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Note S1. Introduction

This supplementary information (SI) accompanying the manuscript titled
”Landslide Topology Uncovers Failure Movements” provides a comprehen-
sive analysis of landslide topology and its significance in identifying landslide
failure types based on their movement. The SI offers an analysis of topologi-
cal features and their probability distributions, quantifying variations among
different failure types and the relationship between landslide topology and
physical processes. Additionally, it notes observations on the distinctions
between topology and geometry in differentiating failure movements, includes
ancillary sensitivity analyses conducted in scenarios with limited data, and ver-
ifies previously undocumented landslide inventories. It also details information
on coupled landslide movements within complex landslide scenarios, discusses
the method’s impact on debris avalanches, and concludes with remarks on the
method’s technical limitations. Lastly, the SI presents measures to evaluate
model performance, ensuring a robust assessment of the method’s efficacy in
their predictions.

Note S2. Behavior of different failure types

The inherent differences between failure types, notably their kinematic and
mechanical behaviors, contribute prominent intricacies to the topography (see
surface profiles in Figure 1 in the main manuscript). These intricacies are
attributed to slope deformity, interior deformation, kinematic width of fail-
ures while propagating down-slope, main scarp deformation, run-out length
represented by the debris/earth/soil transportation, and accumulated debris,
and others captured by topology. The following are some of the most common
failure types and their various behaviors.

The profile of rotational slides is marked by a conspicuous primary scarp
and a distinctive back-tilted bench at the head, but little interior deformation
(a schematic view can be seen in Figure 1 in the main manuscript). They
are typically slowly moving a large portion of the weak rock mass. At the
same time, kinematically rapid planar sliding is marked by the sliding of a
rock mass on a planar rupture surface with little to no internal deformation,
where the scarp might be separated from the stable rock at deep vertical
tension cracks. Typically, they exhibit very compact shapes. Cohesion, c plays
an important role in slides, as the degree of internal strength between the
particles in a block of material determines the strength and stability along the
slip plane. Translational landslides, like the ancient Seimareh slide in Iran’s
Zagros Mountains, are among the largest and most destructive on Earth.12

Flows are characterized by very rapid movements consisting of saturated
granular material on moderate slopes, including liquefaction of materials (in
the context of co-seismic triggers) or excess pore pressure (in the context of
rainfall triggers) originating from the landslide source. When the internal fric-
tion angle, φ, is low (due to the mixture of solid and fluid particles), less
external force is required to instantiate a failure because they are displaced
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quite easily. Kinematically flow-ish movements are observed with channelized
streams and a bulk deposit of debris at the talus (deposition zone), representing
highly elliptical, elongated bodies.7

Usually limited in volume, falls (particularly rock falls) exhibit ballistic
movements (high velocity, energy, and momentum) that are massively destruc-
tive. They detach from cliffs and move at high velocities, either by rolling,
falling, or bouncing due to the influence of gravity. The run-out of a rock fall
is often shorter and is more likely to travel along a straight path, whereas the
run-out of debris flows is longer and can meander and spread out over a wider
area.3

Complex failures are very hard to describe, as there is an amalgamation of
different failure types occurring at the same time or subsequently, and they can
therefore exhibit multiple characteristics of other failure types. For example,
irregular debris slides evolving into a debris flow or any other combination of
slides, flows, and falls eventually evolving into another movement style can be
considered examples of complex failure.6,9

Such morphological and geometrical information for each distinct failure
type is theorized to be captured in the topological space by the topological
properties, which are then utilized in the machine-learning model to identify
the failure types.

Note S3. Topological Features

Persistence diagrams capture the life-death information of structures like con-
nected components, holes, and voids. The persistence diagram consists of a
set of {(bi, di)}i=N

i=1 pairs corresponding to each structure type; here, i and N
are the indexes of birth-death pairs and the total number of the birth-death
pairs. Using the set of {(bi, di)}i=N

i=1 pairs, we can calculate various topological
features such as persistence entropy, average lifetime, number of points, Betti
curve-based measure, persistence landscape curve-based measure, Wasserstein
amplitude, Bottleneck amplitude, Heat kernel-based measure, and landscape
image-based measure.

Some of the above topological features can be explained using a lifetime
vector that is calculated using a set of {(bi, di)}i=N

i=1 pairs. The lifetime vector
[li]

i=N
i=1 is calculated as the difference between death and life of the (bi, di)

pair (li = di − bi). The number of points, average lifetime, and persistence
entropy are the length, average, and Shannon entropy of the lifetime vector. In
comparison, topological features like Bottleneck and Wasserstein’s amplitudes
quantifying the magnitude of the lifetime vector are p-norm (p=2) and ∞-norm
of the lifetime vector, respectively.

The Betti curve-based feature is a p-norm of a 1D discretized betti curve,
which is a function (B(ϵ) : R → Z) mapping the persistence diagram to an
integer-valued curve, and it counts the number of birth-death pairs at a given
ϵ, satisfying the condition bi < ϵ < di.

8 Similarly, a persistence landscape
curve-based feature is a p-norm of a 1D discretized persistence landscape curve
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Figure S1: Illustration of topological components on typical landslide
movements. The diagram shows a schematic outlook of how empty spaces
are created in different landslide types (green color expresses the displaced
material for each movement type). This illustration is shown using a simplified
2D transformation of a rather complex 3D topological phenomenon for ease of
understanding. Sub-plots (a–c) refer to the possible configurations of empty
spaces created in the typical polygons of each failure type. Slides tend to have
the fewest empty spaces or holes due to their compact shapes, followed by
falls. Flow-type failures tend to have multiple numbers of empty spaces due
to the sinuous shapes they conjure as they follow the landscape’s channelized
topography.

defined as λ(k, ϵ) : R → R+, where λ(k, ϵ) = kmax{fbi,di
(ϵ)}i=n

i=1 , kmax is the
k-th largest value of a set of functions defined by fbi,di

(ϵ) = max{0,min(ϵ −
bi, di − ϵ)} for each (bi, di) pair.4

The heat kernel-based feature is a p-norm (p=2) of the discretized 2D
function obtained using the operation of the heat kernel on the persistence
diagram. Heat kernel uses a gaussian kernel (σ) and a negative of the gaussian
kernel (σ) for each (bi, di) pair and mirror of (bi, di) pair across the diagonal.11

In contrast, the persistence image-based feature is a p-norm (p=2) of the
discretized 2D function obtained using the operation of the weighted Gaussian
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kernel on all (bi, di − bi) pairs in the birth-persistence diagram.1 The birth-
persistence diagram consists of (bi, di − bi) pairs where the x-axis shows the
birth information, and the y-axis shows the lifetime of the (bi, di) pair.

Note S4. Geometric versus Topological
Features

Geometric properties define an object’s shape and size, but topological prop-
erties explain the connections and topological interactions among its parts.
Geometric properties such as area, perimeter, convexity (smallest convex shape
that encompasses all the points of the landslide area), and ellipticity (semi-
minor-axis: shortest radius extending from the ellipse’s center to its edge,
capturing the narrowest width of the landslide’s elliptical representation)
define the physical dimensions of a landslide, whereas topological properties
such as the average lifetime of holes, Betti curve, and landscape curve describe
the connections and interactions of the soil and rock masses, the width of
kinematic propagation, and the depth of failure in a landslide. Geometric prop-
erties are, however, sensitive to any changes made to the original shapes of the
geometry and, therefore, more susceptible to drastically changing the geomet-
ric property values. For example, any change to a landslide’s boundary/body
would inadvertently change each of the values of geometric properties like area,
perimeter, convexity, etc., but the same cannot be said for topology, as it relies
on the number of voids that are generated based on the overall shape of the
landslide body. This is even more pronounced upon investigating the landslides
in 3D. Since these geometric properties cannot be broadcasted to 3D, much
information related to variational changes in the topography (attributed to
elevation and slope) is lost. As TDA captures this 3D information and utilizes
it when engineering topological features, intricate information on landslides
such as depth of failure, deformation pattern, and the width of kinematic
progression is well recorded.

Therefore, to assess and evaluate the differences between the classical and
topological properties, we compare them in this section. This comparison was
based on KDE plots that represent the PDFs of the samples for each failure
type. We also plotted box plots to compare the median values and distribution
of said values between the geometric and topological properties. As we see in
Figure S2-b, the PDFs of the failure types are very similar to each other, specif-
ically when looking at the ellipticity, semi-major axis, perimeter, and width.
However, when comparing them to the topological properties Figure S2-a, we
observe that the PDFs of the failure types are more dissimilar to each other
under each property (e.g., the average lifetime of holes, bottleneck amplitude
of holes, Wasserstein amplitude of holes). This can be the reason why the ran-
dom forest models show promising results, as the PDFs are dissimilar enough
to find evident differences between each failure type when using the topological
properties/features. This effective ability to distinguish failure movements is
also seen across 1) limited samples (the US Pacific Northwest and Wenchuan,
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Figure S2: Topological and geometrical feature statistics. Probability
distribution functions of the geometrical and the topological features for each
failure type– slides (colored in orange), flows (colored in dark blue), complex
(colored in red), and falls (colored in light blue)–in Italy. The y-axis shows the
probability density values (calculated using kernel density estimation), and the
x-axis shows the value of topological or geometrical attributes. The topological
properties in plot-a) are: Average lifetime of holes (ALH), Average lifetime of
connected components (ALC), Wasserstein amplitude of holes (WAH), Betti-
curve based feature of connected components (BCC), Betti-curve based feature
of holes (BCH), and Bottleneck amplitude of holes (BAH). The geometric fea-
tures are: area (A), perimeter (P ), the ratio of area to perimeter A

P , convex
hull-based measure (Ch), minor(sm), and width (W ) of the minimum area
bounding box fitted to the polygon.
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China; Figure S3), 2) temporal prediction of debris flows and debris slides
in Wenchuan, China, (Figures S4 and S5), and 3) coupled failure movements
under complex landslide scenarios (Figure S6).
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Figure S3: Sensitivity analysis on limited training samples for effec-
tive predictions on the US Pacific Northwest and Wenchuan, China.
The figure shows the classification accuracy (in%) corresponding to each fail-
ure type (slides: colored in orange, flows: colored in dark blue, complex: colored
in red, and falls: colored in light blue) with the number of training samples for
a) the US Pacific Northwest and b) Wenchuan, China. The x-axis shows the
number of training samples from each class used to train the model, and the y-
axis shows the classification accuracy (in%) corresponding to each class. At 100
samples, the mean classification accuracy reaches over 65% in the US Pacific
Northwest and 95% in Wenchuan, China. Even at 20 samples, the performance
reaches 75%. The regions of Denmark and Turkey were not tested due to a
lack of samples within the classes of fall-type (62 samples) and complex-type
(92 samples) within these inventories, respectively.
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Note S5. Verification of landslides in 2005 and
2007 Wenchuan, China
multi-temporal inventory
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Figure S4: Verification of 2005 and 2007 landslides using Google
Earth imagery. Panels (a) and (b) display model predictions for the 2005
inventory, while panels (c) and (d) pertain to the 2007 inventory. The analysis
of certain features, like conspicuous or prominent scarps, channels, mountain
ridges, and travel distances, aids in understanding failure movements. The
plots illustrate predictions for both debris slides (colored in orange) and flows
(colored in dark blue), using these features to corroborate and verify the two
types of movements.

To verify landslide movement types from Google Earth images, we focus
on specific geomorphological features that are characteristic of different types
of landslides (debris slides and debris flows in the case of Wenchuan, China).
The approach is as follows:

• Examination of debris flow characteristics:
To identify debris flows, we searched for channelized flow patterns.6 This
phenomenon is crucial in differentiating debris flows from other landslide
types. Our attention was also directed towards the recognition of channels



SI: Landslide topology uncovers failure movements 9

Sl
op

e 
di

re
ct

io
n

Conspicous scarpsMountain ridge

Sl
op

e 
di

re
ct

io
n

2005 2008

2007

Slope direction

Mountain ridge

2008

Predicted Debris Slides  
Debris Slides 2008 Fan et al. (2019)  

Slope direction

2008

a) b)

c)

d)

Figure S5: Verification of 2005 and 2007 landslides using archived
temporal Google Earth imagery. Panels (a) and (c) show model predic-
tions for landslides (debris slides: colored in orange and debris flows: colored
in dark blue) in 2005 and 2007, while panels (b) and (d) show landslides iden-
tified by Fan et al. (2019) after the 2008 Wenchuan earthquake. Archived
Google Earth images are used to track landscape changes on slopes affected
by landslides post 2005 and 2007.

along the flow paths (Figure S4-a and c), indicative of channelized debris
transportation, a hallmark of debris flow activity.9 Furthermore, we also
assessed the sinuosity and travel distances of these flows, as we suspect the
hillslope channelized debris flow to harbor longer travel distances than debris
slides.13

• Examination of debris slide characteristics:
We looked for abrupt, steep cliff-like features in the terrain where prominent
scarps (see Figure S4-b and d) are often indicate debris slides and/or shallow
slides14). Additionally, many debris slides were observed on the ridge of the
mountains, necessitating further scrutiny of these landslides in such topo-
graphic conditions. Another key aspect of our analysis involved assessing
the sinuosity and travel distance. Typically, debris slides exhibit less sinu-
ous paths with shorter travel distances than debris flows.13 Therefore, we
looked for settings where such topographic conditions were met to qualify
and confirm the movements as debris slides.
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• Archive imagery to track landscape changes:
We also employed the timeline feature of Google Earth images to conduct a
more nuanced and comprehensive understanding of the individual landslides,
their evolution, and what is occurring nearby in the topography to better
understand the typology. We looked at the initiations, pathways, accumu-
lations, terrain changes, and material deposition along the channels and
hillslopes to better assess the movement type. By systematically examining
historical imagery, we were able to verify, for example, the movement and
accumulation of debris, providing more insights into verifying the predictions
made by the model more effectively (see Figure S5).
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Figure S6: Exploration of coupled failure movements within complex
landslides with topological features. Sub-plots (a-c) display the probabil-
ity distribution functions for three key topological properties for the US Pacific
Northwest: Average Lifetime of holes, Betti curve-based features of holes, and
Bottleneck amplitude of holes. These distributions reveal a striking similar-
ity between sliding-type and complex landslide failures. Sub-plots (d-e) show
the probability of complex landslides belonging to each of the failure types
class (slide: colored in orange, flow: colored in dark blue, and fall: colored in
light blue) as predicted by the model. Box plot (d) shows the complex land-
slide samples that occur from ”Translational rock slides followed by rock falls”
as documented in the Statewide Landslide Information Database for Oregon
(SLIDO). Model predictions indicate sliding failure to be the predominant
type of failure, which are most likely translational slides according to SLIDO.
Similarly, box plot (e) shows the complex landslide samples that occur from
”Rotational slides followed by flows” as recorded in SLIDO. Model predictions
indicate slide type to be the predominant type of failure, which most likely
ruptures rotationally. Beige bars illustrate sliding mechanisms while bars with
darker and lighter shades of blue illustrate flows and fall types, respectively.
Note the number of annotated complex failures with behavioral definitions by
SLIDO in box plot (a) constitutes 198 samples and box plot (b) constitutes
230 samples.
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Note S6. Topology and outlook towards debris
avalanches

Debris avalanches, categorized within the realm of flow-type movements, often
occur in topographical settings similar to those conducive to debris slides.9

Consequently, the morphological and material characteristics of debris slides
and debris avalanches may exhibit notable similarities. This observation is
corroborated by the fact that debris slides are frequently categorized as a pre-
liminary stage in the development of debris avalanches (and also debris flows),
serving as a mechanism of initiation.9 In the context of debris avalanches,
we anticipate that their movement will impart a topographic signature that,
while generally akin to that of debris slides, remains distinct. Specifically,
debris avalanches are characterized by forming a debris fan (conical shape) at
the deposition part, a feature amiss in debris slides. These avalanche deposits
have distinct imprints on the landscape, thereby influencing the topology
of the landslide polygonal shape, which Topological Data Analysis (TDA)
can effectively discern. Although the initial stages of both debris slides and
avalanches may exhibit similar morphologies, this variation in the deposition
area of the landslide can be leveraged by our model to distinguish between
debris slides and debris avalanches. In consensus, as long as there are distinct
variations in shapes amongst the different movement types, our model can
distinguish them, even between debris slides and avalanches.

A caveat in the approach can stem when the model’s performance is con-
ditioned on the preciseness of the avalanches mapped in the inventory. These
inventories are primarily sourced/generated from expert observations (both in
the field and remotely) and institutional reports. This reliance may inadver-
tently introduce a bias, particularly in differentiating between landslide types
with subtle distinctions in their topographical and material characteristics. A
pertinent example could be the challenge of separating debris avalanches from
debris slides.
Broadly, debris slides are grouped as an initial component of debris flows or
debris avalanches, in which they function as an initiation mechanism.9 This
feature truly indicates that landslides are quite complex by nature, where a
failure event could manifest more than one mode of movement (for example,
a landslide transitioning from initial soil cracking to a debris avalanche and
finally into a surging sediment-laden channel, collectively termed as ‘debris
flow’). Our model, therefore, tends to classify landslides based on their most
dominant or final observable state, potentially simplifying the multifaceted
dynamics of landslide processes. For instance, a debris slide evolving into a
debris avalanche might predominantly be identified as the latter by our model
since that would be the last imprint on the topography.
To address this limitation, a more nuanced model could be developed, focusing
on initial indicators such as the scarp area, which may provide insights into
the primary failure mechanism, thereby enhancing the model’s classification
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ability.2 Alternatively, we can adapt existing data to consider the evolution
stages (capturing and separating the moment when debris slides converge to
an avalanche) but this would take more effort in re-curating the data to avoid
misclassifications.

Note S7. Technical limitations of the method

Certain limitations can arise pertaining to the shape delineation of landslide
bodies. Manual mapping efforts provide the most accurate representation of
landslides when mapped from field or remote observations when compared
to automated mapping. In the past years, despite automated tools gaining
traction due to their reliability in rapid mapping and assessment,5 their use
in generating complete inventories (either event-based or historical) is still
limited. These limitations arise from issues like amalgamations10 where more
than one landslide body is mapped together as a single entity due to similar
spectral responses of the landslide pixels in satellite images. Inadvertently, it
affects the assessment of reliable landslide statistics such as travel distance,
propagation area, and volume estimates. For our model to operate properly,
the amalgamation issue needs to be addressed as an intermediate step following
mapping by automated tools. An avenue in this endeavor would be to explore
the sensitivity between manual and automated inventories via TDA.

Furthermore, the method’s effectiveness relies on the quality and geograph-
ical location of the training and testing data used in the model. Manual
annotations of failure types can lead to bias since various mappers will have
different perspectives (mapping on aerial or satellite imagery versus geomor-
phological field mapping can display distinct perceptions) when annotating
the landslides and their failure types. Also, due to the ambiguous nature
of complex-type failures, they could include slides and flows simultaneously,
which can impact the overall performance of the model. The method’s reliance
on a DEM for converting 2D polygons into 3D shapes also presents poten-
tial challenges. DEM quality in the training and testing regions can bias the
results, particularly for smaller landslides, as coarser DEM resolutions may
struggle to capture the profiles of these smaller-scale events.

Note S8. Other measures to evaluate model
performance

In order to evaluate the performance of the method, we also calculated the
confusion matrix and other accuracy metrics like the True Positive Rate, True
Negative Rate, False Positive Rate, False Negative Rate, and the F1-score.

The True positive rate (also known as Sensitivity, Recall) (equation 1) and
true negative rate (also known as Specificity) (equation 2) are performance
metrics that are used to assess a model’s accuracy in accurately detecting
positive and negative instances. The number of genuinely negative instances
identified as positive by the model is known as false positives (FP) (equation
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3). The number of cases that are genuinely positive but are categorized as
negative by the model is known as false negatives (FN) (equation 4).

TPR (= Recall) =
True Positives

True Positives + False Negatives
(1)

TNR =
True Negatives

True Negatives + False Positives
(2)

FPR =
False Positives

True Negatives + False Positives
(3)

FNR =
False Negatives

True Positives + False Negatives
(4)

The F1-score (equation 6) is the harmonic mean of precision (equation 5)
and recall (equation 1), and it is used to balance the precision-to-recall trade-
off. Precision is the number of correct positive predictions produced by the
model out of all correct positive predictions made by the model, and recall
is the number of correct positive predictions made out of all correct positive
occurrences.

Precision =
True Positives

True Positives + False Positives
(5)

F1-score = 2 · Precision ·Recall

Precision + Recall
(6)

In Figure S7, we see the confusion matrix and the respective scores of
the TPR, TNR, FPR, FNR, and F1-score of both Italy and the US Pacific
Northwest.

Slide Flow Complex Fall

Slide 98.60 0.00 1.18 0.22

Flow 0.0 94.77 1.70 3.53

Complex 0.66 1.99 96.39 0.96

Fall 0.15 2.80 0.96 96.11

Predicted Class

ssal
C lautc

A

Slide Flow Complex Fall

TPR 98.50 94.69 96.27 96.00

TNR 99.69 98.38 98.67 98.40

FPR 0.30 1.61 1.32 1.59

FNR 1.49 5.30 3.73 3.97

F1-
Score

98.79 94.90 96.16 95.64

M
et

ric
s

Figure S7: Accuracy statistics for the Italian data. The figure shows
the confusion matrix and the associated accuracy metrics of the random forest
model for the data of Italy.
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