Supplementary Materials

Title: Multi-gauge Calibration Comparison for Simulating Streamflow Across the Major

River Basins In Madagascar: SWAT+ Toolbox, R-SWAT, and SWAT+ Editor Hard

Calibration

Rakotoarimanana Zy Harifidy ^a*, Ishidaira Hiroshi ^b, Souma Kazuyoshi ^b, Magome Jun ^b

Rakotoarimanana Zy Misa Harivelo^c, and Carlos Antonio Fernández-Palomino^{d,e}

- a) Integrated Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu 400-8511, Japan
- b) Interdisciplinary Centre for River Basin Environment, University of Yamanashi, Kofu 400-8511, Japan
- c) College of Civil Engineering, Tongji University, No. 1239, Si Ping Rd., Shanghai 200092, China
- d) Research Department II Climate Resilience, Potsdam Institute for Climate Impact Research, Potsdam, Germany
- e) Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany

*Correspondence: <u>rakzyharifidy@yahoo.fr</u>

Appendix A: Overview of the data used, experimental design principles, and calibration

methods

Data	Мар	Resolution	Availability
DEM	HydroSHEDS	3s resolution	https://www.hydrosheds.org
	v1	(10x10 degree	/hydrosheds-core-
		tiles) raster	<u>downloads</u>
Landuse	ESA-CCI Land	300m raster	http://maps.elie.ucl.ac.be/C
	Cover time-	(1995)	<u>CI/viewer.</u>
	series v2.0.7		
Soil	FAO	0-30cm and	http://www.fao.org/
		30- 100 cm	
		depth	
		raster	
Satellite	Daily		https://www.chc.ucsb.edu/d
Precipitation	Jan 1981- Dec	0.25° x 0.25°	ata/chirps
CHIRPS version 2	2021		
Reanalysis			https://climatedataguide.uca
Precipitation,			r.edu/climate-data/climate-
Min. and max air	Daily		forecast-system-reanalysis-
temperature,	Jan1979–Dec	38km grid	<u>cfsr</u>
Relative humidity,	2014		
Wind speed, Solar radiation			
NCEP/CSFR version 2			

Table 1: GIS and weather input data used for modeling

Stream discharge	Monthly Jan1982–Dec 1999	Provided from individual gauge stations	https://portal.grdc.bafg.de/a pplications/public.html?pub licuser=PublicUser#dataDo wnload/Home
------------------	--------------------------------	---	--

Table 2: Code versions used

Code	Version	Availability	
	number		
SWAT+ Editor	2.3.1	https://bitbucket.org/swatplus/swatplus.editor/downloads/	
(interface)			
SWAT+ Toolbox	1.0.5	https://github.com/OpenWaterNetwork/SWATPlus-	
(Calibration tool)		Toolbox	
R-SWAT	R version	https://github.com/tamnva/R-SWAT	
(Calibration tool)	4.1.1		

Table 3: Experimental designs principles and objectives of each experiment

	Model	Objectives	Rainfall	Calibration Methods	Cases
1	• SWAT2012 • SWAT+	To evaluate the impact of model selection under different precipitation datasets	• CSFR • CHIRPS	No calibration (default model setting)	Combination of 2 models and 2 precipitation datasets
2	SWAT+	To investigate the impact of precipitation data selection on water balance components	• CSFR • CHIRPS	No calibration (default model setting)	2 water balance components: precipitation and evapotranspiration
3	SWAT+	To assess the impact of the calibration methods under different precipitation datasets	• CSFR • CHIRPS	 SWAT + Toolbox (DDS) R-SWAT(LHS) 	Combination of 1 model, 2 precipitation datasets, and 2 calibration methods
4	SWAT+	To examine the impact of precipitation data selection on the calibrated water balance components	• CSFR • CHIRPS	 SWAT + Toolbox (DDS) SWAT+Editor 	2 water balance components: precipitation and evapotranspiration

• Calibration method in SWAT+ Toolbox

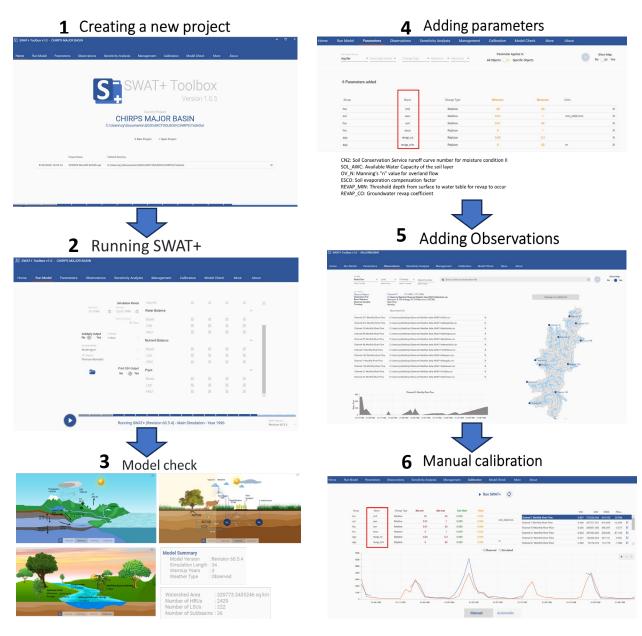


Figure 1: The main steps for conducting calibration and validation in the SWAT+ Toolbox

The first step was to open the SWAT+ Toolbox and create a new project. Once the project was set up, the next step was to run the model and check its initial performance. After that, parameters related to surface runoff were added to enhance the model's accuracy and performance. Nash– Sutcliffe efficiency (NSE) was chosen as the objective function. Sensitivity analysis and calibration were conducted to match the model with the observed data. Finally, the results were analyzed and visualized.

4 Evaluate Output **1** General setting 0.593 0.590 0.596 0.594 0.534 0.414 0.341 0.326 0.422 0.591 0.412 0.829 0.797 0.942 0.502 0.502 0.502 0.405 0.465 0.268 **2** Parameter sampling **5** Sensitivity analysis 21.72804 3 Run SWAT+ 6 Manual calibration . Run SWA

Calibration Method in the R-SWAT

Figure 2: The main steps for conducting calibration and validation in the R-SWAT

As follows from the figure shown above, a successful calibration in R-SWAT is divided into six main steps. The first consists of launching the R-SWAT interface to set the stage. Then, parameters related to surface runoff were selected before running the model. These parameters were used for sensitivity analysis and calibration. After that, NSE was defined as the objective function to attain specific goals whereas parameter sensitivity analysis and calibration were conducted to fine-tune the model.

• Calibration Method in the SWAT+ Editor

🗹 cn2

🗹 awo

🗹 ovn

🕑 esco

revap co

🗹 revap_min

abschg

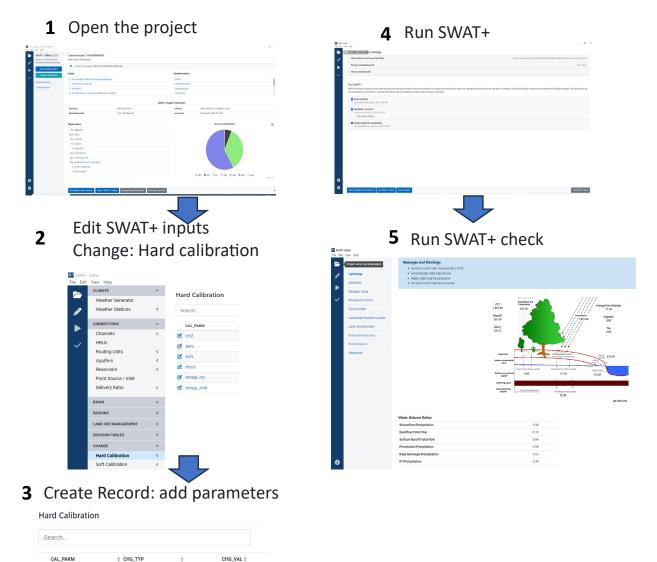
abschg

abschg

absval

absval

absval


-0.090

0.790

7.520 0.070

0.040

2.660

Figure 3: The main steps for conducting hard calibration in SWAT+ Editor

As shown in *Figure 3*, the first step for conducting hard calibration in SWAT+ Editor was to open the SWAT+ Editor and the project. Then, the SWAT+ input was edited under "change". Hard calibration was chosen for the calibration method. After that, the calibration parameters were added, and new records were created. Finally, we ran the model, and the water balance was checked for spatial visualization.