuming risk aversion), the
results shown in the main text are magnified since the fossil fleet is not
phased out and no new investments are triggered (Fig. G.4).
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